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Abstract

The human TDG gene encodes a DNA glycosylase protein, which is involved in 
base excision repair and the regulation of gene expression. Since nonsynonymous 
variations in two other DNA glycosylase genes, OGG1 and MUTYH, are associated 
with an increased cancer risk, deleterious nonsynonymous variations in the TDG gene 
might also be associated with diseases, including cancer. In the present study, to 
identify deleterious variations in TDG, nucleotide variations in the coding region of the 
TDG gene were investigated using single nucleotide polymorphism (SNP) databases, 
and detected nonsynonymous variants were analyzed in silico from the standpoint of 
relevant protein function and stability. A total of 43 nonsynonymous SNPs consisting of 
37 missense variations, 3 nonsense variations, and 3 frameshift variations were found 
in the TDG gene. Six of the 37 missense variants were predicted to be damaging or 
deleterious by three different software programs (PolyPhen-2, SIFT, and PROVEAN), 
and 28 of them were predicted to be less stable using both the I-Mutant 2.0 and 
MUpro software. Additionally, 6 nonsense or frameshift variants were predicted to 
produce a truncated TDG protein with a completely or partially lost DNA glycosylase 
domain. These results suggested that a subset of nonsynonymous SNPs in the TDG gene 
is associated with a reduced level of protein functional activity or stability.

ABBREVIATIONS
SNP: Single Nucleotide Polymorphism; MAP: MUTYH-

Associated Polyposis; εC: 3,N4-ethenocytosine; 5mC: 
5-methylcytosine; 5hmC: 5-hydroxymethylcytosine; 5fC: 
5-formylcytosine; 5caC: 5-carboxylcytosine; PolyPhen-2: 
Polymorphism Phenotyping v2; SIFT: Sorting Intolerant From 
Tolerant; PROVEAN: Protein Variation Effect Analyzer; HGVD: 
Human Genetic Variation Database

INTRODUCTION
The human thymine-DNA glycosylase (TDG) gene (MIM 

#601423) is located on chromosome 12q24.1 and encodes a 
410 amino acid protein that functions as a DNA glycosylase and 
is a base excision repair protein [1,2]. The TDG protein repairs 
unmodified or modified bases in various mispairs in double-
stranded DNA: i.e., thymine (T) and uracil (U) mispaired with 

guanine (G), T mispaired with O6-methylguanine, and thymine 
glycol mispaired with G [3-5]. The protein is also involved in 
the repair of 5-halogenated derivatives of U and C, such as 
5-fluorouracil and 5-bromouracil, and the exocyclic etheno-
base lesion 3,N4-ethenocytosine (εC) [6,7]. The broad range 
of substrates shown above enables TDG to efficiently stabilize 
genomic DNA. Recently, TDG protein, together with TET family 
proteins, has been shown to be involved in the demethylation 
of 5-methylcytosine (5mC) in DNA [8,9]. The 5mC bases can be 
oxidized to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine 
(5fC), and 5-carboxylcytosine (5caC) by TET proteins, and 
the resultant 5fC and 5caC base lesions are removed by TDG-
mediated base excision repair, indicating that TDG is profoundly 
involved in DNA demethylation [8,9]. In another model of DNA 
demethylation, TDG activity is coupled with the deamination 
of 5mC and 5hmC by AID enzyme [10]. In addition to its role in 
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DNA demethylation, TDG protein interacts with transcription 
factors and transcriptional coregulators [2]. Thus, TDG has very 
important roles in not only DNA repair, but also the regulation of 
gene expression.

As genomic variations among people, single nucleotide 
polymorphisms (SNPs) exist throughout the genome and can be 
divided into several groups. Among the different kinds of SNPs, a 
nonsynonymous SNP in the coding region of a gene is important 
because it alters the amino acid composition; consequently, such 
alterations can have an impact on protein structure, function, 
and subcellular localization. Although pinpointing the effects of 
the many nonsynonymous SNPs using biochemical analyses is 
challenging, computational analysis tools predicting their effect 
on protein activity and stability have been recently developed, 
such as Polymorphism phenotyping v2 (PolyPhen-2) [11], Sorting 
Intolerant From Tolerant (SIFT) [12], Protein Variation Effect 
Analyzer (PROVEAN) [13], I-Mutant 2.0 [14], and MUpro [15,16] 
software. Since the TDG protein plays an important role in genome 
maintenance [2], a reduced functional ability of TDG as a result 
of nonsynonymous SNPs might be associated with susceptibility 
to diseases, including cancer. Actually, a nonsynonymous SNP in 
another DNA glycosylase, OGG1 (MIM #601982), is associated 
with an increased risk of lung cancer [17], and biallelic 
nonsynonymous variations in another DNA glycosylase, MUTYH 
(MIM #604933), causes the onset of MUTYH-associated polyposis 
(MAP: MIM #608456), a hereditary disease characterized by 
colorectal multiple polyps and carcinoma(s) [18,19]. Thus, in 
the present study, we searched for nonsynonymous SNPs in the 
TDG gene using genome databases and investigated the impacts 
of nonsynonymous SNPs on TDG protein function and stability 
using a computational approach.

MATERIALS AND METHODS 
Collection of nonsynonymous SNPs

Data on nonsynonymous variations of the TDG gene were 
collected from the database of SNPs (dbSNP) located on the 
homepage of the National Center for Biotechnology Information 
website (http://www.ncbi.nlm.nih.gov/SNP/)  and from the 
human genetic variation database (HGVD) in the Japanese 
population located on the homepage of the Kyoto University 
website (http://www.genome.med.kyoto-u.ac.jp/SnpDB/). The 
reference Transcript ID and the reference Protein ID of TDG are 
NM_003211 and NP_003202, respectively.

PolyPhen-2 prediction

PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) 
is a tool that predicts the possible impact of an amino acid 
substitution on the structure and function of a human protein 
[11]. This prediction is based on a number of features comprising 
the phylogenetic, sequence, and structural information 
characterizing the substitution. The PolyPhen-2 server 
discriminates nonsynonymous SNPs into three main categories: 
benign, possibly damaging (less confident prediction), or 
probably damaging (more confident prediction).

SIFT and PROVEAN prediction

SIFT predicts whether an amino acid substitution affects 
protein function based on the degree of conservation of amino 

acid residues in sequence alignments derived from closely 
related sequences [12]. The SIFT scores range from 0 to 1, and 
scores ≤0.05 are predicted by the algorithm to be damaging 
amino acid substitutions, whereas scores >0.05 are considered to 
be tolerated. PROVEAN is a software tool that predicts whether 
an amino acid substitution has an impact on the biological 
function of a protein grounded on the alignment-based score 
[13]. The score measures the change in sequence similarity of a 
query sequence to a protein sequence homolog between without 
and with an amino acid variation of the query sequence. If the 
PROVEAN score ≤-2.5, the protein variant is predicted to have 
a “deleterious” effect, while if the PROVEAN score is >-2.5, the 
variant is predicted to have a “neutral” effect. Both types of 
software are available on the homepage of the J. Craig Venter 
Institute: the SIFT tool is at http://sift.jcvi.org, and the PROVEAN 
tool is at http://provean.jcvi.org.

I-Mutant 2.0 prediction

I-Mutant 2.0 (http://folding.biofold.org/i-mutant/i-
mutant2.0.html) is a support vector machine-based tool for the 
prediction of protein stability changes upon nonsynonymous 
variations [14]. The tool evaluates the stability change upon 
nonsynonymous SNP starting from the protein structure or from 
the protein sequence. The DDG value (difference in free energy 
of mutation) is calculated from the unfolding Gibbs free energy 
value of the variant protein minus the unfolding Gibbs free energy 
value of the wild type (Kcal/mol), and scores <0 are predicted by 
the algorithm to indicate decreased stability, whereas scores >0 
are considered to indicate increased stability.

MUpro prediction

MUpro (http://www.ics.uci.edu/~baldig/mutation.html) is 
also a support vector machine-based tool for the prediction of 
protein stability changes upon nonsynonymous SNPs [15,16]. 
The value of the energy change is predicted, and a confidence 
score between -1 and 1 for measuring the confidence of the 
prediction is calculated. A score <0 means the variant decreases 
the protein stability; conversely, a score >0 means the variant 
increases the protein stability.

RESULTS AND DISCUSSION
By examining SNPs in the TDG gene using the dbSNP and 

HGVD databases, a total of 43 nonsynonymous SNPs were found. 
These SNPs consisted of 37 missense variations, 3 nonsense 
variations, and 3 frameshift variations.

To determine which missense variants are damaging or 
deleterious, PolyPhen-2, SIFT, and PROVEAN software were 
applied for the 37 missense variants of the TDG gene (Table 1). 
In the PolyPhen-2 analysis, 8 (21.6%) of the 37 variants were 
predicted to be probably damaging, and the others were predicted 
to be benign or possibly damaging. When the SIFT software 
was used, 18 variants (48.6%) were predicted to be damaging, 
and the others were predicted to be tolerated. In the PROVEAN 
analysis, 9 variants (24.3%) were predicted to be deleterious, 
but the others were neutral. When variants that were common to 
the 8 variants in the PolyPhen-2 prediction, the 18 variants in the 
SIFT prediction, and the 9 variants in the PROVEAN prediction 
were searched, 6 TDG variants, namely, c.329G>A (p.Arg110His), 

http://www.ncbi.nlm.nih.gov/SNP/
http://www.genome.med.kyoto-u.ac.jp/SnpDB/
http://genetics.bwh.harvard.edu/pph2/
http://sift.jcvi.org
http://provean.jcvi.org/
http://folding.biofold.org/i-mutant/i-mutant2.0.html
http://folding.biofold.org/i-mutant/i-mutant2.0.html
http://www.ics.uci.edu/~baldig/mutation.html
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Table 1: PolyPhen-2, SIFT, and PROVEAN results for the 37 missense variants of the TDG gene.

Nucleotidea Positionb Proteinc dbSNP ID PolyPhen-2 prediction (score) SIFT prediction (score) PROVEAN prediction 
(score)

c.56C>T g.104370728 p.Thr19Met rs201193630 possibly damaging (0.606) damaging(0.045) neutral (-1.029)

c.121C>T g.104370793 p.Pro41Ser rs367858051 benign (0.028) tolerated (0.101) neutral (-0.507)

c.143C>A g.104370815 p.Ala48Asp rs376956993 possibly damaging (0.790) damaging (0.011) neutral (-0.245)

c.196A>G g.104373638 p.Arg66Gly rs369649741 possibly damaging (0.546) damaging (0.009) neutral (-0.205)

c.268A>G g.104373710 p.Lys90Glu rs150152878 probably damaging (0.997) tolerated (0.054) neutral (-0.364)

c.329G>A g.104373771 p.Arg110His NRd probably damaging (1.000) damaging(0.001) deleterious (-4.407)

c.376G>A g.104373818 p.Asp126Asn rs149084574 probably damaging (1.000) damaging (0.014) deleterious (-4.485)

c.402T>G g.104373844 p.Ile134Met rs71466288 possibly damaging (0.673) damaging (0.040) neutral (-2.145)

c.431T>C g.104374693 p.Met144Thr rs371052913 benign (0.114) tolerated (0.148) deleterious (-2.691)

c.526A>G g.104376624 p.Met176Val rs140436257 benign (0.005) tolerated (0.665) neutral (-1.326)

c.527T>C g.104376625 p.Met176Thr rs367961832 benign (0.001) tolerated (0.777) neutral (-0.870)

c.595G>A g.104376693 p.Gly199Ser rs4135113 benign (0.432) tolerated (0.209) deleterious (-5.501)

c.602A>C g.104376700 p.Lys201Thr rs61937630 possibly damaging (0.787) tolerated (0.121) neutral (-1.727)

c.625C>T g.104376924 p.Arg209Cys NR probably damaging (1.000) damaging(0.001) deleterious (-5.995)

c.674G>A g.104376973 p.Arg225Gln rs375015053 possibly damaging (0.762) tolerated (0.067) neutral (-1.157)

c.697T>C g.104376996 p.Cys233Arg rs368866450 possibly damaging (0.741) tolerated (0.122) deleterious (-3.587)

c.803T>G g.104378537 p.Val268Gly rs17853764 probably damaging (1.000) damaging (0.000) deleterious (-6.092)

c.835T>C g.104378569 p.Phe279Leu rs138856428 benign (0.143) tolerated (0.365) neutral (-0.549)

c.875T>C g.104378609 p.Leu292Pro rs140103994 probably damaging (1.000) damaging (0.000) deleterious (-6.646)

c.922G>A g.104378656 p.Val308Ile rs144056251 benign (0.003) tolerated (0.453) neutral (-0.478)

c.980T>A g.104379396 p.Met327Lys NR benign (0.001) damaging (0.006) neutral (-1.666)

c.997A>G g.104379413 p.Lys333Glu rs376531574 benign (0.002) damaging (0.023) neutral (-0.648)

c.1006C>T g.104379422 p.Pro336Ser rs139405470 probably damaging (0.972) damaging (0.004) deleterious (-2.813)

c.1025A>G g.104379441 p.Tyr342Cys rs142534613 benign (0.016) tolerated (0.054) neutral (-1.505)

c.1036T>G g.104379452 p.Tyr346Asp rs61756223 possibly damaging (0.611) damaging (0.000) neutral (-1.937)

c.1039G>A g.104379455 p.Gly347Arg rs79676424 possibly damaging (0.844) tolerated (0.117) neutral (-0.738)

c.1048C>A g.104379464 p.Pro350Thr rs139535385 benign (0.004) tolerated (0.170) neutral (-0.582)

c.1066T>C g.104379482 p.Cys356Arg NR possibly damaging (0.901) damaging (0.003) neutral (-1.420)

c.1081A>G g.104379497 p.Asn361Asp rs186233269 benign (0.000) tolerated (0.258) neutral (-1.631)

c.1099G>C g.104380734 p.Val367Met rs2888805 benign (0.074) tolerated (0.085) neutral  (-0.593)

c.1099G>A g.104380734 p.Val367Leu rs2888805 benign (0.000) tolerated (0.266) neutral (-0.549)

c.1120G>A g.104380755 p.Ala374Thr rs3953598 benign (0.000) tolerated (0.699) neutral (0.593) 

c.1136C>A g.104380771 p.Pro379His rs12367528 probably damaging (0.996) damaging (0.001) neutral (-1.513)

c.1142G>A g.104380777 p.Gly381Glu rs3953597 possibly damaging (0.936) damaging (0.003) neutral (-1.282)

c.1181C>T g.104380816 p.Ser394Phe rs377754877 possibly damaging (0.832) damaging (0.003) neutral (-1.726)

c.1187G>A g.104380822 p.Ser396Asn rs3953596 benign (0.000) tolerated (1.000) neutral (0.804)

c.1189A>C g.104380824 p.Asn397His rs144289190 possibly damaging (0.938) damaging (0.005) neutral (-1.195)
aReference transcript ID, NM_003211.
 bReference genome, hg19/NCBI37.
 cReference protein ID, NP_003202.
 dNot Registered.

c.376G>A (p.Asp126Asn), c.625C>T (p.Arg209Cys), c.803T>G 
(p.Val268Gly), c.875T>C (p.Leu292Pro), and c.1006C>T 
(p.Pro336Ser) were found. Therefore, these variants are 
considered to be most likely damaging or deleterious.

Next, the changes in the protein stability of the missense 

variants were examined using I-Mutant 2.0 and MUpro software 
(Table 2). A total of 28 variants (75.7%) out of the 37 missense 
variants, including 6 damaging or deleterious variants as 
determined using the PolyPhen-2, SIFT, and PROVEAN software, 
were predicted to be less stable using both the I-Mutant 2.0 and 
the MUpro software.
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Table 2: I-Mutant 2.0 and MUpro results for the 37 missense variants of the TDG gene.

Proteina I-Mutant 2.0 prediction (DDGb) MUpro prediction (score)

p.Thr19Met increase (1.20) decrease (-0.30386261)

p.Pro41Ser decrease (-1.07) decrease (-0.3180559)

p.Ala48Asp decrease (-0.5) increase (0.098690132)

p.Arg66Gly decrease (-1.09) decrease (-1)

p.Lys90Glu decrease (-0.01) decrease (-0.64510448)

p.Arg110His decrease (-2.06) decrease (-1)

p.Asp126Asn decrease (-0.55) decrease (-0.75620006)

p.Ile134Met decrease (-1.48) decrease (-0.50535186)

p.Met144Thr decrease (-1.09) decrease (-0.71375078)

p.Met176Val decrease (-0.48) decrease (-0.75477173)

p.Met176Thr decrease (-0.64) decrease (-1)

p.Gly199Ser decrease (-0.99) decrease (-0.29187319)

p.Lys201Thr decrease (-0.06) decrease (-0.11595621)

p.Arg209Cys decrease (-1.16) decrease (-0.82707769)

p.Arg225Gln decrease (-0.39) decrease (-0.38281526)

p.Cys233Arg decrease (-1.08) increase (0.66981316)

p.Val268Gly decrease (-3.88) decrease (-1)

p.Phe279Leu decrease (-0.64) decrease (-0.48272363)

p.Leu292Pro decrease (-1.74) decrease (-1)

p.Val308Ile decrease(-0.60) decrease (-0.66160668)

p.Met327Lys decrease (-0.78) decrease (-1)

p.Lys333Glu decrease (-0.87) decrease (-0.91871881)

p.Pro336Ser decrease(-1.93) decrease (-0.71066363)

p.Tyr342Cys decrease (-0.05) decrease (-0.19261953)

p.Tyr346Asp decrease (-1.03) increase (0.89760457)

p.Gly347Arg increase (0.42) increase (0.36647486)

p.Pro350Thr decrease (-2.14) decrease (-1)

p.Cys356Arg decrease (-1.15) increase (0.019932009)

p.Asn361Asp decrease(-0.21) increase (1)

p.Val367Met decrease (-1.02) decrease (-0.320804)

p.Val367Leu decrease (-0.25) decrease (-0.29335208)

p.Ala374Thr decrease (-0.46) decrease (-1)

p.Pro379His decrease (-0.02) decrease (-0.34910132)

p.Gly381Glu decrease(-0.38) decrease (-0.29766532)

p.Ser394Phe increase (0.43) decrease (-0.097516114)

p.Ser396Asn increase (0.23) decrease (-0.32936644)

p.Asn397His decrease (-1.01) decrease (-0.87856734)
aReference protein ID, NP_003202.  
bDDG, differences in the free energy.

Regarding the 3 nonsense variations and 3 frameshift 
variations in the TDG gene, all 6 variations were predicted 
to produce a truncated TDG protein (Table 3). The c.112C>T 
(p.Gln38*), c.272C>G (p.Ser91*), c.286_287insA (p.Ile98Asnfs*6), 
and c.293_294insA (p.Thr99Tyrfs*5) variants were predicted to 
lose the DNA glycosylase domain completely, while the c.841C>T 
(p.Arg281*) and c.685delT (p.Phe229Leufs*17) variants were 
predicted to lose it partially. These results suggested that all 6 

truncated proteins arising from nonsense or frameshift variations 
exhibited reduced functional activity.

So far, no previous reports have investigated the difference 
in the repair activity and stability of TDG protein between 
wild-type protein and variant proteins based on SNPs using 
a biochemical analysis; thus, at present, it is unclear whether 
the computational prediction in this study can adequately 
distinguish the various TDG proteins based on SNPs from the 
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Type Nucleotidea Positionb Proteinc dbSNP ID Glycosylase domaind

nonsense c.112C>T g.104370784 p.Gln38* rs372027681 loss

nonsense c.272C>G g.104373714 p.Ser91* rs145088797 loss

nonsense c.841C>T g.104378575 p.Arg281* rs149399146 partial loss

frameshift c.286_287insA g.104373728_104373729 p.Ile98Asnfs*6 rs151041931 loss

frameshift c.293_294insA g.104373735_104373736 p.Thr99Tyrfs*5 rs67803667 loss

frameshift c.685delT g.104376984 p.Phe229Leufs*17 rs140702710 partial loss

Table 3: Summary of nonsense and frameshift variations of the TDG gene.

aReference transcript ID, NM_003211.
bReference genome, hg19/NCBI37.  
cReference protein ID, NP_003202.  
dCatalytic domain for DNA glycosylase reaction (123-300 a.a.) [2].

standpoint of functional level and stability. However since all the 
computational programs used in this study are widely utilized 
[20-22], a concordance in the repair activities of nonsynonymous 
variants of the DNA glycosylase MUTYH between biochemical 
analyses and computational predictions has been reported [23], 
and more than 2 software programs were used in this study, the 
selection of the deleterious variants was thought to have been 
properly performed. However, needless to say, adding the results 
of future biochemical analyses of TDG variant proteins to the 
present findings would enable more solid knowledge regarding 
TDG variants.

In MAP disease, the possession of biallelic pathogenic 
variants of the DNA glycosylase MUTYH gene causes the 
predisposition of colorectal multiple polyps and carcinoma(s). 
Thus, diseases arising from biallelic deleterious variants of 
TDG may exist. Additionally, since a heterozygous TDG variant 
could be associated with an increased risk of disease, a careful 
investigation of the relationship between TDG variants and 
diseases will be important in the future.

CONCLUSION
A total of 43 nonsynonymous SNPs consisting of 37 missense 

variations, 3 nonsense variations, and 3 frameshift variations 
were found in the TDG gene by searching dbSNP and HGVD 
databases in this study. Six of the 37 missense variants were 
predicted to be damaging or deleterious by the PolyPhen-2, 
SIFT, and PROVEAN software programs, and 28 of the variants 
were predicted to be less stable by both the I-Mutant 2.0 and 
MUpro software programs. In addition, 6 nonsense or frameshift 
variants were predicted to lead to the production of a truncated 
TDG protein that had lost the DNA glycosylase domain either 
completely or partially. These results suggested that alleles that 
encode functionally reduced or less stable TDG proteins may 
exist in humans. These TDG alleles might be associated with an 
increased risk of diseases, including cancer.
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