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Abstract

Background: Environmental toxicants have been found to induce multiple adverse effects on 
human and animal’s body organs including, kidney and immune system. Presently, this experiment 
was designed to assess the nephro-protective and immune-stimulant effects of spirulina platensis 
microalgae against lead acetate induced attenuated body immune response and oxidative renal 
damages. 

Methods: 40 male albino rats were randomly divided into equal 4 groups. In comparison 
with control (C) group. Animals were received spirulina platenesis (300 mg/kg b. wt, orally) and/
or lead acetate (50 mg/kg b.wt, IP) for 4 weeks. Samples were collected at the end of the 
experimental period. Protective effects of SP were checked by measuring selective hematological, 
immunological and biochemical tests, besides histopathological and immunohistochemical 
investigations. 

Results: Co-exposed SP/LD rats showed significant (P < 0.05) suppression in the levels of 
LD induced –elevated urea, creatinine, MDA, MCV, retics%, and caspaes-3 over-expression, in 
contrast, they evoked significant elevation in LD-induced depleting GSH, SOD, IgG, IgM, hypo-
proteinemia, hypo-albuminemia, hypo-gamma-globulinemia, RBCs, Hb, PCV, MCHC, WBCs, 
Lymphocytes, and CD8 down-expression. Additionally, SP restored the renal histological structure 
near the normal. 

Conclusion: SP protects from toxic immunological, hematological, and nephrotoxic impacts 
of LD through its powerful free radical-scavenging, antioxidant, and immunostimulant activities. 

INTRODUCTION
Industrial -delivered products are very potent environmental 

pollutants that act as dangerous cancer-bearing substances [1]. 
Lead (Pb2+) is considered the most established and world-wide 
occupational, industrial and environmental contaminants that 
affect human and animal are health [2]. Lead exposure occurred 
from multiple sources such as soil, air, water and industrial 
pollutants. It has been utilized in drugs, paintings, pipes, and 
ammunition [3,4]. On a large scale, it found to induce behavioral, 
biochemical and physiological disturbances in the living 
organisms. Additionally, it induced hematological alterations and 
renal failure in laboratory animals [5] by generation of reactive 
oxygen species (ROS) and depletion of anti-oxidant enzymes 
activities. 

Herbal medication assumes a vital part in pharmaceutical 
medicine for a long time. Recently, a wide range of people all over 
the world depends on herbal preparations and extractions to meet 

their wellbeing demands because their low cost and minimal side 
effects [6]. The cyanobacterium spirulina is a filamentous blue-
green alga belonging to the Oscillatoriaceae family that is generally 
found in tropical and subtropical regions of warm alkaline water. 
Spirulina is characterized by high nutritional value as it contains 
high protein (60–70% by dry weight), plenty of vitamins, amino 
acids, gamma-linoleic acid, and minerals [7]. The consumption of 
spirulina as a diet supplement has health benefits in preventing or 
managing hypercholesterolemia, hyperglycerolemia [8], obesity, 
inflammation [9], cancer [10], and cardiovascular disease [11]. In 
addition, Spirulina has antidiabetic effect [12], radio protective 
activity [13] and a potential therapeutic option to protect the 
testicular tissue from oxidative damage caused by some heavy 
metals [14]. Despite the above pharmacological and therapeutic 
properties of SP, there is a diminishing of information about the 
role of SP against the harms of lead acetate-induced immuno 
suppression. Therefore, the current study has been undertaken to 
find out the possible nephron-protective and immune-stimulant 
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potential of the SP against lead-induced immune system and 
kidney damage in experimental animal model.

MATERIAL AND METHODS

Tested substances and chemicals

SP is a bright, blue-green tablet with a characteristic odour 
produced by power nutritional, Jin Shun, Guangzhou, Trading Co., 
USA. It was purchased from Delta Trade Company, Alexandria. 
Lead acetate (LD) obtained from El-Nasr Pharmaceutical Chemical 
Company, Egypt. All chemicals, reagents, and stains were of 
analytical grade and purchased from Sigma-Aldrich Chemical Co. 
(St. Louise, MO, and USA) and El-Gomhoria Company.

Animals and experimental design

Forty male albino rats weighing 150- 200 g were used 
in the current study. The animals were obtained from the 
Laboratory Animal’s Farm, Faculty of Veterinary Medicine, 
Zagazig University. The animals were clinically healthy, kept 
under hygienic condition, housed in metal cages with hard wood 
shavings as bedding. They were maintained on balanced ration 
composed of barley, milk, green fodder. Water and feed were 
given ad-libitum throughout the experimental period, and were 
accommodated to the laboratory conditions for two weeks before 
being experimented.All animals were treated in accordance with 
the guidelines of the National Institutes of Health (NIH) for the 
Care and Use of Laboratory Animals and were confirmed by 
Ethics of Animal Use in Research Committee (EAURC), Cairo 
University. In a controlled experimental study, rats were divided 
randomly into four equal groups, each consisting of 10 animals.

The first group (C)

The rats in this group were received distilled water (0.5 ml 
/ animal).

The second group (SP)

The rats in this group were orally administered with Spirulina 
platenesis, once daily for 30 days via gastric tube at a dose of 300 
mg/kg body weight (dissolved in distilled water) [13].

The third group (LD)

The rats in this group were treated with lead acetate (50 mg/
kg body weight; intraperitoneally) every other day for 4 weeks 
[15].

THE FOURTH GROUP (SP+LD)
The rats in this group were co-exposed to Spirulina platenesis 

and lead acetate at the same time with the same previously 
mentioned doses, duration, and routes. 

Blood sampling and tissue preparation

At the end of the experiment, before sacrificing of animals, 
blood samples were collected from the retro-orbital venous 
plexus of rats into EDTA-tubes for hematological examination 
(Erythrogam, leukogram, and reticulocytes count) and another 
blood sample from each rat was taken on clean, dry, sterile and 
labeled centrifuge tubes to separate clean non-hemolysed strew 
yellow serum for biochemical analysis (selective kidney function 

tests, IgG, IgM, protein electrophoresis). Spleen and kidney were 
rapidly removed and then divided into 2 portions; the 1st portion 
kept on -20º C until used for measuring the oxidative stress 
biomarkers   meanwhile, the 2nd portion was kept on 10%neutral 
formalin for HE-histopathological and immune-histochemical 
examination of CD8 and caspase-3.

Hematological picture

Erythrogram and leukogram were evaluated by using an 
automated hematology analyzer (Hospitex Hema Screen 18 
analyzer, Italy). Reticulocytes (retics) were counted on blood 
smear stained with brilliant cresyl blue stain and expressed in 
percentage using the equation of reticulocytes counting per total 
number of RBCs x 100%. 

Biochemical analysis

Selective kidney function tests such as serum urea and   
creatinine were measured using commercial kits of Diamond-
Diagnostic, Egypt on semi-automated Photometer 5010 V5+ 
(RIELE GmbH & Co, Berlin, Germany) according to the method 
of Fawcett and Scott, (1960) [16] and Henry, (1974) [17], 
respectively.

Oxidative stress biomarkers assessment 

Superoxide dismutase activity (SOD), reduced glutathione 
(GSH) activities and malondialdehyde (MDA) concentration were 
measured by using kits of Biodiagnostics-Egypt , according to 
methods described by [18-201], respectively.

Protein electrophoresis

Serum IgG and IgM were measured using a specific Rat IgG, 
IgM ELISA Kit (ab189578, ab157738) of abcam, Co., United 
Kingdom following the method of [21]. Electrophoretic pattern of 
serum protein was determined in the rats by means of cellulose 
acetate electrophoresis to show five protein bands, namely 
albumin, alpha-1, alpha-2, beta and gamma [22].

Histopathological investigation 

Spleen and kidney specimens were quickly collected then 
immersed rapidly into 10% neutral buffered formalin for 7 
days. The formalin-fixed samples were continuously transferred 
to freshly prepared fixative every day. Following fixation, the 
specimens were then preserved in 70% ethyl alcohol. The 
preserved samples were briefly dehyderated in a graded series of 
ethanol, cleared in 3 changes of xylene, then embedded in paraffin 
wax. Paraffin blocks were sectioned into 4-5 μm thick sections. 
The paraffin sections were then subjected to haematoxylin and 
eosin stain (H&E) according to Suvarna et al. (2013) [23] to be 
examined by light microscopy for histopathological changes. 

Immuno-histochemical examination

Another group of embedded paraffin sections was also 
prepared for immunodetection of spleen CD8, B-lymphocytes 
marker, using primary monoclonal antibodies anti-CD8 
(MCA1768, Serotec, Kidlingtone, UK) and kidney caspase-3 (AB-
20074b, Sangon Biotech, China)-positive cells overnight at 4ºC 
by  an avidin-biotin-peroxidase (ABC) method as previously 
mentioned by [24] following deparaffinization of sections , 
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treatment with 3% H2O2 for 10 min to inactivate endogenous 
peroxidases and  subsequent heating in 10-mM citrate buffer at 
121ºC for 30 min to permit antigen retrieval, and then blockage 
in 5% normal goat serum (Life Technologies) for 20 min. After 
three extensive washes with PBS, sections were incubated for 
20 min at 32 °C with goat anti-rabbit-IgG-biotin-conjugated 
secondary antibody (1:2,000; Cat. No. sc-2040; Santa Cruz 
Biotechnology, Inc.). After further incubation with horseradish 
peroxidase-labeled-streptavidin, Ab binding was visualized using 
diaminobenzidine, and the sections were counterstained with 
haematoxylin [25]. According to the diffuseness of the staining, 
sections were graded as 0= no staining; 1= staining ≤ 25%; 2= 
staining between 25% and 50%; 3= staining between <50%. 
According to staining intensity, sections were graded as follows: 
0= no staining; 1= weak but detectable staining; 2= distinct; 3= 
intense staining. Immunohistochemical values were obtained by 
adding the diffuseness and intensity scores [26].

Statistical analysis

Data were expressed as mean ± SE. Statistical comparisons 

were performed by Student-t test to compare mean values 
between lead treated groups versus control and lead treated 
groups versus SP/lead-treated group, using the SPSS 16.0 
computer program. A value of p< 0.05 was considered as 
statistically significant [27]. 

RESULTS

Changes in erythrogram 

Regarding the erythrogram results as shown in Table (1) and 
in comparison with the negative control group (I), LD-intoxicated 
rats (gp. III) showed a significant (p< 0.05) decrease in the values 
of RBCs, Hb, PCV, and MCHC with a significant (p< 0.05) increase 
in MCV. However, SP/LD-treated group (IV) showed an elevation 
in the values of RBCs, Hb, PCV, and MCHC with a decrease in MCV 
compared to the LD-only treated group but not return towards 
the normal values of the negative control group.

Leukogram results

Concerning to the leukogram data present at Table (2), 

Table 1: Changes in erythrogramat spirulinaplatensis (SP) and/or lead acetate (LD)-exposedanimals groups comparing with the control (C).
Groups

Parameters C SP LD SP+LD P -value LSD

RBCs (×106/µl)
7.33a 7.40a 3.90c 5.80b 0

0.96
± 0.24 ± 0.15 ±0.20 ± 0.11 **

Hb (g/dl)
14.16a 14.16a 7.40c 10.66b 0

1.91
± 0.44 ± 0.20 ± 0.70 ± 0.17 **

PCV (%)
44.66a 45.00a 29.00c 36.00b 0

4.64
±1.45 ±1.52 ±0.57 ±2.08 **

MCV(fl)
60.91b 60.79b 74.64a 61.97a 0.003

4.27
±0.79 ±1.30 ±2.69 ±2.37 **

MCHC(%)
31.72a 31.52a 25.17b 29.76a 0.014

2.07
±0.31 ±0.66 ±1.88 ±1.18 *

Retics(%)
2.81c 2.63c 10.71a 6.01b 0

2.25
 ±0.20  ±0.68  ±0.93  ±0.53 **

Data are expressed as the mean ± SE, n=5. Means within same row carrying different superscripts are significant different at P ≤ 0.05.
Abbreviations: RBCs: Red Blood Cells; Hb: Hemoglobin; PCV: Packed Cell Volume; MCV: Mean Corpuscular Volume; MCHC: Mean Corpuscular 
Hemoglobin Concentration; Retics: Reticulocytes; LSD: Least Significant Difference

Table 2: Effect of single or double exposure to spirulinaplatensis (SP) and lead acetate (LD) for 30 days on leukogramin rats compared to the control group (C).

Groups

Parameters C SP LD SP+LD P -value LSD

WBCs(×103/µl)
10.83a 11.00a 6.00b 7.83b 0.001

1.5
± 0.33 ± 0.76 ± 0.28 ± 0.44 **

Neutrophils(×103/µl)
7.16a 7.33a 2.50b 3.90ab 0

1.47
± 0.44 ± 0.88 ± 0.28 ± 0.20 **

Lymphocytes(×103/µl)
2.66a 2.66a 2.50a 2.93a 0.597

0.23
±0.33 ±0.16 ±0.01 ±0.23 NS

Eosinophils(×103/µl)
0.60a 0.65a 0.68a 0.61a 0.688

0.035
±6.05 ±1.02 ±0.05 ±0.03 NS

Monocytes (×103/µl)
0.40a 0.35a 0.31a 0.38a 0.687

0.036
±0.05 ±0.05 ±0.06 ±0.04 NS

Basophils(×103/µl)
0.00a 0.00a 0.00a 0.00a 0

0
±0.0 ±0.0 ±0.0 ±0.0 NS

Data are expressed as the mean ± SE, n=5. Means within same row carrying different superscripts are significant different at (P  ≤  0.05).
Abbreviations: WBCs: White blood cells; LSD: Least Significant Difference; NS: Non-Significant
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animals group (III) orally exposed to lead acetate showed a 
significant (p<0.05) leukopenia, and neutropenia comparing 
with the control group with non-significant changes in the 
counts of lymphocytes, monocytes, and eosinophils. Meanwhile, 
oral administration of spirulina platensis for 4 weeks with lead 
acetate resulted in marked elevation of total leukocytic counts 
and neutrophils compared to the positive control group (III) but 
not reach towards the values of control group.

Protein profile alterations

As shown in Table (3), intraperiotoneal injection of rats 
with lead acetate for four weeks with a concentration of 50 
mg/kg b.wt caused a significant (p< 0.05) hypoproteinemmia, 
hypoalbuminemia, hypoglobulinemia with  lowering  of the 
serum levels of  gamma-globulina, IgG, and IgM  when compared 
with the control rats. Spirulina platensis showing a potential 
protective role against lead acetate induced protein-gram 
alterations by elevation of serum total proteins, albumin, total 
globulin, and gamma globulin, IgG, and IgM concentrations near 
to the control values. Alpha1, 2- and beta-globulin levels showed 
non-significant changes in rats of all experimental groups.

Oxidant, antioxidant status and kidney function

Statistically, as tabulated in Table (4), lead acetate (LD) 
administration in rats for 4 weeks able to induce oxidative 
nephrotoxic impacts which represented by elevated serum 
creatinine, urea, and MDA with lowering serum SOD, and GSH 
contents. Lead acetate intoxicated rats orally administered 
spirulina platensis showed partial restoration of the above 
mentioned parameters near to the control level. 

Histopathological and immunohistochemical obser-
vations

Microscopical examination of H&E-stained kiney section of 
negative control rats of group (I) and spirulina-alone-treated rats 
(gp.II) showed normal renal tubules, glomeruli and bowman’s 
capsule (Figure 1 A,B). Meanwhile, rats of group (III) IP injected 
with lead acetate showed necrotic glomeruli with presence of 

hyaline casts in the lumen of some renal tubules (Figure 1C). The 
combination (SP+LD) group (IV) showed cellular and hyaline 
casts and peritubular congestion (Figure 1D).

The spleen of the control group (I) and spirulina-alone-treated 
group (II) showed a normal splenic structure with normal white 
and red pulp integrity and absence of hemosiderosis (Figure 2 
A,B). Lead acetate exposed group (III) showed severe lymphoid 
depletion and reduction of the lymphoid follicles size (Figure 2C). 
The co-exposed group (IV) treated with both spirulina platensis 
and lead acetate showed an increase in the size of lymphoid 
follicles in between control and lymphoid depletion (Figure 2D).

Immunohistochemical scoring of renal caspase-3 and splenic-
CD8, as found in table (5) revealed weak caspase-3 (Figure 3 A,B) 
and strong CD8 (Figure 4A,B) expression for rats at the negative 
control and spirulina-alone-treated groups, strong caspase-3 
(Figure 3C) and weak CD8 (Figure 4C) expression in rats exposed 
only to lead acetate, and moderate caspase-3 (Figure 3D) and 
moderate CD8 (Figure 4D) expression in the co-exposed group 
(SP+LD).

DISCUSSION
Lead (Pb2+) is a widely distributed environmental pollutant, 

as it found in several industrial and non-industrial sources. 
The industrial forms are the accumulator battery industry, lead 
smelters, lead or silver ore mining and lead refining. Non-industrial 
sources are air-borne lead from leaded gasoline fumes and lead-
based paints. Pb2+ is divalent cation with a propensity to settle 
in the proximal tubule of the nephron, leading to nephrotoxicity 
in human, animals [28], and poultry. Oxidative stress plays 
a significant role in lead-induced immunosuppression [29]. 
The current study was initiated to determine the involvement 
of oxidative stress in reduced immune function and induced 
nephrotoxicity in lead-intoxicated rats and also to evaluate the 
potential of spirulina platensis as exogenous supplementation in 
reducing blood and tissue Pb levels via chelation or by bolstering 
cellular antioxidant defenses.

Table 3: Selective renal function tests and oxidative stress biomarkers at different experimental groups 4 weeks post-treatment.
Groups

Parameters C SP LD SP+LD P -value LSD

Urea (mg/dl)
22.33c 24.00c 49.00a 33.66b 0

7.34
± 1.45 ± 2.51 ± 2.08 ± 2.72 **

Creatinine (mg/dl)
0.94b 0.93b 3.16a 1.70b 0.004

0.67
± 0.029 ± 0.106 ± 0.100 ± 0.208 *

MDA(nmol/ml)
3.08c 3.00c 13.00a 6.25b 0

2.49
±0.36 ±0.14 ±1.01 ±0.38 **

GSH(mmol/ l)
27.91a 28.50a 11.91c 18.75b 0

4.86
±1.50 ±2.03 ±2.23 ±1.15 **

SOD(U/ml)
11.33a 11.75a 4.25c 8.33b 0

2.1
±0.46 ±1.01 ±0.38 ±0.82 **

Data are expressed as the mean ± SE, n=5. Means within same row carrying different superscripts are significant different at (P ≤ 0.05).
Abbreviations: MDA: Malondialdehyde; SOD: Superoxide Dismutase; GSHH Reduced Glutathione; C: Control; SP: Spirulinaplatensis; LD: Lead 
Acetate; Least Significant Difference
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Table 4: Protein-gram of all experimental groups.

Groups

Param-
eters C SP LD SP+LD P 

-value LSD

Total 
proteins 

(g/dl)

7.16a 7.16a 3.23c 4.83b 0
1.14

± 0.44 ± 0.16 ± 0.14 ± 0.44 **

Albumin 
(g/dl)

4.61a 4.33a 1.90b 2.83b 0.003
0.83

± 0.53 ± 0.33 ± 0.10 ± 0.44 **
Total 

globulins 
(g/dl)

2.55a 2.23a 1.33c 2.00b 0
0.39

±0.10 ±0.16 ±0.16 ±0.001 **

α 
1-globulin 

(g/dl)

0.28a 0.35a 0.33a 0.33a 0.949
0.08

±0.11 ±0.07 ±0.04 ±0.08 NS

α 
2-globulin 

(g/dl)

0.26a 0.36a 0.30a 0.33a 0.813
0.07

±0.01 ±0.14 ±0.02 ±0.04 NS

β -globulin 
(g/dl)

0.50a 0.58a 0.51a 0.56a 0.831
0.008

±0.05 ±0.08 ±0.06 ±0.08 NS
γ-globulin 

(g/dl)
1.50a 1.53a 0.38c 0.66b 0

0.4
±0.12 ±0.13 ±0.04 ±0.08 **

Total IgG 
(mg/dl)

13.36a 13.00a 4.16c 8.33b 0
2.65

±0.32 ±1.15 ±0.72 ±1.20 **
Total IgM 
(mg/dl)

4.26a 4.56a 1.02c 2.30b 0.007
1.08

±0.53 ±0.90 ±0.19 ±0.35 *
Data are expressed as the mean ± SE, n=5. Means within same row 
carrying different superscripts are significant different at P ≤ 0.05. 
Abbreviations: LSD: Least significant difference; NS: Non-Significant; 
C: Control; SP: Spirulinaplatensis; LD: Lead Acetate

Figure 1 Photomicrograph of H&E-stained kidney section of negative 
control rats of group (I) and spirulina-alone-treated rats showing 
normal renal tubules, glomeruli and bowman’s capsule (A, B) (400 
X). Meanwhile, rats intoxicated with lead acetate showing necrotic 
glomeruli with presence of hyaline casts in the lumen of some renal 
tubules(C) (400 X).The combination group showing cellular and 
hyaline casts and peritubular congestion (D) (100 X).

Figure 2 Photomicrograph of H&E-stained spleen section of control 
group (I) and spirulina-alone-treated group showing normal splenic 
structure with normal white and red pulp integrity and absence of 
hemosiderosis (A,100x B,400x). Lead acetate exposed group showing 
severe lymphoid depletion and reduction of the lymphoid follicles size 
(C, 400x). The co-exposed group treated with both spirulina platensis 
and lead acetate showing increase in the size of lymphoid follicles (D, 
400X).

Figure 3 Immunohistochemical –stained kidney section showing 
weak caspase-3 (A, B) expression in rats of the negative control and 
spirulina-alone-treated groups, while, strong caspase-3 (C) expression 
in rats exposed only to lead acetate, and moderate caspase-3 (D) 
expression in the co-exposed group (SP+LD) (100X).

In the present work, significant reduction in serum IgM, 
IgG and splenic CD8 levels in lead-intoxicated rats (gp. III) 
discussed the ability of lead to alter B-and T-lymphocytes 
function in vivo which may contribute to its role in inhibiting 
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Figure 4 Immunohistochemical –stained spleen section showing 
strong CD8 (A, B) expression in rats of the negative control and 
spirulina-alone-treated groups, however  weak CD8 (C) expression in 
rats exposed only to lead acetate, and moderate CD8 (D) expression in 
the co-exposed group (SP+LD) (100X).

the cellular thiol antioxidant capacity, based on glutathione 
content measurements [30,31] which confirmed in our results 
by declining serum GSH content and previously by [32] who 
reported decreased whole blood GSH content in Sprague–Dawley 
rats-intoxicated with lead.  In addition, lead may cause oxidative 
stress by inhibiting d-aminolevulinic acid dehydratase (ALAD) 
leading to the buildup and autooxidation of d-aminolevulinic acid 
to form H2O2 [30,33], this is consistent with our present study 
and previous reports of increased serum MDA levels following 
lead exposure (34) Decreases in serum immunoglobulins levels 
following lead exposure have been previously reported in both 
animal and human studies of [35-38] and [39] as they reported 
suppressing in serum immunoglobulin (IgG and IgM) Levels in 
different animals models and non-immunized lead workers with 
chronic lead exposure. These results confirmed microscopically 
by severe lymphoid depletion and reduction of the lymphoid 
follicles size with few scattered CD8 (CD8+ T-cells are a critical 
component of the cellular immune response) in lead intoxicated 
group(II),this agreed with the data previously seen  by[40] and 
[41].

Lead is readily removed via proximal tubules of kidney, 
where it caused mitochondrial damages resulted in losing of its 
function, and subsequently failure of the tubular cells absorptive 
activities, causing renal failure [42]. Furthermore, long-period of 
Pb2+ exposure by various routes enhance the lipid peroxidation 

(LPO) in kidney and deplete glutathione (GSH). Also, it has been 
found to suppress the sulfhydryl-dependent enzymes, interfere 
with metals responsible for antioxidant enzymes activities, 
and/or increase the resistance of cells to oxidative radicals by 
impairing the cells integrity and fatty acid composition of renal 
cell membranes [43]. The bad effect of lead acetate on kidney, 
due to its oxidative generation activity, is a result of the ROS 
production, which induces cell injury and apoptosis [43]. These 
above mentioned facts about Pb-induced oxidative nephrotoxic 
impacts discussed our results belongs to the kidney function, 
oxidant, and antioxidant assay tests which showed significant 
increases in serum levels of MDA, urea, and creatinine and 
marked decreases in serum content of GSH and SOD enzyme in 
addition to, over expression of caspase-3 as apoptotic marker 
at rats group injected IP with lead acetate at a dose of 50 mg/
dl daily for 30 days. Our results were in the same line with those 
obtained by [44-47].

Lead acetate exposure has reported to reduced natural 
antioxidant defense system present within the erythrocytes 
during laboratory investigation [48] and during occupational 
exposure. Lead is known to increase oxidative stress in different 
cell culture based study model as reported previously [29]. 
Since oxidative stress is a major pathway of lead acetate induced 
hemolysis in erythrocytes, antioxidant treatment must be 
effective in ameliorative the toxicological effects of lead. In the 
present work, lead acetate intoxicated group showed marked 
macrocytic hypochromic anemia with reticulocytosis . The term 
hemolysis refers to the destruction of the red blood cells (RBC) 
and reticulocytosis is an important responsive bone marrow and 
regenerating the anemia index for assessment and management 
of hemolytic anemia [49].  In line with this observation, several 
investigators have reported the efficacy of antioxidant treatment 
in ameliorating lead (Pb2+) toxicity [50]. Furthermore, treatment 
with a metal chelator or a thiol antioxidant as spirulina platensis 
following lead exposure reduced oxidative stress in PMCs and 
kidney and normalized serum Ig and tissue CD8 levels, indicating 
a reversal in lead-induced effects on B, T lymphocytes function 
so, elevate the humeral and cellular immunity [51]. Additionally, 
it reduced ROS production [52] and subsequently decreased 
the cell apoptosis [53] and restoring the blood constituents and 
kidney function [54-56] towards the normal values and relief the 
histopatological alterations.

CONCLUSION
Oxidative stress plays a vital role in Pb-induced adverse 

effects on immune system, kidney and blood cellular constituents. 
Natural antioxidants such as spirulina have been found to be 
powerful in ameliorating Pb -induced toxicity in many previous 
scientific articles against many known environmental toxicants. 
In the current work, it is obvious that long standing Pb- exposure 
caused variable degrees of ROS generation, lipid per oxidation 

Table 5: Renal caspase-3 and splenic-CD8scoring.

C SP LD SP+LD

Renal caspase-3 +
(25)

+
(25)

+++
(50-75)

++
(25-50)

Splenic-CD8 +++
(50-75)

+++
(50-75)

+
(25)

++
(25-50)
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over-production, antioxidant enzymes activity inhibition resulted 
in immune-system suppression, hematological disorders besides 
histological alterations of renal tissue as a result of renal failure. 
SP co-exposure at the same time with Pb2+ provided near 
complete protection, same as in the negative control group.
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