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Abstract

Among serious foodborne outbreaks, Salmonella has the most infections and incidence cases. 
Because Salmonella is a leading cause of foodborne illness and a zoonotic agent capable of 
causing gastroenteritis and septicemia, Salmonella detection and identification has become an 
important subject of research for the poultry industry. Based on the numerous culture protocols 
to characterize Salmonella spp., traditional culture-based methods are still the most reliable 
and accurate “gold standard” techniques for presumptive-positive pathogen detection. 
However, they are laborious and time consuming processes. Therefore, rapid detection and 
identification of pathogenic microorganisms naturally occurring during food processing are 
important in developing intervention and verification strategies. Since current detection methods 
for Salmonella are limited for a practical use, a more sensitive, accurate and rapid pathogen 
detection method is needed to prevent foodborne outbreaks. Non-destructive advanced optical 
methods, such as hyperspectral imaging for evaluation of foodborne pathogens could enhance 
the presumptive-positive screening method by reducing labor and increasing detection speed. 
Among the several different hyperspectral imaging platforms, acousto-optic tunable filter 
(AOTF)-based hyperspectral imaging method was developed for microscopic imaging of live 
bacterial cells from microcolony on agar plates. Thus, the objective of this research is to develop 
a hyperspectral microscopic imaging method to classify Salmonella serotypes with their spectral 
signatures from the cells. Five Salmonella serotypes including Enteritidis (SE), Typhimurium (ST), 
Kentucky (SK), Heidelberg (SH) and Infantis (SI) and five different machine learning algorithms 
including Mahalanobis distance (MD), k-nearest neighbor (k-NN), linear discriminant analysis 
(LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM) were used for 
classification method development. The SVM algorithm performed better than other algorithms 
with average classification accuracy of 93.6% (SE), 97.6% (ST), 90.7% (SK), 93.0% (SH), and 
94.2% (SI).

ABBREVIATIONS

CDC: Centers for Disease Control and Prevention; STEC: Shiga 
Toxin-Producing E. Coli; HMI: Hyperspectral Microscope Imaging; 
PCR: Polymerase Chain Reaction; HACCP: Hazard Analysis 
and Critical Control Point; LIBS: Laser-Induced Breakdown 
Spectroscopy; FT-IR: Fourier Transform Infrared; SERS: Surface 
Enhanced Raman Spectroscopy; HSI: Hyperspectral Imaging; PCA: 
Principal Component Analysis; MVDA: Multivariate Data Analysis; 
AOTF: Acousto-Optic Tunable Filter; K-NN: K-Nearest Neighbor; 
LDA: Linear Discriminant Analysis; QDA: Quadratic Discriminant 
Analysis; PLS-DA: Partial Least Squares Discriminant Analysis; 
SVM: Support Vector Machine; ST: Salmonella Typhimurium; SE: 
Salmonella Enteritidis; ARS: Agricultural Research Service

INTRODUCTION
Salmonella bacteria are commonly found living in the entrails 

of poultry, which often acquire the bug through their parents 
as well as environment for living conditions. Most types of 
Salmonella don’t make the birds ill. In humans, however, many of 
those same types of Salmonella can result in health problems from 
a minor gastrointestinal illness to a life-threatening infection in 
the bloodstream.

The Centers for Disease Control and Prevention (CDC) 
estimates that approximately 48 million people in the U. S. become 
ill each year from a foodborne pathogen infection. Of these, an 
estimated 128,000 are hospitalized and 3,000 die with over 
95 percent of these caused by only fifteen pathogens including 
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Salmonella, Campylobacter, Listeria, and Shiga toxin-producing 
E. coli (STEC) [1,2]. More than one million people are sickened 
by Salmonella in the United States each year with approximately 
200,000 cases from poultry alone [3] and the average national 
cost of foodborne illness was estimated from $55.5 billion up 
to $93.2 billion [4]. Thus there is a need to reduce foodborne 
illnesses, especially in poultry. To reduce the risk, real-time and 
deployable microbial detection and source identification has 
become increasingly important. Conventional culture methods for 
the detection and identification of foodborne pathogens usually 
require sample pre-treatment, colony isolation, and confirmation. 
Molecular methods, such as polymerase chain reaction (PCR), 
labeled oligonucleotide probes and DNA microarray, are effective 
for microbiological detection. Moreover, extensive research into 
both conventional and molecular methods is worldwide with goals 
of increasing sensitivity and specificity, while trying to reduce 
time for analysis. Yet there are still needs to develop faster, more 
reliable, and more cost-effective methods to quantify and identify 
pathogenic bacteria in poultry products. One methodology that 
shows significant promise in rapidly identifying and quantifying 
pathogenic bacteria is hyperspectral microscope imaging (HMI). 
This technology combines the resolving power of a microscope 
with the spectral discriminating ability of a spectrometer. With 
HMI, there is the potential of identifying single bacteria cells 
by combining cell morphology with their spectral profile into 
an automated method for counting and classifying pathogenic 
bacteria. Since a microscope can image single cells, the challenge 
is how cellular images are analyzed for identification with other 
microflora background.

The primary Hazard Analysis and Critical Control Point 
(HACCP) concern in poultry industry is typically microbiological, 
due to the widespread illness that can be associated with a 
foodborne disease outbreak. For HACCP plans, there is an 
emphasis placed on process validation and monitoring ready-
to-ship product for contaminates. Validating these processes can 
take days with the standard detection methods with nutrient 
enriched growth media with polymerase chain reaction (PCR) 
confirmation [5]. While these methods are widely accepted for 
microbial detection, they are time-consuming for growth media 
[6] and require additional plating on selective agar or serological 
testing [5]. PCR can be completed in as little as a few hours, but 
has a high recurring cost for target specific cell lysing reagent kits 
[7,8]. 

Optical methods, such as laser-induced breakdown 
spectroscopy (LIBS) [9], Fourier transform infrared (FT-IR) 
spectroscopy [10], and surface enhanced Raman spectroscopy 
(SERS) [11,12], have previously been used for food safety 
applications. Hyperspectral imaging (HSI) has been used to 
detect defects in food product [13], viable bacteria on raw 
chicken breasts [14], waterborne bacterial species [15-18] 
presumptive detection of foodborne pathogenic bacteria colonies 
of Campylobacter [19] and shiga toxin-producing E. coli (STEC) 
[20,21] with colonies formed in agar plates.

Typically, spectra obtained from food products [14,22,23], 
bacterial colonies [19,21,24,25], or bacterial cells [16-18,26,27] 
are assessed through spectroscopic methods using “fingerprints” 
produced by the samples. An advantage of hyperspectral 

microscope imaging (HMI) is the sensitivity of classifying 
potential pathogens with only a few cells [16,28,29] and capable 
of classifying field strains of bacteria with chemometrics [30]. 
Instead of needing colonies, or concentrated suspensions of 
bacteria, spectral fingerprints from a few cells imaged by HMI 
could identify bacteria [26]. Thus, HMI offers a means of detection/
identification of bacteria with a cellular-level sensitivity, which 
enables rapid, early detection with less than 24 hrs needed for 
enrichment. With an appropriate sampling methods [15,17], 
quality hyperspectral microscopic images can be collected 
contiguously from a small amount of bacterial suspension on a 
microscope slide [31]. Although HMI has the potential to detect/
identify non-viable spore-forming Bacillus organisms [28], 
Entero bacteriaceae [31], STEC [26], and Salmonella serotypes 
[29] through principal component analysis (PCA), there are still 
gaps to fully understand the mechanisms of HMI for early (less 
than 8 hrs including incubation) and rapid (less than 10 min) 
detection of foodborne pathogenic bacteria for high-throughput 
practical applications for poultry (food) industry. Thus, more 
research is needed for the development of robust models with 
multivariate data analysis (MVDA) methods to classify bacteria 
when considering various environmental factors that may affect 
the spectral fingerprints from both pure isolates and bacteria 
in food matrix. The objective of this research is to develop 
an acousto-optic tunable filter (AOTF)-based hyperspectral 
microscopic imaging method to classify Salmonella serotypes 
with their spectral signatures from the cells. More specifically, to 
develop methods to classify five Salmonella serotypes including 
Enteritidis, Typhimurium, Kentucky, Heidelberg and Infantis 
with different machine learning algorithms of k-nearest neighbor, 
linear discriminant analysis, quadratic discriminant analysis, 
support vector machine, and partial least square discriminant 
analysis.

MATERIALS AND METHODS

Sample preparation

Preparing sample to acquire hyperspectral imagery with 
a HMI is summarized in a flowchart (Figure 1). Five gram-
negative Salmonella serotypes (Enteritidis, Typhimurium, 
Kentucky, Heidelberg, and Infantis) were obtained from the 
Poultry Microbiological Safety and Processing Research Unit, U.S. 
National Poultry Research Center, U.S. Department of Agriculture 
(USDA), Agricultural Research Service (ARS) in Athens, GA. 
Bacterial cultures were prepared by inoculating pure isolates 
into tryptic soy broth (TSB) Ftubes and incubated at 37 ± 2°C for 
18-24 hrs. The overnight grown culture of all five serotypes of 
Salmonella was centrifuged at 5000 rpm for 10 min. The bacterial 
pellet was resuspended in deionized (DI) water. From five 
serotypes of Salmonella, 10-fold serial dilutions were prepared 
in 0.1% peptone water and 10-6 final dilutions were plated onto 
brilliant green sulfa (BGS) agar plates in duplicate. All plates were 
incubated at 35 ± 2°C for 24 hrs. One colony was picked from BGS 
plate of each Salmonella serotype as shown in Figure (2) and 
resuspended in 10 µL of DI water. For hyperspectral microscope, 
3 µL of bacterial suspension from all Salmonella serotypes were 
spread on microscopic glass slides in the center approximately 
in the area of 20 x 20 mm followed by drying for 10 min in the 
biosafety cabinet, After drying process has been completed, 
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additional 0.8 µL DI water was added in the center of the slide to 
secure a cover slip on the top of the sample.

Hyperspectral microscope imaging system

A hyperspectral microscope imaging (HMI) system setup is 
illustrated in Figure (3). The system consists of a Nikon upright 
microscope (Eclipse e80i, Lewisville, TX), acousto-optic tunable 
filters (AOTF) (HSi-400, Gooch & Housego, Orlando, FL), a high 
performance cooled electron-multiplying charge coupled device 
(EMCCD) 16-bit camera (iXon, Andor Technology, Belfast, 
Northern Ireland), and dark-field illumination [27] lighting 
sources (CytoViva 150 Unit, 24W Metal Halide, CytoViva, Auburn, 
AL). The AOTF used for this research has a high-speed, high-
throughput, random-access solid-state optical filter with an 
adjustable optical pass-band and exceptionally high rejected 
light levels. AOTF delivers diffraction limited image quality with 
variable bandwidth resolution down to within 2 nm in a spectral 
range from 450 to 800 nm with bandwidths of 1.5 nm at 450 nm 
and 3 nm at 800 nm, respectively. An AOTF-based hyperspectral 
microscope is a scanning spectrophotometer employing an 
instrumental technology with no moving parts, capable of high 
speed of scan, random access to any number of wavelengths pre-
selected prior to scanning to generate linear polarized output for 
quality image acquisition.

Hyperspectral microscope image acquisition

Since hyperspectral image acquisition for the wavelengths 
between 450 and 800 nm with 4nm increments requires a 
longer time depending on exposure time than regular microscope 
imaging, the complete immobilization of live cells is necessary 
during image acquisition. In this study we used a modified drying 
method [31] to immobilize live cells completely for quality image 
acquisition.

The procedure of hyperspectral microscope image 
acquisition and analysis from live bacterial cells is summarized 
in a flow diagram (Figure 4). Foodborne bacteria, Salmonella 
isolated from poultry carcass rinsate were used for hyperspectral 
image data. Images from five Salmonella serotypes (Enteritidis, 
Typhimurium, Heidelberg, Kentucky, and Infantis) were acquired 
with an AOTF-based HMI system. In this experiment, visible/
NIR hyperspectral microscope images were collected with a 
TIFF format at the wavelength ranges from 450 to 800 nm with 

Figure 1 Flowchart for sample preparation to acquire hyperspectral 
images from HMI.

Figure 2 Sampling from Salmonella Typhimurium colony for HMI scan 
(a) BGS Agar Plate; b) Zoomed Colonies; c) Hyperspectral Microscope 
Image.

Figure 3 ARS acousto-optic tunable filter (AOTF) hyperspectral 
microscope imaging system including Microscope, AOTF, Controller, 
Moving Stage, and Light Source.

Hyperspectral Image Acquisition (TIFF)

Convert to Hypercube

Select Region of Interest (ROI)

Data Randomization

Classification Modeling

Apply kNN, LDA, QDA, SVM, PLS-

Select Optimum Model

Figure 4 Flowchart for HMI image acquisition and data processing.
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2 nm bandwidth, 4 nm spectral intervals at individual scanning 
exposure time with 250 ms and the gain of 3.5% selected from 
previous study [26,31] for quality image acquisition. All images 
were acquired with dark-field illumination [26] lighting equipped 
with a metal-halide by a spectral sweep mode for collecting 
contiguous spectral images [26]. The acquired images (originally 
TIFF format) were converted to hyperspectral image format 
(hypercube) with HSiAnalysisTM software (Gooch & Housego, 
Orlando, FL).

After image conversion has been completed, a region of 
interest (ROI) from exclusively bacterial cells from background 
were created followed by generating spectral data from ROIs for 
further analysis with ENVI (Exelis Visual Information Solutions, 
Inc., Boulder, CO) software (version 4.8) as shown in Figure (5). 

Data preprocessing for selecting data for training and 
validation from ROI was completed prior to classification model 
development. R software (version 3.0.1) was used for developing 
classification methods to identify different Salmonella serotypes 
using their spectral signatures collected by a HMI system.

CLASSIFICATION METHODS
To develop the optimum model, five classification algorithms 

including k-nearest neighbor method (kNN) [32], Linear 
discriminant analysis (LDA) [33], Quadratic discriminant 
analysis (QDA) [34], Partial least squares discriminant analysis 
(PLS-DA) [35] and Support vector machine (SVM) [36]. More 
details regarding classification algorithms used in this research 
see reference [27].

RESULTS AND DISCUSSION
Color composite hyperspectral microscope images with 

ROI from Salmonella five serotypes (Enteritidis, Typhimurium, 
Kentucky, Heidelberg, and Infantis) are illustrated in Figure (5). 
Most cells stand independently except some cells in S. Kentucky 
and S. Heidelberg are naturally congregated to each other. For 
collecting spectral data from ROI in the cells, most cautious 
trials were employed to pick independent single cell. Since the 
scattering intensity of spectral image at 546 nm was higher than 
others, we used this image as a template for ROI selection to 
generate image data for further classification.

Characteristics of hyperspectral image from 
salmonella

Among five serotypes of gram-negative bacteria, Salmonella 
Enteritidis was selected to demonstrate hyperspectral 
microscopic images and corresponding spectral characteristics 
based on cell structure or morphology. A typical hyperspectral 
microscope image with ROIs from Salmonella Enteritidis 
serotype is shown in Figure (6a). Comparing spectral signatures 
between inner and outer membrane from the cell, two scattered 
image ROIs, one from inner membrane (green) and the other 
from outer membrane (red) were collected from S. Enteritidis 
bacterial cells. Figure (6b) compares the spectral signatures from 
inner cell walls (4,956 pixels) and outer cell walls (12,846 pixels) 
from S. Enteritidis. In this sample, we observed the scattering 
internsity of outer cells were higher than inner cell walls at 
the wavelength of 498, 522, 546, 574, and 598 nm. However, 

the scattering intensity from outer membrane were lower 
than inner at 462, 670, and 690 nm, which means that possibly 
less scattering occurred in the outer membrane of Salmonella 
bacterial cells. As seen in Figure (6b), the intensity between two 
membranes were similar to each other at 474, 626, and beyond 
742 nm, respectively.

Scattering intensity distribution of salmonella 
bacterial cells

Three-dimensional representation of a typical cell obtained 

Figure 5 Hyperspectral microscope image with ROI from Salmonella 
five serotypes including S. Enteritidis, S. Heidelberg, S. Typhimurium, S. 
Infantis, and S. Kentucky.
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Figure 6 (a) Hyperspectral microscope image with region of interest 
(ROI) from Salmonella Typhimurium and (b) Spectral fingerprint from 
ROI data.
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from each of the five Salmonella serotypes (Figure 7) was 
observed from a slice of the hypercube at the metal halide 
excitation peak of 546 nm. It can be difficult to visually determine 
the boundaries of the outer cell wall from the HMIs, but plotting 
the data in a three-dimensional surface plot shows a more clearly 
defined boundary starting at raw scattering intensities around 
3,000 - 4,000 a.u. for each Salmonella serotype. We can see that 
these cells are morphologically similar to the short rod shaped 
structure. The scattering intensity patterns vary with serotype, 
S. Kentucky and S. Typhimurium displaying a strong intensity, 
which was maximum at the polar end of the cell. The images 
suggest that light scattering is responsible for differentiating 
serotypes, and the spatial information of serotypes within the 
same species are similar in structure. Further investigation of 
hypercube dissection is necessary to determine the biological 
correlation to the distribution of light scattering patterns.

Principal component score plots from salmonella 
serotypes

Figure 8 demonstrates visual description of clusters from five 
Salmonella serotypes using PCA score plots from single pixels in 
the inner and outer cell wall. The serotype S. Enteritidis (red) is 
relatively easier to be separated than other serotypes, especially 
from S. Typhimurium (black). However, score plots from S. 
Heidelberg (blue) and S. Infantis (cyan) are overlapped, which 
means that it was difficult to separate. Similarly, separation of 
S. Kentucky (green) from Typhimurium (black) was not simple 
to be classified. Thus, additional classification method such as 
SVM could be useful to separate those serogroups, because a SVM 
algorithm performs well for nonlinear data.

Classification of salmonella serotypes with euclidean 
distance

Figure 9 is dendrogram plot to cluster five serotypes based on 

Euclidean distance considering correlation between serotypes 
with normalized spectral intensity data. According to this 
dendrogram, S. Enteritidis and S. Kentucky are highly correlated. 
Also, S. Heidelberg is highly correlated with S. Infantis, but less 
correlation with S. Typhimurium. However, both S. Heidelberg 
and S. Infantis are separable from S. Enteritidis and S. Kentucky 
with relatively high classification accuracy.

Classification accuracy of salmonella serotypes

Table 1 shows the classification accuracy to identify S. 
Typhimurium and S. Enteritidis from other serotypes. Overall, 
a SVM algorithm performed more accurately than other 
classification algorithms for classification of both S. Typhimurium 
and S. Enteritidis. Specifically, the classification accuracies to 
identify S. Typhimurium were 86.4% (kc = 0.49) for k-NN, 85.4% 
(kc = 0.03) for PLS-DA, 88.1% (kc = 0.35) for LDA, 83.3% (kc = 
0.49) for QDA, and 93.2% (kc = 0.7) for SVM, which is the highest 
accuracy among five classification algorithms tested. Whereas, 
for the identification of S. Enteritidis, the classification accuracies 
increase as 89.5% (kc = 0.62) for k-NN, 91.1% (kc = 0.64) for PLS-
DA, 91.6% (kc = 0.68) for LDA, 87.6% (kc = 0.58) for QDA, and 
93.9% (kc = 0.77) for SVM, respectively.

Table 2 shows all classification accuracy and corresponding 
kappa coefficients of five individual Salmonella serotypes with 
five classification algorithms. As seen in the table, the overall 
accuracy for classifying individual serotype was not high enough. 
Among five serotypes, the classification accuracies ranged 
from 50% to 75% for S. Enteritidis, from 22% to 86% for S. 
Typhimurium, from 72% to 86% for S. Kentucky, from 68% 
to 88% for S. Heidelberg, and from 47% to 78% for S. Infantis, 
respectively. The mean accuracies of five classification methods 
were 64.4% (lowest) with PLS-DA, 66.3% with k-NN, 74.6% with 
QDA, 76.8% with LDA, and 84% (highest) with SVM. In this case, 

Figure 7 3-D scattering intensity distribution of Salmonella bacterial cells.

¾¾



Park et al. (2017)
Email: 

Ann Clin Pathol 5(2): 1108 (2017) 6/8

Central
Bringing Excellence in Open Access





Figure 8 Principal component analysis score plots from five Salmonella 
serotypes including Typhimurium (black); Enteritidis (red); Kentucky 
(green); Heidelberg (blue) and Infantis (cyan).
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Figure 9 Cluster dendrogram by Euclidean distance. Note. S. 
Enteritidis (SE), S. Kentucky (SK), S. Typhimurium (ST), S. Heidelberg 
(SH), and S. Infantis (SI).

kappa coefficients varied from 0.52 (PLS-DA) up to 0.79 (SVM). 
Specifically, S. Heidelberg serotype was identified with 88% 
accuracy when SVM classification method was applied for five 
different Salmonella serotypes.

Figure 10 demonstrates visual description of classification 
of two selected Salmonella serotypes (S. Typhimurium and S. 
Enteritidis) to others (S. Kentucky, S. Infantis, and S. Heidelberg) 
using partial least squares (PLS) score plots. Although 
clusters between two classes were not perfectly separable, S. 
Typhimurium (red) can be separated from S. Kentucky (Figure 
10a), S. Infantis (Figure 10b), and S. Heidelberg (Figure 10c). Also, 
S. Enteritidis can be separated from S. Kentucky (Figure 10d), S. 
Infantis (Figure 10e), and S. Heidelberg (Figure 10f), respectively. 
In addition to an intuitive processing with relatively simple PLS 
score plots, further classification methods were applied for 
obtaining accuracy to identify individual serotype, especially S. 
Enteritidis and S. Typhimurium as shown in Table (1).

CONCLUSION
The previous research demonstrated an optical method 

with acousto-optic tunable filter (AOTF)-based hyperspectral 
microscope imaging (HMI) has potential for classifying gram-
negative from gram-positive foodborne pathogenic bacteria 
rapidly and nondestructively with minimum sample preparation 
[27]. In this study, we continued developing HMI methods to 
identify serotypes of Salmonella, most typical gram-negative 
bacteria at the cell level. We successfully validated the protocol 
for live-cell immobilization on glass slide to acquire 89 
contiguous quality spectral images from five Salmonella serotype 
bacterial cells within 45 sec using 250 ms exposure time and 
3.5% of an electron multiplying charge coupled device (EMCCD) 
camera. Among the spectral imagery from visible/NIR, the 
scattering intensity was higher at the wavelengths of 454, 542, 
550, 582, 630, 690, 710, and 722 nm than other wavelengths 
for Salmonella serotypes. The average accuracy to classify five 

Table 1: Classification Accuracy for SE and ST Identification from Other Serotypes.
k-NN PLS-DA LDA QDA SVM
Accuracy (%) kc Accuracy (%) kc Accuracy (%) kc Accuracy (%) kc Accuracy (%) kc

ST 86.4 0.49 85.4 0.03 88.1 0.35 83.3 0.49 93.2 0.70
SE 89.5 0.62 91.1 0.64 91.6 0.68 87.6 0.58 93.9 0.77
Note: kc=kappa coefficient; k-NN: k-nearest neighbor; LDA: Linear Discriminant Analysis; QDA: Quadratic Discriminant Analysis; SVM: Support 
Vector Machine; PLS-DA:  Partial Least Square Discriminant Analysis
ST; ST vs. (SE, SH, SK, SI)
SE; SE vs. (ST, SH, SK, SI)
ST+SE; (ST, SE) vs. (SH, SK, SI)

Table 2: Classification Accuracy of Five Salmonella Serotypes.

SE ST SK SH SI Mean Accuracy 
(%) kc

k-NN 0.62 0.69 0.72 0.68 0.51 66.3 0.56
LDA 0.65 0.79 0.76 0.86 0.68 76.8 0.70
QDA 0.71 0.82 0.75 0.79 0.59 74.6 0.67
SVM 0.75 0.86 0.86 0.88 0.79 84.0 0.79
PLS-DA 0.50 0.22 0.78 0.87 0.47 64.4 0.52
Note: kc=kappa coefficient; k-NN: k-nearest neighbor; LDA: Linear Discriminant Analysis; QDA: Quadratic Discriminant Analysis; SVM: Support 
Vector Machine; PLS-DA:  Partial Least Square Discriminant Analysis; Accuracy and Kappa Coefficient (KC) were obtained from the average of ten 
replicates. Samples include S. Enteritidis (SE), S. Typhimurium (ST), S. Kentucky (SK), S, Heid
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Figure 10 Partial least squares score plots for clustering Salmonella serotypes. (a) Typhimurium vs. Kentucky, (b) Typhimurium vs. Infantis, (c) 
Typhimurium vs. Heidelberg, (d) Enteritidis vs. Kentucky, (e) Enteritidis vs. Infantis, (f) Enteritidis vs. Heidelberg.

Salmonella serotypes was 84%. However, S. Typhimurium and 
S. Enteritidis were classified with 93.2% and 93.9% accuracy 
using a SVM algorithm. Further research is needed to validate 
with positively identified colonies using confirmatory testing 
such as latex agglutination or PCR tests. Also, classification model 
development with selective spectral images using a random 
access capability of AOTF-based HMI is needed for faster image 
acquisition to improve imaging-based optical method. In addition, 
sampling from micro-colonies which are grown in agar media 
less than 24hrs incubation time will be helpful for rapid detection 
protocol in the laboratory. Using spectral library from various 
bacterial species, serotypes, and strains will be helpful for robust 
detection method from food matrix. Finally, HMI approach with 
no-culturing method will be very effective for future foodborne 
pathogen detection tools in poultry food industry.
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