
Annals of Clinical Pathology

Cite this article: Dugo EB, Yedjou CG, Stevens JJ, Tchounwou PB (2017) Therapeutic Potential of Arsenic Trioxide (ATO) in Treatment of Hepatocellular 
Carcinoma: Role of Oxidative Stress in ATO-Induced Apoptosis. Ann Clin Pathol 5(1): 1101.

Central
Bringing Excellence in Open Access





*Corresponding author

Paul B. Tchounwou, National Institutes of Health 
RCMI-Center for Environmental Health, Jackson State 
University, 1400 Lynch Street, Box 18540, Jackson, MS 
39217, USA, Tel: 1-601-979-0777; Fax: 1-601-979-0570; 
Email:  

Submitted: 31 October 2016

Accepted: 28 December 2016

Published: 04 January 2017

ISSN: 2373-9282

Copyright
© 2017 Tchounwou et al.

  OPEN ACCESS  

Keywords
•	ATO
•	Oxidative stress
•	Apoptosis
•	DNA fragmentation
•	HepG2 cells

Research Article

Therapeutic Potential of  Arsenic 
Trioxide (ATO) in Treatment of  
Hepatocellular Carcinoma: Role of  
Oxidative Stress in ATO-Induced 
Apoptosis
Erika B. Dugo1, Clement G. Yedjou1,2, Jacqueline J. Stevens1,2, and Paul 
B. Tchounwou1*
1National Institutes of Health RCMI-Center for Environmental Health, Jackson State University, 
USA
2Department of Biology, College of Science, Engineering and Technology, Jackson State 
University, USA

Abstract

Hepatocellular carcinoma (HCC), the dominant form of primary liver cancer, is the sixth most 
common cancer in the world with more than 700,000 people diagnosed annually. Arsenic trioxide 
(ATO) has been shown to be a potent anticancer agent in various carcinomas, proving particularly 
effective in the clinical treatment of relapsed and refractory acute promyelocytic leukemia. 
However, its bioactivity and molecular mechanisms against HCC has not been fully studied. Using 
human HCC (HepG2) cells as a test model, we studied the effects of ATO and examined the 
role of oxidative stress (OS) and apoptosis in cytotoxicity. OS biomarkers showed a significant 
increase (p< 0.05) of malondialdehyde concentrations, and a gradual decrease of antioxidant 
enzymes (GPx & CAT) activities with increasing ATO doses. Flow cytometry data showed a dose 
dependent increase in annex in V positive cells and caspase 3 activities. These results were 
confirmed by data of the DNA laddering assay showing a clear evidence of nucleosomal DNA 
fragmentation, as well as data from Western blotting showing a significant modulation of specific 
apoptotic related proteins, including the activation of p53 and p21 expression and the down-
regulation of Bcl-2 expression in ATO-treated cells. Taken together, our research demonstrates 
that ATO has a potential therapeutic effect against HCC, and its cytotoxicity may be mediated 
via oxidative stress and activation of the mitochondrial or intrinsic pathway of apoptosis.

ABBREVIATIONS
ANOVA: One Way Analysis of Variance; APL: Acute 

Promyelocytic Leukemia; APS: Ammonium Persulfate; ATCC: 
American Type Culture Collection; ATO: Arsenic Trioxide; 
ATRA: All Trans Retinoic Acid; BHT: Butylated Hydroxytoluene; 
CAT: Catalase; DMEM: Dulbecco’s Modified Eagle’s Medium; 
DMSO: Dimethylsulfoxide; DNA: Deoxyribonucleic Acid; DTT: 
Dithiothreitol; EDTA: Ethylene Diamine Tetraacetic Acid; FACS: 
Fluorescence Activated Cell Sorting System; FITC: Fluorescein 
Isothiocyanate; GST: Glutathione Transferase;  Gpx: Glutathione 
Peroxidase;  HCC: Hepatocellular Carcinoma; Hcl: Hydrochloric 
Acid; MDA: Malondialdehyde; MTT: 3-(4,5-Dimethyl-2-Thiazolyl)-
2,5-Diphenyl-2tetrazoliumbromide; PE: Phycoerythrin; 
PBS: Phosphate Buffer Saline; PI: Propidium Iodine; ROS: 
Reactive Oxygen Species; SDS-PAGE: Sodium Dodecyl Sulfate 

Polyacrylamide Gel Electrophoris; SOD: Superoxide Dismutase; 
TBE: Tris-Borate EDTA; TEMED: Tetramethylethylenediamine; 
UV/Vis: Ultraviolet Visible Spectroscopy.

INTRODUCTION
Hepatocellular carcinoma is the dominant form of primary 

liver cancer occurring in patients with chronic liver disease and 
cirrhosis. Compared to all cancer sites, liver cancer death rates 
and incidence rates have increased among both men and women. 
Primary liver cancer is the sixth most common cancer in the world 
and the second leading cause of cancer death in men [1,2]. Over 
700,000 people are diagnosed with liver cancer annually. Men 
are twice as likely as women to be diagnosed with liver cancer 
and the risk tends to increase with age. Liver cancer incidence 
has more than tripled since 1980 with rates increasing by 2.7% 
annually from 2003-2012 [3]. According to 2012 U.S. statistics 
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from the Center for Disease Control (CDC), Asian/Pacific Islander 
men had the highest liver cancer incidence rates followed by 
Hispanic and African American men [4].  

Therapeutic treatment methods for hepatocellular carcinoma 
are determined by factors such as liver function, nodule quantity 
and size, age, presence of comorbidities and tumor extension. 
Presently, there are five treatment options for hepatocellular 
carcinoma but none have been shown to be a cure-all with 
regard to recurrence, patient survival and longevity [5]. Surgical 
treatments include resection or liver transplantation, but the 
best option between both depends on hepatic function and 
whether or not the patients have cirrhosis. Percutaneous 
ablation techniques include percutaneous ethanol injection and 
radiofrequency ablation which is most suitable for patients who 
have early stage hepatocellular carcinoma but are not candidates 
for resection or liver transplantation. Chemo embolization 
treatment is recommended for patients with intermediate stage, 
inoperable hepatocellular carcinoma whose liver function is 
preserved and has asymptomatic multinodular tumors that have 
not spread or invaded areas or vessels outside the liver. Radio 
embolization treatment is used in patients who are between 
intermediate and advanced stage hepatocellular carcinoma and 
are not suited for resection, liver transplantation or ablation [6,7]. 
Until 2007, there was no systemic treatment option for patients 
with advanced hepatocellular carcinoma.  So far, sorafenib is the 
only systemic drug showing improved survival benefit in liver 
cancer patients [8-10]. However, better understanding of the 
mechanisms involved in hepatocellular carcinoma could lead to 
more novel therapeutic interventions. Our lab is focusing on the 
use of arsenic trioxide (ATO) as a possible therapeutic option for 
the treatment of hepatocellular carcinoma.  

Recent reports by our laboratory show that oxidative stress 
and DNA damage play a key role in arsenic trioxide (ATO)-induced 
cytotoxicity in acute promyelocytic leukemia (HL-60) cells [11].  
The premise for the present study is to further investigate the 
role of oxidative stress and apoptosis in ATO toxicity utilizing 
human hepatocellular carcinoma (HepG2) cells as a model.  Lipid 
peroxidation occurs as cells are being stressed by reactive oxygen 
species leading to loss of membrane function and integrity [12], 
thereby causing oxidative stress damage.  Oxidative stress 
mediates many nocent effects of metals.  The overproduction of 
reactive oxygen species (ROS) results in a significant increase in 
intracellular ROS, which leads to cellular damage, including lipid 
peroxidation, oxidative DNA modifications, protein oxidation and 
enzyme inactivation [13,14]. The imbalance between free radical 
generation and antioxidant defense systems resulting from 
oxidative stress is usually maintained in mammalian cells by key 
enzymes such as, superoxide dismutase (SOD), catalase (CAT), 
glutathione transferase (GST), glutathione peroxidase (GPx) and 
HO-1 that regulate intracellular ROS levels [15-17].  

The apoptotic effect of ATO has been directly ascribed to 
oxidative stress or reactive oxygen species formation and the 
regulation of the mitochondrial pathway of apoptosis [18-
20]. Initial stages of apoptosis are characterized by initiator 
caspase activation, alterations in the cellular redox potential, 
cell shrinkage, loss of membrane lipid asymmetry and chromatin 
condensation. Later stages associated with the execution 

phase of apoptosis are characterized by activation of execution 
caspases and endonucleases, apoptotic body formation and cell 
fragmentation [21,22]. Arsenic has been shown to increase the 
activities of caspases-3, -8 and -9, to suppress Bcl-2 expression, to 
increase p53 and p21 activity, to activate MAPKs (p-JNK and p38) 
and release cytochrome c, leading subsequently to apoptosis in 
several cell lines [23-28].  

Few studies have reported that ATO may be a potential 
therapeutic agent for the treatment of liver cancer. Using 
MHCC97-H hepatocellular carcinoma cell line, Cui et al, [29], 
reported that ATO negatively affects HCC tumorigenesis through 
down regulation of B7-H4 protein expression and inhibition 
of JNK pathway. In a study with HepG2 cells, Jiang et al, [30], 
demonstrated the ATO induces oxidative stress and apoptosis. 
Using TUNNEL and DNA laddering assays Yu et al, [31], reported 
that ATO-induced apoptosis is dose-dependent and is associated 
with the degradation of PML protein in the nuclei of in HepG2 
cells. Other studies have reported that ATO inhibits HCC cell 
migration and invasion through upregulation of mRNA-491 via 
a demethylation that blocks NFkB activation/signaling [32,33]. 
Meng et al, [34], also demonstrated that ATO alters miRNA 
expression profile in HepG2 cells, and miRNA-29a seems to play 
an important role in ATO therapy against liver cancer. ATO has 
also been found to induce inhibition of metastatic potential of 
mouse hepatoma H22 cells [35]. The current study was designed 
to further examine the molecular mechanisms of ATO toxicity 
and its potential application for treatment of liver cancer. 

It has been pointed out that the therapeutic potential of ATO 
against HHC may be enhanced by pharmaceutical products such 
as metformin [36], shikonin [37], survavin T34A [38], oridonin 
[39], genistein [40], and icari in [41]. On the other hand, it has 
been reported that the anti-cancer effect of sorafenib which is 
used for the treatment of HHC, is potentiated by ATO through the 
inhibition of Akt activation [42]. 

MATERIALS AND METHODS

Chemicals and culture media

Arsenic trioxide (ATO) with an active ingredient of 100% (w/v) 
arsenic in 10% nitric acid was purchased from Fisher Scientific in 
Houston, TX. Dulbecco’s Modified Eagle’s Medium (DMEM)-F12, 
G418, fetal bovine serum (FBS), and phosphate buffered saline 
(PBS) were purchased from American Type Culture Collection 
(ATCC) in Manassas, VA. Penicillin-Streptomycin was purchased 
from Gibco Invitrogen in Carlsbad, CA.

Cell culture and ATO treatment

The established human hepatocellular carcinoma cell line 
used in the study were HepG2 (ATCC CRL-11997) cells purchased 
from ATCC in Manassas, VA. The HepG2 cells were grown in 50 
cm2 tissue culture flasks in Dulbeco’s Modified Eagle’s Medium 
(DMEM) supplemented with 10% fetal bovine serum (FBS), 1% 
penicillin and streptomycin and 0.4mg/mL G418 at 37°C in a 5% 
CO2 incubator until confluent. The cells were then trypsinized 
with 0.25% trypsin-0.03% EDTA, diluted, counted, and seeded at 
5x106 cells for each concentration of ATO (0.5, 1, 2, 4, and 8 µg/
mL) for 24 hours at 37°C in a 5% CO2 incubator. 
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Lipid peroxidation assay

The concentration of MDA was measured using a lipid 
peroxidation assay kit from Oxford Biomedical Research in 
Oxford, MI. The HepG2 cells were treated with and without ATO 
according to the aforementioned concentrations for 24 hours. 
The cell suspensions were collected in 15 mL tubes, followed by 
low speed centrifugation. The cell pellets were resuspended in 0.5 
mL Tris-HCl, pH 7.5 and lysed in the presence of 10µL Butylated 
hydroxytoluene (BHT) by the freeze-thaw method.  The protein 
concentrations of the cell suspension were determined using the 
BioRad Dc Protein Assay kit from BioRad Hercules, CA [43]. A 
200µL aliquot of the culture medium or 2mg of cell lysate protein 
were assayed for MDA utilizing the lipid peroxidation assay 
protocol as previously described [44,45]. The absorbance was 
measured at 586 nm and the concentration of MDA determined 
from the standard curve.  

Glutathione peroxidase assay 

Glutathione Peroxidase (GPx) activity was measured using 
a glutathione peroxidase assay kit from Calbiochem-EMD 
Biosciences in Gibbstown, NJ. The HepG2 cells were treated with 
and without ATO according to the aforementioned concentrations 
for 24 hours.  The cells were then isolated by cell scraping, rinsed 
twice with PBS and digested in 1mL of ice cold 50mM Tris-HCl, 
5mM EthylenediamineTetraacetate (EDTA) and 1mM DTT. 
Cellular debris was removed by centrifugation and lysate used 
to determine GPx activity by following the protocol previously 
described [46,47] with a few modifications. The absorbance was 
measured at 340 nm using the Lab systems Multiskan Ascent 
microplate reader. Rate of the reaction was determined by 
constructing a standard curve as a function of absorbance versus 
time, and the GPx activity was expressed as nmol/minute/mL.

Catalase assay

Catalase activity was measured using a catalase assay 
kit from Calbiochem-EMD Biosciences in Gibbstown, NJ. The 
HepG2 cells were treated with and without ATO according to 
the aforementioned concentrations for 24 hours. The cells were 
detached by cell scraping, rinsed twice with PBS and digested 
in 1mL of ice cold homogenization buffer (50mM potassium 
phosphate and 1mM EDTA). Cellular debris was removed by 
centrifugation and lysate used to determine catalase activity 
following the protocol described [48] with a few modifications.  
Measurement of catalase activity was based on the reaction 
of the enzyme with methanol in the presence of an optimal 
concentration of H2O2. The formaldehyde produced was 
measured spectrophotometrically at 540 nm using the Lab 
systems Multiskan Ascent microplate reader. One unit of catalase 
was defined as the formation of 1n mol of formaldehyde per 
minute per milliliter.

Annexin V/PI assay

HepG2 cells were treated with and without ATO according 
to the aforementioned concentrations for 24 hours.  Following 
treatment, the cells were isolated by trypsinization and rinsed 
twice with ice-cold PBS. Detection of phosphatidylserine on the 
outer leaflet of apoptotic cells was performed using Annexin 
V-FITC Apoptosis Detection kit in combination with propidium 

iodide (PI) staining (BD Pharmigen, Indianapolis, IN) according to 
the manufacturer’s recommendations [49,50]. The samples were 
pelleted and resuspended in binding buffer at 1 X 106 cells/mL. 
Tubes were labeled for each sample with 5 µL of Annexin V FITC, 
5 µL of dissolved PI and 100 µL of the cell suspension (100,000 
cells) being added to each tube. Each sample was examined by 
flow cytometry using a FAC Sort (Becton Dickinson Co, San Diego, 
CA, USA).  The percentages of apoptotic cells were determined by 
analysis of the dot plots using Cell Quest software.

Caspase-3 assay

HepG2 cells were treated with and without ATO according 
to the aforementioned concentrations for 24 hours.  Following 
treatment, the cells were isolated by trypsinization and rinsed 
twice with PBS. Active form of caspase-3 was determined 
by flow cytometry as previously described [51,52]. Cells 
(5×105) were washed, then fixed and permeabilized using the 
Cytofix/CytopermTM kit (BD Pharmingen) for 20 min at room 
temperature. Cells were washed with Perm/WashTM buffer, 
then stained with phycoerythrin (PE)-conjugated anti-active 
caspase-3 monoclonal antibodies using 20µL/1×106 cells for 60 
min at room temperature in the dark.  Following incubation with 
the antibody, cells were washed in Perm/Wash TM buffer, re-
suspended in Perm/Wash TM buffer and analyzed using a FAC 
Sort (Becton Dickinson Co., San Diego, CA, USA) flow cytometer.

DNA laddering

HepG2 cells were treated with and without ATO according 
to the aforementioned concentrations for 24 hours.  The 
apoptotic DNA ladder kit was purchased from Roche Diagnostics 
Corporation (Indianapolis, IN). 2 x 106 cells were washed in PBS. 
The cells were then re-suspended in 200µL PBS and lysed in 
200µL binding buffer.  Centrifugation was used to separate the 
DNA in the lysate (which binds to the glass fiber fleece) from 
unbound lysate components (which flow through the fleece into 
a collection tube) as previously described [53]. The bound DNA 
was washed twice and eluted from the filter tube by centrifugation 
into 1.5 mL microcentrifuge tubes.  An aliquot of each sample was 
taken to measure the optimal density at wavelength 280nm on 
the 2800 UV/VIS Spectrophotometer to determine the amount 
of DNA lysate to be loaded on the agarose gel. Twenty µg of the 
eluted DNA samples, 15 µL DNA Molecular Weight Marker and 15 
µL Camptothecin-treated positive control cells were mixed with 
loading buffer and applied to a 1% agarose gel. The gel was then 
electrophoresed in TBE (Tris-borate EDTA) buffer at 40 V.  The 
gel was stained using ethidium bromide (Sigma) for 15 minutes 
and the DNA ladder pattern on the gel visualized on the Typhoon 
9400 Scanner.

Western blot analysis of specific ellular proteins

HepG2 cells were treated with and without ATO according 
to the aforementioned concentrations for 24 hours. Protein 
lysate was prepared in lysis buffer and the protein concentration 
determined using the Bio Rad Dc Protein Assay kit (Hercules, 
CA). Western blot analysis was performed as previously 
described [54]. Samples with equal amount of protein was 
separated by SDS-PAGE with 4% stacking gel (2.4ml of distilled 
water, 1.8mL 4X upper gel buffer (1.5M Tris-Cl), 3.13mL of 



Tchounwou et al. (2017)
Email:  

Ann Clin Pathol 5(1): 1101 (2017) 4/11

Central
Bringing Excellence in Open Access





30% acrylamide (BioRad), 75 μ l of 10% SDS, 37.5μ l of 10% 
(w/v) ammonium persulfate (APS) and 2.5μl of N,N,N′,N′-
tetramethylethylenediamine) and 12% resolving gel (4.8ml of 
distilled water, 1.15ml of 30% acrylamide, 2ml of 4X lower gel 
buffer (0.5M Tris-Cl), 40μl of APS and 9.3μl of TEMED) running 
gel. The proteins were then transferred to a nitrocellulose 
membrane by semi-dry transfer system (BioRad). After blocking 
the non-specific space of the membrane with 10% non-fat milk in 
PBS-T (PBS with 0.5% Tween 20), the membranes were incubated 
with monoclonal antibodies (1:1000) against p53, p21, Bcl-2 and 
cytochrome c overnight at 4°C. The membranes were washed 
three times at 5-minute intervals with PBS-T, and incubated 
with horseradish peroxidase-conjugated secondary antibodies 
(1:10,000) for 1 hour at 4°C. The membranes were then washed 
five times at 10 minute intervals with PBS-T. Proteins were 
detected using enhanced chemiluminescence (ECL) detection 
reagents (Pierce Thermo Scientific). Relative band intensity was 
quantified using the Molecular Imager Gel Doc XR+ System and 
Image Lab Software Version 3.0 (Bio-Rad).

Statistical analysis

Statistical analysis was done using one way analysis of 
variance (ANOVA) for multiple samples and Student’s t-test for 
testing differences. The results were represented as means ± 
standard deviations. All p-values less than 0.05 were considered 
to be significant. Oxidative stress and apoptotic data were 
presented graphically in the form of histograms, using Microsoft 
Excel computer program to represent the dose-response 
relationship among the treatment groups.

RESULTS
Induction of lipid peroxidation in ATO-treated Hepg2 
Cells

To elucidate the possible involvement of lipid peroxidation 
products in ATO induced toxicity, we performed the lipid 
peroxidation assay. The malondialdehyde (MDA) standard curve 
presented in Figure (1) shows a strong positive correlation with 
an r2 value of 0.9983, with data on the effect of ATO on MDA 
production in HepG2 cells presented in Figure (2). Upon 24 hours 
treatment with ATO, the MDA values were 1.55 ± 0.212, 4.75 ± 
0.318, 7.25 ± 0.141, 9.15 ± 0.459, 10.6 ± 0.282, and 12.2 ± 0.106 
mM in 0, 0.5, 1, 2, 4, and 8 µg/mL of ATO, respectively.  

Induction of glutathione peroxidase in ATO-treated 
HepG2 Cells

In this assay, glutathione peroxidase activity was determined 
for each sample by taking the absorbance reading at one minute 
time intervals over five minutes. Figure (3) demonstrates 
the effect of ATO on glutathione peroxidase activity in HepG2 

cells which revealed a dose dependent decrease in glutathione 
peroxidase activity with increasing ATO concentrations. 
There was a significant difference between the control and the 
treatment groups.  

Induction of Catalase in ATO-treated HepG2 Cells

In the catalase assay, the standard curve data showing a strong 

positive correlation and r2 value of 0.9845 for formaldehyde 
concentration in Figure(4) was used to determine the catalase 
activity for HepG2 cells exposed to each ATO concentration. 
Figure (5) demonstrates the effect of ATO on catalase activity 
revealing a slight elevation in catalase activity at low level of 
ATO treatment. When cells were treated with ATO levels of 2 
µg/mL and higher, catalase activity decreased in a concentration 
dependent manner with the highest concentration (8 µg/mL) 
being significantly different (p< 0.05) compared to the control.  

Figure 1 MDA standard curve with the absorbance wavelength of 586 
nm on the y-axis and the control and different concentrations of MDA 
expressed in micromolar (µM) on the x-axis.  R2 = 0.998.

Figure 2 Effects of different concentrations of arsenic trioxide 
on MDA production in HepG2 cells treated for 24 hours.  Data are 
representative of 3 independent experiments.  * signifies data that are 
significantly different (p< 0.05) compared to the control by ANOVA.

Figure 3 Effect of various concentrations of arsenic trioxide on 
glutathione peroxidase activity in HepG2 cells treated for 24 hours.  
Concentrations found to be significantly different (p<0.05) compared 
to the control are denoted by (*) according to ANOVA Dunnett.
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Modulation of phosphatidylserine externalization by 
ATO in Hepg2 Cells

Flow cytometric analysis was performed to determine 
the effect of ATO on early apoptosis utilizing the Annexin V/
PI assay. Representative histograms are shown in Figure (6). 
Upon 24 hours of treatment, the results of the annexin V/PI 
staining showed that the percentages of early apoptotic cells 
(Annexin V positive cells) were 0.2 %, 1.6 %, 1.4 %, 21.4 %, 44.7 
%, and 51.7 % in 0, 0.5, 1, 2, 4, and 8 µg/mL ATO in HepG2 cells, 
respectively. The percentages of viable cells were 99.4 %, 93.5 
%, 84.9 %, 76.5 %, 52.7 % and 46.7 %, respectively. The lower 
left quadrant of the histogram represents the viable cells which 
are Annexin V negative and PI negative. The lower right quadrant 
of the histogram represents the early apoptotic cells which are 
Annexin V positive and PI negative. Figure (7) shows a significant 
(p< 0.05) gradual increase in Annexin V positive cells at doses 
between 1-8 µg/ml ATO in HepG2 cells compared to the control 
cells; indicative of a dose-dependent induction of apoptosis by 
ATO.  

Activation of caspase-3 in ATO-treated Hepg2 Cells

Flow cytometry data from the PE Caspase 3 assay was used 
to determine whether ATO contributed to late apoptosis in 
HepG2 cells. Apoptosis is felt to be one of the key pathways of 
ATO mediated control of cancer cell growth in both solid tumors 
and leukemia. Loss of mitochondrial membrane potential, 
with subsequent increase in mitochondrial permeability, and 

Figure 4 Formaldehyde standard curve showing absorbance values at 
540 nm as a function of Formaldehyde concentration in µM.

Figure 5 Effect of various concentrations of arsenic trioxide on 
catalase activity in HepG2 cells treated for 24 hours.  Concentrations 
found to be significantly different (p<0.05) compared to the control is 
denoted by (*) according to ANOVA Dunnett.

Figure 7 Induction of phosphatidylserine externalization by ATO in 
HepG2 cells.  Percentage of Annexin V positive ATO-treated HepG2 
cells undergoing early apoptosis following 24h exposure. * indicates 
significant difference (p<0.05) from the control, as well as, exposure 
time according to the ANOVA Dunnett’s test.

Figure 6 Representative flow cytometry analysis data from Annexin 
V/PI assay of HepG2 cells following 24h exposure.  A, control; B, 0.5 
µg/mL ATO; C, 1 µg/mL ATO; D, 2 µg/mL ATO; E, 4 µg/mL ATO; F, 8 
µg/mL.

activation of caspases by ATO contributes to the central trigger of 
the apoptotic processes [55-57]. Data in Figure (8) shows a dose 
dependent increase in Caspase 3 activity and ATO treatment. 
Figure (9) shows that the percentages of cells undergoing late 
apoptosis (Caspase 3 positive cells) were 4.5%, 9.8%, 14.5%, 16.6 
%, 23.2%, and 31.1% in 0, 0.5, 1, 2, 4, and 8 µg/mL ATO in HepG2 
cells following 24h exposure, respectively. Significant differences 
(p< 0.05) in the number of apoptotic (Caspase-3 positive) cells 
were observed between the ATO-treated HepG2 cells and the 
control cells.  

Nucleosomal DNA fragmentation in ATO-treated 
HepG2 cells

One of the characteristics of apoptosis is nucleosomal DNA 
fragmentation.  To further study the action mechanism of ATO-
induced apoptosis, DNA fragmentation assay by agarose gel 
electrophoresis was performed. Our results showed a typical 
ladder pattern and induction of nucleosomal DNA fragmentation 
in HepG2 cells treated with ATO as presented in Figure (10).   

Expression of Apoptotic-related genes in ATO-treated 
Hepg2 Cells

Western blot analysis was conducted to determine the 
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significantly different in all ATO concentrations (Figure 12) and 
p21 expression being significantly different between 2-8 µg/ml 
ATO concentrations (Figure 13). Densitometric analysis of Bcl-2 
showed that expression was reduced in ATO-treated HepG2 cells 
with significant (p< 0.05) down regulation at 0.5, 4 and 8 µg/ml 
ATO concentrations (Figure 14). Densitometric analysis showed 
an increase in cytochrome c expression in a dose dependent 
manner with ATO concentrations between 0.5-8 µg/ml being 
significantly (p< 0.05) different compared to the control (Figure 
14).  

DISCUSSION
Apoptosis or programmed cell death plays an important role 

in the physiological process and homeostasis of the cell [58]. 
Figure 8 Representative flow cytometry analysis data from Caspase 3 
assay in HepG2 cells following 24h exposure.A, control; B, 0.5 µg/mL 
ATO; C, 1 µg/mL ATO; D, 2 µg/mL ATO; E, 4 µg/mL ATO; F, 8 µg/mL.

Figure 9 Activation of Caspase-3 by ATO in HepG2 cells.  Percentage 
of late apoptotic ATO-treated HepG2 cells following 24h exposure 
utilizing Caspase-3 analysis.  * indicates significant difference (p<0.05) 
from the control according to the ANOVA Dunnett’s test.

Figure 10 DNA fragmentation by agarose gel electrophoresis. HepG2 
cells were treated with various concentrations of ATO for 24h.  Lane 
1:  DNA molecular weight marker (M); Lane 2:  Positive control (C+) 
cells were induced for apoptosis by camptothecin; Lane 3:  Control or 
untreated HepG2 cells; Lanes 4, 5, 6, 7, 8 and 9: HepG2 cells treated 
with 0.5, 1, 2, 4, 8, and 16 μg/mL of arsenic trioxide.

expression of specific cellular proteins in hepatocellular 
carcinoma HepG2 cells treated with ATO. Data represented in 
Figure (11) shows the expression of apoptotic-related genes p53, 
p21, Bcl-2 and cytochrome c.  In our study, densitometric analysis 
of p53 and p21 showed increased expression in ATO-treated 
HepG2 cells compared to control with p53 expression being 

Figure 11 Western blot analysis of apoptotic protein expression (A-
D) in 24h ATO-treated HepG2 cells. A − p53; B − p21; C − Bcl-2 and 
D − cytochrome c.

Figure 12 Densitometric analysis of p53 expression in 24h ATO-
treated HepG2 cells.

Figure 13 Densitometric analysis of p21 expression in 24h ATO-
treated HepG2 cells.



Tchounwou et al. (2017)
Email:  

Ann Clin Pathol 5(1): 1101 (2017) 7/11

Central
Bringing Excellence in Open Access





Apoptosis is a highly organized process characterized by the 
progressive activation of precise pathways leading to specific 
biochemical and morphological alterations [59]. Recent studies 
in our laboratory indicate that ATO induces apoptosis in HL-60 
and A549 cells [60,61]. The present study focuses on the role 
oxidative stress plays in arsenic-induced apoptosis in human 
hepatocellular carcinoma (HepG2) cells. Oxidative stress is an 
imbalance between the production and disposal of reactive 
oxygen which forms as a result of free radical formation capable 
of initiating lipid peroxidation and alterations in the antioxidant 
cellular defense system. The antioxidant response is one of the 
most efficient mechanisms of cell defense where superoxide 
dismutase (SOD), catalase (CAT), glutathione transferase (GST), 
glutathione peroxidase (GPx) and HO-1 are among the main 
enzymatic mechanisms involved in clearing and scavenging 
ROS to maintain low intracellular levels [62,63]. Data from our 
lipid peroxidation assay as seen in Figure (2) show that arsenic 
trioxide significantly increases (p< 0.05) malondialdehyde (MDA) 
levels in human hepatocellular carcinoma (HepG2) cells in a dose-
dependent manner. In addition when we looked at whether the 
detoxification systems and antioxidants were compromised, we 
found that ATO significantly decreases glutathione peroxidase 
activities with increasing ATO concentrations in HepG2 cells and 
results in a non-linear decrease of catalase activities with 8µg/ml 
ATO being the most significant (Figures 3 and 5). When comparing 
glutathione peroxidase and catalase activity in ATO-treated 
HepG2 cells, catalase activity was found to be higher, suggesting 
that it is a stronger scavenger for the decomposition of H2O2, 
one of the main ROS involved in arsenic-induced DNA damage 
[64,65]. Findings consistent with previous data suggesting that 
alteration of oxidative stress markers is due to overuse/failure 
of the antioxidant defense system secondary to reactive oxygen 
species production [66].

Mitochondria are an important organelle involved in arsenic-
induced apoptosis [67,68]. There are two major pathways 
of apoptosis, the death receptor pathway (extrinsic) and the 
mitochondrial pathway (intrinsic) [69]. The mitochondrial 
pathway of apoptosis can be triggered by a variety of stimuli, 
including chemotherapeutic agents, UV radiation, and oxidative 
stress. One of the early events in apoptotic cell death is loss of 
asymmetry in the phospholipid bilayer of the plasma membrane 
with translocation of phosphatidylserine from the inner to the 
outer leaflet, which can be detected by increased binding of 
fluorescence tagged Annexin V to the external surface of the cells.  

As seen in Figures (6) and (7), data from the Annexin V-PI staining 
showed an increase in the percentage of cells in the bottom right 
quadrants of the dot plot with increasing ATO concentrations, 
indicative of apoptosis. Similar results have been seen in studies 
of keratinocytes, human leukemia cells and peripheral blood 
mononuclear cells [70-72]. Activation of caspases appears to be 
directly responsible for many of the molecular and structural 
changes in apoptosis.  Depending on the stimulus that initiates 
apoptosis, different caspase cascades are activated [73]. 
Caspase-3 plays an essential role as an executor in apoptosis 
[74,75]. Figures (8) and (9) show the activation of caspase-3 as 
assessed by flow cytometry to have a dose-dependent increase 
in the percentage of cells undergoing late apoptosis. Our results 
indicate ATO-induced hepatocyte death occurring in vitro to be 
apoptotic and caspase-mediated, which is a common and critical 
component of the apoptotic cell death pathway. In a similar study, 
Jiang et al [30] reported that ATO induced apoptosis in HepG2 
cells is mediated via oxidative stress through the mitochondria 
pathway and activation of caspases. 

One of the hallmarks of apoptosis is nucleosomal DNA 
fragmentation that occurs due to numerous events initiated by 
caspase 3 [76]. As seen in Figure (10), our results from the DNA 
fragmentation assay by agarose gel electrophoresis showed a 
typical ladder pattern in HepG2 cells treated with ATO. Earlier 
studies reported that arsenite concentrations above 0.25 mM 
induced DNA strand breakage in human leukemia cells and 
Chinese hamster ovarian cells [77]. Arsenite also induced 
deletion, aneuploidy, sister chromatid exchange and different 
chromosomal aberrations [78-80]. The DNA ladder pattern 
obtained from our results is highly specific for apoptotic mode of 
cell death, thereby confirming arsenic induced cellular apoptosis.

Arsenic has been found to induce gene expression in a number 
of apoptotic and stress response proteins and transcription 
factors [81-83]. p53 is a tumor suppressor gene that regulates 
the expression of genes involved in growth arrest, DNA damage 
and apoptosis [84,85]. In our study, we demonstrated an 
upregulation of p53 expression with respect to increasing 
ATO concentrations in HepG2 cells (Figures 11A and 12). Other 
studies also showed that p53 expression increased in response 
to ATO exposure in human leukemia cells, TM4 Sertoli cells and 
pancreatic cells [86-88]. Activation of p53 in our study may be a 
result of ROS generation, suggesting an important consequence 
of oxidant-induced activation of p53. Arsenic can induce, inhibit 
or have no influence on the p53 expression and its regulation of 
down-stream genes like p21 [89-91]. Arsenic has been reported 
to increase p21 expression in several cell lines revealing its role 
in the apoptotic signaling pathway [92-94]. The activation of p21 
within a cell either helps to block cell cycle progression to allow 
time for DNA repair before replication or causes apoptosis via 
induction of the proapoptotic protein BAX and down regulation of 
the antiapoptotic protein Bcl-2 in heavily damaged cells [95,96]. 
Our results show a dose-dependent increase in p21 expression 
with respect to ATO exposure in HepG2 cells (Figures 11B and 
13). Earlier studies have reported up regulation of p21 to be 
time and dose-dependent in human pancreatic cancer cells and 
A498 renal carcinoma cells [97, 98]. The up regulation of p21 in 
our study may play a role in the stress response to ATO and may 
serve as an executioner of apoptosis following caspase activation.  

Figure 14 Densitometric analysis of Bcl-2 and cytochrome c 
expression in 24h ATO-treated HepG2 cells.
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Bcl-2 is an anti-apoptotic protein that acts to stabilize the 
mitochondrial membrane, control the mitochondrial membrane 
permeability to prevent the release of cytochrome C, and 
suppresses the activation of the caspase-3 apoptotic cascade. P53 
antagonizes the antiapoptotic activities of Bcl-2, Bcl-xl and Mcl-1 
thus, allowing proapoptoticBax, Bak and Bid to trigger apoptosis 
[99,100]. Translocation of p53 to the mitochondria induces 
apoptosis via cytochrome c release and activation of the intrinsic 
pathway which in turn is also regulated [101,102]. In our study, 
we examined the effect of arsenic trioxide on Bcl-2 expression 
in HepG2 cells, and observed a biphasic response indicating 
an up-regulation at 1 µg/mL of ATO treatment followed by a 
significant dose-dependent down-regulation at higher doses of 
ATO exposure (Figures 11C and 14). The up regulation of Bcl-2 
expression at lower level of exposure may be due to an arsenic-
induced hormetic effect; a condition that has previously been 
characterized by a stimulation of cell proliferation or induction 
of mitogenic effect at low doses, followed by an inhibition of cell 
viability or induction of cytotoxicity at higher doses [60,103-
105]. This adaptive or protective response at low doses is 
characteristic of many oxidative stress causing compounds 
including chemotherapeutic agents [106]. Between 1 and 8 µg/
mL ATO, Bcl-2 expression was significantly down-regulated. 
Similar results have been found in gallbladder carcinoma cells 
and acute promyelocytic leukemia cells treated with ATO 
[107,108]. These results indicate that ATO exposure blocks Bcl-
2 from preventing apoptosis in HepG2 cells, thereby allowing 
cytochrome c to be released. Increased permeability of the 
mitochondrial membrane during apoptosis triggers the release 
of cytochrome c from mitochondria in the apoptotic process in 
response to proapoptotic stimuli. The release of cytochrome c 
into the cytoplasm activates caspases cascade [109-111]. Our 
results show an increase of cytochrome c expression in ATO-
treated HepG2 cells compared to the control (Figures 11D and 
14). Previous studies reported a release of cytochrome c into the 
cytosol of ATO-treated mouse embryonic fibroblasts [112]. The 
release of cytochrome c into the cytoplasm results in caspase 
9 activation and subsequent activation of caspase 3, ultimately 
leading to apoptosis as evidenced by data presented in this paper.

CONCLUSIONS
Our study demonstrates that arsenic trioxide is highly toxic 

to human hepatocellular (HepG2) carcinoma cells resulting in 
oxidative stress and apoptosis. The generation of reactive oxygen 
species within the cell occurs as a result of oxidative stress. This 
statement is confirmed by the results from the lipid peroxidation 
assay showing an increase in MDA, as well as a decrease in the 
antioxidant enzyme activity of GPx and catalase in ATO-treated 
cells. In response to ROS, antioxidant defense enzymes are 
activated to metabolize these oxidants, however a higher level of 
ATO treatment, as indicated by our data, shows a loss of activation 
thus pointing to its inability to protect cells from oxidative stress. 
Flow cytometric analysis showed an increase of caspase 3 and 
annexin V activity with increasing ATO concentrations. Also, 
a characteristic DNA fragmentation was observed in the DNA 
laddering assay. Western blot analysis of ATO-treated HepG2 
cells revealed a down regulation of Bcl-2 expression, and an 
upregulation of cytochrome c, p53 and p21 expression. Taken 
together, these findings provide further insights into the role 

oxidative stress plays in ATO-induced apoptosis; making its 
potential use for the treatment of hepatocellular carcinoma 
worth exploring further.
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