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In countries like Uganda, infant and neonatal mortality 
rates remain a major concern despite efforts to improve 
healthcare access. Factors such as maternal education, 
per capita income, health expenditure, and environmental 
conditions are critical determinants of infant health 
outcomes [3]. However, despite interventions aimed at 
improving healthcare delivery and access to essential 
services like mosquito nets and oral rehydration therapy, 
infant and neonatal mortality rates in Uganda remain 
high compared to regional peers. As a result, there is a 
significant gap in understanding how macroeconomic 
factors such as GDP per capita and GDP can best be used 
to forecast the future infant and neonatal mortality rates. 
Several studies have also examined the impact of economic 
conditions on infant and maternal mortality. Ensor et al. 
[4], studied the effect of GDP fluctuations on maternal 
and infant mortality, finding a negative correlation during 
economic recessions, particularly in developing nations. 
Their findings emphasized the significant role of economic 

INTRODUCTION

Infant mortality remains one of the most critical health 
challenges worldwide, particularly in developing regions 
such as Sub-Saharan Africa. Despite significant global 
progress in reducing mortality rates over the past few 
decades, millions of children continue to die before their 
fifth birthday, with infant mortality (IMR), and neonatal 
mortality (NMR), accounting for a large proportion of these 
deaths. In 2019 alone, more than 5 million children under 
the age of five died, and the global decline in mortality has 
been slower for neonatal deaths compared to post-neonatal 
deaths (Sharrow et al., 2022). This disproportionate loss of 
young lives is often attributed to preventable or treatable 
causes such as neonatal encephalopathy, infections, 
complications due to preterm birth, and malnutrition [1]. 
For example, neonatal mortality, which refers to deaths in 
the first 28 days of life, has been a major focus of global 
health policy, especially in low-income countries where 
healthcare access and infrastructure are limited [2].

Abstract
This study examines infant mortality, a critical global health issue, particularly in developing countries with economic disparities affecting healthcare access. 

It compares the forecasting accuracy of three econometric models Vector Error Correction Model (VECM), Vector Autoregressive (VAR), and Bayesian VAR 
(BVAR), to predict infant mortality rates (IMR). The analysis uses data on IMR, neonatal mortality rates (NMR), and Ugandan GDP and GDP per capita (GDPP), 
from 1954 to 2016, assessing model performance through statistical measures like Mean Squared Error (MSE) and Theil’s U-statistic.

The results reveal significant long-term relationships between IMR, NMR, GDP, and GDPP, with VECM being the most accurate model for long-term 
forecasting, achieving an adjusted R-squared of 97.7%. Impulse response analysis shows GDP positively impacts IMR, while GDPP has a stronger long-term 
effect in reducing IMR. For NMR, GDP has a negative effect, while GDPP shows a positive response over time. Granger causality tests confirm bidirectional 
causality between GDPP and IMR, while IMR unidirectionally influences GDP. Projections indicate Uganda’s IMR could decline to 17 deaths per 1,000 live births 
by 2035, although the decline in NMR will slow.

In conclusion, short-term forecasts are best modeled by ARIMA, while long-term forecasts are more accurately captured by VECM. GDPP has a more 
substantial impact on reducing IMR and NMR than GDP, highlighting the importance of equitable resource distribution and macroeconomic growth for improving 
child survival rates.
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growth and health system performance in shaping health 
outcomes, particularly in low-income countries.

In this context, examining how these factors interrelate 
with mortality rates becomes essential for designing 
effective policies aimed at achieving the SDG target of 
reducing under-five mortality to 25 per 1,000 live births 
by 2030 [5]. The causal effect of maternal and child 
mortality on GDP is generally stronger in HICs and UMICs 
due to the differences between poor and rich countries 
with respect to the human capital level or infrastructure. 
Human capital is the stock of competencies, knowledge, 
and social and personality attributes, including creativity, 
embodied in the ability to perform labor so as to produce 
economic value. The higher human capital level of richer 
countries compared to poorer countries implies that an 
equal reduction in maternal and child mortality will cause 
GDP to increase more in richer countries than in poorer 
countries [6].

Erdil et al. [7], applied the Granger-causality 
approach to a panel data model with fixed coefficients 
in order to determine the relation between GDP and 
health expenditures per capita. They found significant 
bidirectional causality even for such a short time period, 
signaling that the evidence may be stronger for longer time 
periods. However, this causality is not homogenous, which 
is evident from the tests of the HC hypotheses. For one-
way causality, the pattern of causality is different in low- 
and middle-income countries as compared to high-income 
countries. One-way causality generally runs from GDP to H 
in LIC and MIC, whereas the reverse holds for HIC.

Forecasting Models in Health Economics

The application of econometric models to forecast 
health outcomes, such as infant mortality rates (IMR), and 
neonatal mortality rates (NMR), has gained significant 
attention in recent years. These models help to capture the 
complex interactions between various socioeconomic and 
macroeconomic factors affecting health outcomes. Among 
the most widely used econometric techniques are Vector 
Error Correction Models (VECM), Vector Autoregressive 
(VAR) models, and Bayesian VAR (BVAR) specifications. 
Each of these models offers unique strengths, particularly in 
their ability to account for dynamic relationships between 
variables, their ability to model both short- and long-run 
effects, and their robustness in the face of uncertainty. 

Recent research has applied various forecasting models 
to predict Infant Mortality Rates (IMR), and Neonatal 
Mortality Rates (NMR). In India, a study by Mishra, Sahanaa, 
and Manikandan (2019) utilized ARIMA models to forecast 
IMR from 1971 to 2016. The ARIMA (2, 1, 1) model 

demonstrated high forecast accuracy, with projections 
showing a decline in IMR from 2017 to 2025, predicting an 
IMR of 15 per 1,000 live births by 2025. Khan et al. (2019) 
conducted a similar analysis for Asian countries using log-
log regression and ARIMA models. Their study found a 
strong correlation between IMR and GDP per capita, with 
ARIMA (AR(1)) models effectively forecasting IMR from 
1980 to 2015, with forecasts extending to 2025.

In Nigeria, Usman et al.[8], applied ARIMA models to 
analyze newborn mortality trends, revealing a significant 
decline from 51.7% in 1990 to 33.9% in 2017. The ARIMA 
(1, 1, 1), model was found to provide the best fit for this 
data. Similarly, Ogedi et al. [9], compared ARIMA with 
other time series methods such as Simple Exponential 
Smoothing (SES) and Brown’s Linear Trend (BLT), using 
Bayesian Information Criterion (BIC) to evaluate model 
adequacy. They concluded that the ARIMA (0, 2, 0) model 
was the most suitable for forecasting NMR in Nigeria, 
outperforming other models based on Theil’s U and MAPE 
metrics.

Kurniasih et al. [10], evaluated the forecasting accuracy 
of ARIMA, Holt-Winters, and the α-Sutte Indicator for 
mortality rates. Their analysis revealed that the α-Sutte 
Indicator outperformed both ARIMA and Holt-Winters, 
with lower Mean Squared Error (MSE) and Mean Absolute 
Percentage Error (MAPE), suggesting its superior 
predictive ability. Bhowmik [11], explored the relationship 
between GDP, health expenditure, and the Human 
Development Index (HDI) in the SAARC region. Their panel 
data analysis identified long-term causal links between 
GDP and health spending to HDI, with no immediate causal 
effects, highlighting the role of sustained health investment 
in improving human development over time. 

Vector Error Correction Models (VECM)

The Vector Error Correction Model (VECM), is a 
powerful econometric tool designed to examine long-
term relationships between non-stationary time series 
data, such as macroeconomic indicators and health 
outcomes. VECM is particularly effective when variables 
are cointegrated, meaning they share a stable long-term 
equilibrium. In the context of infant mortality, VECM is 
valuable for analyzing how factors like GDP per capita and 
GDP impact Infant Mortality Rates (IMR), and Neonatal 
Mortality Rates (NMR) both in the short and long run. This 
model is widely used across various fields, including health 
economics. For example, Lin and Lee [12], applied VECM 
to explore the relationship between healthcare spending 
and life expectancy, revealing strong long-run connections 
between economic factors and health outcomes. Similarly, 
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in the case of infant mortality, VECM helps uncover how 
improvements in socioeconomic variables, such as income 
contribute to the sustained reduction of mortality rates 
over time [13]. 

Zhou et al. [14], used VECM to model mortality rates, 
finding that the model was effective in identifying long-term 
equilibrium relationships among key variables. Similarly, 
Arnold and Sherris [15], applied VECM to assess cause-
of-death mortality rates, demonstrating its capability to 
capture long-term dependencies and enhance forecasting 
accuracy compared to traditional ARIMA models. In 
Greece, Siahanidou et al. [16], used VECM to analyze IMR 
trends from 2004 to 2016, revealing that socioeconomic 
factors such as the Human Development Index (HDI) and 
rural residency significantly influenced IMR. 

Vector Autoregressive (VAR) Models

The Vector Autoregressive (VAR) model is another 
econometric tool frequently used in health forecasting, 
particularly for analyzing the interdependencies between 
multiple variables without assuming a specific causal 
relationship. Unlike VECM, which focuses on cointegration, 
VAR models are useful for exploring how changes in one 
variable affect other variables in the system over time. This 
makes VAR particularly useful when the researcher wants 
to understand how different macroeconomic variables 
such as GDP and GDP per capita affect IMR and NMR.

Liao et al. [17], used VAR models to analyze the 
relationship between health expenditures and health 
outcomes in China, showing that both healthcare 
spending and economic growth are significantly related 
to life expectancy and infant survival. Similarly, Imo et 
al., applied VAR to investigate the causal relationships 
between economic growth, public health investments, and 
IMR in sub-Saharan Africa. Their findings suggested that 
while short-run variations in health outcomes are driven 
by healthcare investments, long-term improvements in 
IMR require broader economic growth and socioeconomic 
development. 

Faye et al. [18], applied a Vector Autoregressive 
(VAR), model to assess the relationship between health 
expenditure, GDP, and IMR in the Philippines. Their results 
showed that health expenditure had a significant impact 
on IMR, whereas GDP per capita was more influential in 
reducing under-five mortality rates. In a similar vein, 
Shannon R. Lane [19], explored the impact of public health 
expenditure on national health outcomes, observing a 
negative correlation between government health spending 
and IMR, indicating that increased public health investment 
can reduce infant mortality. Chung and Muntaner [20], 

investigated the impact of income inequality on infant 
mortality across various countries. They found that public 
health services were the only consistent factor linked to 
reduce IMR, whereas income inequality did not have a 
direct effect on health outcomes. Therefore, VAR models 
are well-suited to forecast how changes in key variables 
will influence future trends in infant and neonatal 
mortality, particularly when short-run dynamics and the 
feedback effects between variables are of interest.

Bayesian VAR (BVAR) Models

Bayesian Vector Autoregressive (BVAR), models are an 
extension of traditional VAR models, integrating Bayesian 
statistical methods to handle uncertainty and improve 
estimation accuracy, especially when data is limited or 
noisy. A significant advantage of BVAR is its ability to 
incorporate prior knowledge or external information, 
leading to more robust forecasts, particularly when 
working with small datasets or when prior insights into 
the relationships between variables are available.

BVAR models have gained increasing popularity in 
forecasting applications, particularly in health outcomes. 
For instance, Kholid et al. [21], used BVAR to forecast 
health outcomes in low-income countries, demonstrating 
its capacity to deliver more accurate predictions despite 
limited data. In the context of infant mortality, BVAR is 
particularly valuable for forecasting long-term trends, as it 
allows for the inclusion of prior knowledge regarding the 
influence of factors like maternal education, sanitation, and 
healthcare spending. Additionally, the flexibility of BVAR 
models makes them ideal for addressing the uncertainty 
inherent in predicting future health trends, offering 
significant advantages for policy-making in resource-
constrained settings [22].

BVAR models have been proven to improve forecast 
accuracy by accounting for parameter uncertainty. Guibert, 
Lopez, and Piette [23], underscored the importance of 
decomposing mortality rates into latent components and 
suggested that BVAR is particularly suited for long-term 
mortality rate projections. In Australia, studies found 
that BVAR models outperformed traditional VAR models 
in terms of forecast accuracy, with the incorporation of 
parameter risk being a crucial factor [10].

Njenga [24], highlighted the flexibility of VAR models 
in capturing trends and correlations in mortality data. 
By integrating Bayesian techniques, BVAR models can 
provide more reliable forecasts, as demonstrated in 
Australian mortality rate studies that compared out-of-
sample predictions from both BVAR and traditional VAR 
models [15].
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Comparison of VECM, VAR, and BVAR Models

Although VECM, VAR, and BVAR models are widely 
used in health forecasting, there is a lack of comprehensive 
studies comparing their effectiveness in predicting infant 
and neonatal mortality rates. Fernández et al. [25], 
compared the performance of VAR and BVAR models 
in forecasting macroeconomic variables and found that 
BVAR models provided more accurate predictions, 
especially when uncertainty was present. Similarly, Dube 
et al. examined the use of VECM and VAR in forecasting 
health outcomes in developing countries. They concluded 
that VECM was more effective at capturing long-term 
relationships, while VAR models provided better short-
term forecasts.

The comparison of these models is vital for identifying 
the most accurate and reliable tool for forecasting Infant 
Mortality Rates (IMR), and Neonatal Mortality Rates 
(NMR), in both short and long run, considering the dynamic 
nature of health systems and the complex relationships 
between macroeconomic factors. Understanding how 
these models perform is particularly important as 
countries work toward meeting the SDG targets for child 
health. Accurate forecasting is essential for informing 
policy decisions related to resource allocation, healthcare 
interventions, and long-term planning aimed at achieving 
these targets. This article offers a detailed comparison of 
VECM, VAR, and BVAR models, focusing on their ability to 
predict future trends in infant mortality based on historical 
data and macroeconomic variables. It also contributes 
to the growing body of literature on the intersection of 
economics, health outcomes, and forecasting techniques.

METHODS

Data Sources

The study utilized country-specific annual infant and 
neonatal mortality rates data compiled and provided by 
http://www.childmortality.org. UN IGME web site data 
used in the United Nations Children’s Fund (UNICEF) 
Report on levels and trends in Child Mortality. Data on 
Ugandan GDP and GDP per capita was obtained from the 
World Bank web site. The researchers used GDP at 2000 US 
prices (the World Bank’s World Development Indicators 
2016; http://devdata.worldbank.org/wdi2016.htm).

Procedures

The projection of infant and neonatal mortality based 
on the vector error correction model from 2030 was 
done using time series data from 1954 to 2016, collected 
from UNICEF, the Bank of Uganda, the Ministry of Water 
and Environment, and the Ministry of Finance Planning 

and Economic Development. Variables considered here 
include: infant mortality rate, neonatal mortality rate, 
country’s GDP per capita, and GDP.

Forecasting the infant and neonatal mortality 

Three stages of analysis were adopted to facilitate 
the achievement of the goal. In the first stage, the study 
examined the trends and patterns of infant and neonatal 
mortality rates, government health expenditure, GDP, GDP 
per capita, sanitation coverage, and maternal literacy levels. 
The study was further focused by conducting an optimal lag 
length determination and a co-integration test. The second 
stage involved time series analysis (VAR, BVAR, and VECM) 
in order to determine the relationships and effects of the 
aforementioned variables on health outcomes. Lastly, the 
study devoted stage three to performing an out-of-sample 
projection of infant and neonatal mortality rates in 2030.

Time series analysis was used to identify the magnitude 
and direction of the relationship between health outcomes 
and GDP, GDP per capita, government health expenditure, 
sanitation coverage, and maternal literacy.

Statistical Analysis

Trend and patterns of infant and neonatal mortality 
rates, Ugandan GDP, GDP per capita were explored through 
graphs 

Stationarity assessment of the variables

All the series (IMR, NMR, GDP, and GDPP) were tested 
for stationarity before they were fixed into the model. 
According to Granger and Newbold (1974), if there is a 
unit root, then that particular series is considered non-
stationary. 

A stochastic time series Yt is said to be stationary, if and 
only if, it satisfies the following assumptions:

Conditions (1) and (2) imply that has a constant mean 
and variance over time, while condition (3) means that the 
covariance between series depends only on how far apart 
they are and not on the time of occurrence (Danao [26,27]. 
If one or more of the above conditions are not satisfied, the 
series is non-stationary, and proceeding with regression 
analysis would result in spurious results, which can 
produce high t-statistics but have no coherent economic 
meaning or an insignificant result.

http://www.childmortality.org
http://devdata.worldbank.org/wdi2016.htm
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Dicky Fuller Unit Root test for stationarity in the 
series

The Augmented Dicky-Fuller (ADF) standard test for 
unit root in the series was used in testing for the presence 
of unit root in both transformed and non-transformed 
series. The time series data in this study can take any of 
the following stationarity models:

The error terms εt are assumed to be independent and 
identically distributed. Dickey and Fuller [28], proposed 
the ADF test in order to handle the autoregressive 
process in the variables [28]. Where the ADF indicated the 
occurrence of a unit root, then the series is non-stationary. 
In case of non-stationary, then the researcher proceeded 
to taking the logarithms, differencing until he arrive at a 
stationary series.

Many scholars used differencing to detrend the data 
and control autocorrelation by subtracting each datum 
in a series from its predecessor until stationarity was 
attained (Deluna, 2014). Once stationarity is attained after 
differencing d times, the series is said to be integrated in 
order d [26]. In such cases, the researcher then proceeded 
with optimum lag length determination and co-integration 
analysis.

Model Specification and Identification

The first step in building a VAR (p) model involved model 
identification. This helps in identifying the appropriate 
model’s order. The most common methods used for lag 
order determination include Akaike Information Criterion 
(AIC) [27], Schwarz-Bayesian (BIC), and Hannan-Quinn 
(HQC). The main idea of AIC is to select the model that 
minimizes the negative likelihood penalized by the number 
of parameters.

The AIC and SBC equations are given below:

Where;

Both AIC and SBC differ in their exact definition of a 
good model. In this case, the study choose the model which 
has the lowest AIC and SBC values.

The time series Yt, where

 denote an (n×1) vector 
variables, follows a  model if it satisfies

Matrix expression of equation 3.6 is as follows,
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Where Π  is a k-dimensional vector, 1Φ , 2Φ ,……., 
pΦ  are k*k parameter matrices and te is a sequence of 

independently and identically distributed error vector.

Assumptions of the errors: -

The error term te  is a multivariate normal k * 1 vector 
of error satisfying the following assumptions;

1. E ( te )=0 every error term has mean zero;

2. E see tt =)( '  the contemporaneous covariance matrix 
of error terms is ω (a n*n positive semi-definite matrix);

3. E 0)( ' =−ktt ee for any non-zero k. There is no 
correlation across time; in particular, no serial correlation 
in individual error terms and jΦ are k*k matrices.

Lag length determination

Four basic variants of the model were estimated:

(i) the VEC model using both the Chao and Phillips 
(1999) joint procedure, VEC(J), and the more standard 
sequential procedure based on using the BIC to select the 
lag length and Johansen and Juselius’s (1990) maximum 
root test to select the number of common trends using a 
sequence of 5% tests, VEC(S).

(ii) a VAR using BIC to select the lag length.

(iii) a DVAR using BIC to select the lag length.

(iv) Two BVARs, each using AIC to select the lag length, 
but with either the standard Minnesota priors (with hyper 
parameters of 0.2 for the diagonal and 0.2 for the off-
diagonal terms), BVAR (M), or with looser priors on the 
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off-diagonal (off-diagonal hyper parameter = 0.8), BVAR 
(L).

Vector Autoregressive Processes

According to Sims [29] and Litterman (1976, 1986), 
Vector Autoregressive (VAR), models have been proven 
to forecast better than any simultaneous equation models. 
Vector Autoregressive (VAR), models provide information 
about a variable’s forecasting ability for another variable. 
It is an econometric model used to capture the evolution 
and the interdependence between multiple time series. 
In order to build a VAR model [27], certain steps can be 
followed. This includes model identification, estimation 
of constants, a diagnostic check, and finally forecasting. 
Conditional heteroscedasticity and outliers in the residual 
series are also checked. The existence of co-integration was 
used to check for the presence of any common trends, and 
finally, an Error Correction Model (ECM), was developed 
due to presence of co integration to improve the long-term 
forecast.

Estimation of the VAR model

After obtaining the order of the model, p, of the vector 
series, the researcher derived the estimators of the 
constants as in the steps below.

Consider the consecutive VAR models:

…=…

The most common methods of estimating parameters 
are the maximum likelihood estimator (MLE) and the 
ordinary least square estimator (Yang & Yuan, 1991). 
Here, the study applied the ordinary least squares (OLS), 
method to estimate the parameters of these models and 
apply equation by equation.

For  equation (7), let  be the OLS estimate 

of  and  be the OLS estimate of . Where (i) 

is used to denote the estimate of a VAR (i) model. 
The estimates of the coefficients of the VAR model. 

 When estimated 

using unrestricted VAR (p) model are considered to be 
fixed quantities. These estimates of coefficients do not 
accurately reflect the underlying relationship because 
some of the estimated coefficients of the VAR model are 
non-zero purely by chance when estimated by OLS so 

restrictions may be imposed to reduce the number of 
parameters being estimated, Mercy et al., (2015).

Diagnostic Check for VAR model

Suppose the orders and constants have been chosen 
for a VAR model underlying the data, then residuals are 
checked to see whether they are normally, identically, and 
independently distributed. After the model had been fitted, 
heteroscedasticity was tested through multivariate arch 
tests; autocorrelation through Durbin Watson; normality 
through Jarque-Bera tests; the unit root test through 
the Dickey Fuller and Augment Dickey Fuller tests; and 
the statistical significance of the parameters was tested 
through t statistics. For details, look at Mercy et al., (2015).

Data Description 

Standard practice in VAR analysis is to report results 
from Granger causality tests, impulse responses, and 
forecast error variance decompositions. These statistics 
are computed automatically (or nearly so), by many 
econometrics’ packages. Because of the complicated 
dynamics in the VAR, these statistics are more informative 
than the estimated VAR regression coefficients or statistics, 
which typically go unreported. Granger-causality statistics 
examine whether lagged values of one variable help to 
predict another variable.

Bi-variate Granger causality was used to determine 
which national variables help predict health outcomes. If 
a variable Granger causes a health outcome, it is included 
in the VAR and BVAR forecasting models. These tests were 
conducted for each health outcome at lag length 1,2,3,4 
and 5 years using both a deterministic time trend and first 
differences.

Forecasting models

Bayesian Vector Autoregressive (BVAR) was used in 
this study to assess whether prior information on spatial 
and economic base-sectoral linkages improves forecast 
accuracy for health outcomes in Uganda. The study then 
forecasted the mortality levels using VAR and BVAR 
models to compare their forecasting accuracy.

Assessment of forecast performance or VAR and BVAR

Alkema and New (2012), concluded that, point estimates 
on child mortality based on limited information may 
substantially under- or overestimate the truth. Uncertainty 
assessments can and should be used to complement point 
estimates to avoid unwarranted conclusions about levels 
or trends in child mortality and to reduce confusion about 
differences in estimates within and between countries. In 
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this study, both bootstrapping and cross-validation were 
used to assess the predictive power of the models, and the 
best model was used to project the infant and neonatal 
mortality by 2030 or 2035.

Infant and neonatal mortality forecasts

Time series analysis uses the factor of time to replace 
other kinds of influencing factors. Li Y, et al. (2017) used 
the autoregressive integrated moving average (ARIMA) 
model, one of the classic methods of time series analysis 
based on past values of a series and previous errors, to 
forecast under-five mortality in India. Despite all the 
advantages of this approach, it does not consider the 
influence of other macro variables in the economy like the 
Vector Auto Regressive model. The study then considered 
the infant and neonatal mortality rates from 1954 to 2014 
as a training sample to fit the VAR model, and 2015–2017 
was considered for the within and without samples for 
internal and external validation, respectively. 

To compare the performance of the VECM, VAR and 
BVAR models, the researcher computed the mean square 
error, root mean square error, and Theil’s U statistics for 
the quality of the time series forecast methods. 

For a  model, the 1-step ahead forecast at the 

tim e origin h is given by;

The associated forecast error is 

The covariance matrix of the forecast error is Σ. If Yt 
is weakly stationary, then 1-step ahead forecast Y1(1)  
converges to its mean vector, µ, as the forecast horizon 
increases, Mercy et al., 2014.

Mean Squared Error (MSE): Any of the two models 
was considered best if it has the minimum forecast error 
arising from comparing the actual value and forecast value.

Root Mean Squared Error (RMSE) Is the square root 
of the average of all squared errors, according to Wang and 
Lim (2005). It ignores any over and under- estimation.

Theil’s U Statistic: Theil’s U-statistics see Theil (1958) 
is used as a measure of forecasting error that is minimized. 
It is a relative measurement based on comparison of the 
predicted change with the observed change. The value of 
U lies between 0 and 1. If U equals to 0, there is a perfect 

fit, whereas U equals to 1 implies that forecasting of data 
is very poor. 

Assessment of the forecasting accuracy of BVAR, 
VECM and VAR model

However, the forecast of infant mortality from 2030 
forward is very important in knowing what infant and 
neonatal mortality would look like if nothing is done to 
address the risks of infant and neonatal mortality. This 
paper provides exploratory results on the forecasting 
powers of three econometric models such as BVAR, VECM, 
and VAR in estimating the future IMR and NMR in Uganda 
based on historical data.

The distribution of IMR, NMR, health expenditures, 
GDP per capita, GDP, Sanitation cover and maternal 
literacy cover

Here, the distribution and stationarity of eight selected 
study variables, which included infant mortality rate (IMR), 
neonatal mortality rate (NMR), Ugandan GDP (GDP), GDP 
per capita (GDPP) were performed. Whereas a visual trend 
of selected variables was done through graphs, statistical 
tests for stationarity using the Augmented Dicky-Fuller 
Unit Root Test at 5% were equally done. Where variables 
displayed unit root (non-stationarity), they were converted 
to stationarity by taking the logarithm and differencing 
until stationarity was achieved. 

RESULTS

Lag length for modelling IMR

The maximum lag length of five (5) was chosen based 
on the lowest value of AIC, FPE, LR, and HQIC to model IMR 
(Table 1).

Similarly, a maximum lag length of four (4) was 
determined based on the same approach to model NMR in 
Uganda (Table 2).

Determination of the direction and magnitude of 
the relationships between health outcomes and 
macroeconomic variables

Given that the study focused on two health outcomes 
(IMR and NMR), we selected the appropriate model for 
assessing the relationship between health outcomes and 
independent variables.

Choice of model

Chepngetich and John (2015), reported that VAR 
models are used to describe and forecast multivariate time 
series for stationary time series and recommended that for 
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non-stationary time series, a vector error correction term 
is added to form a vector error correction model (VECM). 
It was therefore necessary to test for the existence of a 
stationary linear combination of the non-stationary terms 
(co-integration). I transformed the selected series into a 
vector error correction model (VECM) by taking the first 
difference, which in turn facilitated long-term forecasting. 
Those series that were not stationary at the first difference 
were dropped from the forecasting model.

Vector Auto Regressive model to assess the 
relationship between IMR and GDP, GDPP 

Understanding how the variables relate to changes in 
the outcome variables is important in planning and policy 
formulation. As a result, I investigated the relationship 
between LIMR, LNMR, LGDP, and LGDPP. 

Impulse Response

The first step taken in building a VAR (p) model was the 
identification of the appropriate model (lag length), using 
the Akaike Information Criterion (AIC). The main idea 
of AIC is to select the model that minimizes the negative 
likelihood penalized by the number of parameters. The 
VAR model was then fitted to investigate how changes in 
the independent variables (LGDP and LGDPP) could affect 
the health outcomes (LIMR and LNMR) as presented in 
Figure 1. 

The response of LIMR to a one standard deviation (SD) 
shock (innovation) in LGDP remained steady at about 
zero in the first five years and increased slightly in the 
subsequent five years; however, beyond 10 years, LIMR 
rose above average quickly as compared to the previous 
period and it remains in the positive region. That is, shocks 

to LGDP will have a positive impact on LIMR in both the 
short and long run. Furthermore, the effect of a one SD 
shock in the LGDPP was not noticeable in the short run 
and declined in the negative region slowly in the period 
between five and ten years, but it decreased rapidly 
beyond 10 years. This implied that the shock to LDGPP will 
have a negative impact on LIMR in the long run; that is, an 
increase in a country’s GDPP leads to an increase in health 
infrastructure development in the long run, which in turn 
leads to a drop in infant mortality (Figure 1).

Impulse response of NMR to a one SD shock on LGDP 
and LGDPP

The response of LNMR to a one SD shock (innovation) 
on LGDP was about zero in the first three years, and 
it decreased rapidly between three and ten years; it 
remained steadily between 10 and twelve years. Beyond 
twelve years, LNMR registered a quick rise but remained 
in the negative region. In other words, a one SD shock in 
LGDP has a negative impact on LNMR in both the short and 
long run (Figure 2).

Similarly, while the impact of a one-SD shock in LGDPP 
on LNMR was not noticeable in the period zero to five 
years, the response rapidly increased between the five- 
and ten-year periods, where it hit a steady value for about 
two years. The response of LNMR to stimulation in LGDPP 
started declining but remained in the positive region 
beyond 12 years. This meant that a shock to LGDPP would 
benefit LNMR in both the short and long run (Figure 2). 

Engle Granger Causality GDP and GDPP on Health 
outcome (IMR and NMR)

Based on variables such as IMR, GDP, and GDPP, it was 

Table 1: Lag length determination based on AIC (IMR)

lag LL LR Df P FPE AIC HQIC SBIC
0 -1790.50 1.4e25 66.4261 66.4687 66.5366
1 -1515.161 549.40 9 0.000 7.5e20 56.5854 56.7558 57.0274
2 -1452.13 127.34 9 0.000 1.0e20 54.5605 54.8588 55.3340*
3 -1440.62 23.04 9 0.006 9.2e19 54.4673 54.8934 55.5722
4 -1429.19 22.86 9 0.007 8.5e19 54.3773 54.9313 55.16138
5 -1413.25 31.87* 9 0.000 6.8e19* 54.1204* 54.8023* 55.16884

Define *

Table 2: The Lag length determination based on AIC (NMR)

lag LL LR Df P FPE AIC HQIC SBIC
0 -1599.32 5.1e24 65.4008 65.4448 65.5167
1 -1329.12 540.40 9 0.000 1.2e20 54.7396 54.9154 55.2029
2 -1269.35 119.55 9 0.000 1.5e19 52.6672 52.9748 53.4780
3 -1228.92 80.845 9 0.000 4.2e18 51.3846 51.8241 52.5429*
4 -1214.50 28.853* 9 0.001 3.5e18* 51.1631* 51.7344* 52.6689
5 -1211.57 5.16459 9 0.755 4.6e18 51.4112 52.1143 53.2644

Define asterisks *
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Figure 1 Impulse response function for infant mortality rates to shocks in GDP, GDPP and NMR
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Figure 2 Impulse response function for infant mortality rates to shocks in GDP, GDPP and IMR
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noted that GDPP significantly influences IMR in the short 
run. In addition, Uganda’s GDP and GDPP all together cause 
changes in IMR in the short run. In a similar twist, it was 
discovered that IMR causes GDP, yet GDPP was found not 
to be significant in causing GDP. It’s worth noting that 
both IMR and GDPP influence a country’s GDP. It was also 
observed that IMR significantly causes GDPP and that 
there were no significant causal effects between GDP and 
GDPP (Table 3).

The findings revealed a significant two-way causality 
between IMR and GDPP and a one-way causal effect from 
IMR to GDP. Interestingly, it was clear that GDP only causes 
IMR through GDPP. There was no causality between GDP 
and GDPP in the short term. In view of the above, four 
variables that caused an increased infant or neonatal 
mortality rate were included in the VAR, VECM, and BVAR 
models.

There was a strong relationship between health 
outcomes (such as IMR and NMR) and GDP, just like 
GDPP, which could be due to the level of human capital 
dependency and the higher marginal effect of health 
spending on LIC and LMIC. This was in agreement with 
the research conducted by Amiria and Gerdtham [6], who 
found that there was a stronger relationship because the 
effects of GDP on health are stronger in LIC and LMIC 
compared to HIC and UMIC, while in contrast, the effects 
of health on GDP are stronger in HIC and UMIC compared 
to LIC and LMIC. The tests were run with a lag length of 
four for neonatal mortality and five for infant mortality as 
predetermined in lag length selection procedures (Table 
3).

The Granger causality test was employed to determine 
whether lagged values of GDP (LGDP), and GDP per capita 
(GDPP), could predict infant mortality rate (LIMR), and 
neonatal mortality rate (LNMR). The findings indicate a 
strong causal relationship, as the lagged values of both 
LGDP and GDPP significantly influence LIMR, with p-values 
less than 0.001. This suggests that changes in GDP and 
GDPP can effectively predict future infant mortality rates 
in the short term. Furthermore, a direct causal effect of 
LGDP and GDPP on LNMR was also observed, confirming 
that these variables are useful for forecasting neonatal 
mortality rates. However, the lagged values of LNMR did not 
independently affect LGDP, but they did show a significant 
effect when combined with LGDPP (p = 0.017). Similarly, 
LIMR did not exhibit a direct causal effect on GDPP alone, 
but this relationship became significant when considering 
the interaction with LGDP. Overall, while LNMR has a 
significant influence on both LGDP and GDPP, the direct 
causal relationships among these variables highlight the 
complex interdependencies in predicting mortality rates 
in the context of economic factors (Table 3).

Johansen Cointegration Test 

IMR, NMR, GDP, and GDPP were among the variables 
taken into account in this study. They were non-stationary 
at level but became stationary after the first difference. 
Based on these results, I used the Johansen test of co-
integration at 5% to check for co-integration. This assisted 
in determining whether the variables move together over 
time or not, which in turn assisted in choosing between 
fitting the VAR model and the VECM. Results revealed that 
there was an order 1 co-integration between LIMR, LGDP, 
and LGDPP, as well as an order 2 co-integration between 
LNMR, LGDP, and LGDPP. This meant that these three 
variables move together in the long run, hence the need 
to fit the Vector Error Correction Model (VECM) for both 
NMR and IMR.

Assessment of the forecasting performance of VECM 
and BVAR

To keep things simple, the analysis results showed 
that there was co-integration of order one for infant 
mortality data (IMR) and order two for neonatal mortality 
data (NMR). The study considered the first order of co-
integration in the subsequent analysis. With the presence 
of co-integration in the data set, VECM was found to be 
more appropriate for making long-term projections than 
the VAR model, whose supremacies were observed only in 
the short run. However, there was a need to compare the 
projection accuracy between VECM and BVAR (Table 4).

To accomplish this, the dataset was divided into two 

Table 3: Test of granger causality among IMR, NMR, GDP and GDPP

Equation Excluded x2 Df P value
LNMR LGDP 35039 3 <0.001*
LNMR LGDPP 1.4e5 4 <0.001*
LNMR ALL 9.7 7 <0.001*
LGDP LNMR 5.4705 4 0.242
LGDP LGDPP 5.7e6 4 <0.001
LGDP ALL 6.0e6 8 <0.00

LGDPP LNMR 5.487 4 0.241
LGDPP LGDP 1.4e6 3 <0.001*
LGDPP ALL 2.0e7 7 <0.001*
LIMR LGDP 1.2e7 5 <0.001*
LIMR LGDPP 8.6e6 3 <0.001*
LIMR ALL 1.8e8 8 <0.001*
LGDP LNMR 13.733 5 0.017
LGDP LGDPP 3.9e5 3 0.001*
LGDP ALL 8.3e5 8 <0.001*

LGDPP LNMR 13.754 5 0.017*
LGDPP LGDP 9.9e5 5 0.001*
LGDPP ALL 1.0e6 10 0.001*

*Significant variable at 5%
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parts (the training data was sampled from 1954 to 2010, 
and the validation data was sampled from 2011 to 2018). 
The accuracy levels for within-sample forecasts were 
assessed using Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE), Mean Absolute Percent Error 
(MAPE), and the Theil Inequality Coefficient. In all cases, 
the model with the minimum possible errors was taken to 
be the best (Table 4).

The results in Table 4 revealed that, in the long run, the 
model that can best predict infant mortality rate in Uganda 
is VECM since it has smaller values of the projection errors 
as compared to BVAR.

Table 5 indicates that the Vector Error Correction 
Model (VECM), demonstrated superior accuracy in 
projecting neonatal mortality rates, as evidenced by its 
lower forecast error values compared to the Bayesian 
Vector Autoregression (BVAR) model. Consequently, VECM 
was selected for forecasting infant and neonatal mortality 
rates from 2021 to 2035. The study further explored the 
relationships among Infant Mortality Rate (IMR), Neonatal 
Mortality Rate (NMR), Gross Domestic Product (GDP), and 
GDP per capita (GDPP), to assess the impact of changes in 
GDP and GDPP on IMR and NMR. To quantify this effect, 
forecast error variance decomposition was employed, 
measuring the extent to which variations in GDP and GDPP 
account for changes in IMR and NMR over both short and 
long-time horizons.

Infant mortality rate in VECM 

Based on the long run equation, it was clear that 
LGDP has a negative effect on IMR whereas GDPP has a 
positive effect on infant mortality, and the coefficients 
were significant at the 5% level. In a nutshell, LGDP and 
LGDPP have a symmetric effect on LIMR in the long run, on 
average, ceteris paribus. Overall, the VECM fitted the data 
very well, with an adjusted R squared of 97.7%. Further 
still, the F-statistics were significant at the 1% level (Table 
6).

Diagnostic check

Results of the post-estimation tests indicated that the 
fitted model had no serial correlation at the 5% level of 
significance. However, the errors were not normally 
distributed based on the Jarque-Bera test, and no 
heteroscedasticity was seen based on the Breusch-Pagan-
Godfrey test at the 5% level of significance. In addition, the 
VECM specification imposes 2-unit moduli, which implied 
a high level of stability at the significance level of 5% 
(Table 6)

Short-run causality

The results of the vector error correction model with 
IMR as the dependent variable showed no significant 
short-run causality from LGDP and LGDPP to LIMR at a 
5% level of significance. It was important to keep in mind 
that there was a short-run causal relationship between the 

Table 4: Assessment of the infant mortality rate projection accuracy

Variable Inc. obs. RMSE MAE MAPE Theil
BVAR 8  0.067645  0.050364  1.441729  0.009243
VECM 8 0.010883 0.009870 0.269412 0.001475

RMSE:  Root Mean Square Error
MAE:  Mean Absolute Error
MAPE:  Mean Absolute Percentage Error
Theil:  Theil inequality coefficient

RMSE:  Root Mean Square Error
MAE:  Mean Absolute Error
MAPE:  Mean Absolute Percentage Error
Theil:  Theil inequality coefficient

Table 5: Assessment of the neonatal mortality rate projection accuracy

Variable Inc. obs. RMSE MAE MAPE Theil
BVAR 8 0.065402 0.047626 1.405643 0.009164
VECM 8 0.00864 0.007132 0.233326 0.001396

Table 6: VECM with LIMR as the dependent variable (Data 1954-2018)

Variables Coef. Std. Err. Z p-value
ECT
L1. -0.002339 0.000943 -2.480684 0.018*

LIMR
LD. 0.684889 0.164376 4.166600 <0.001*

L2D. 0.603716 0.213071 2.833400 0.008*
L3D. -0.519278 0.211802 -2.451716 0.019*
L4D. -0.059496 0.245058 -0.242785 0.809
L5D. 0.242812 0.190733 1.273047 0.211
LGDP

LD. 1.077618 5.481750 0.196583 0.845
L2D. -9.303459 17.02088 -0.546591 0.588
L3D. 20.65873 23.54561 0.877392 0.386
L4D. -20.17390 17.17973 -1.174285 0.248
L5D. 8.818011 5.635692 1.564672 0.126

LGDPP
LD. -1.079008 5.481226 -0.196855 0.845

L2D. 9.300009 17.02017 0.546411 0.588
L3D. -20.66295 23.54524 -0.877585 0.386
L4D. 20.16990 17.17955 1.174064 0.248
L5D. -8.822784 5.636068 -1.565415 0.126

_Cons -0.034619 0.016883 -2.050564 0.047*
R-squared 0.967052 Mean dependent var -0.024099
Adjusted 

R-squared 0.952408 S.D. dependent var 0.024719

S.E. of regression 0.005393 Akaike info criterion -7.352825
Sum squared 

Resid 0.001047 Schwarz criterion -6.720845

Log likelihood 211.8499 Hannan-Quinn criter. -7.109796
F-statistic 66.03922 Durbin-Watson stat 1.950897

Prob(F-statistic)        <0.001*
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IMR’s lag values and its present values. IMR’s values from 
the previous two years had a positive impact on its current 
value, which means that in the near future, IMR will grow 
by 68.5% and 60.4% on itself as a result of its first and 
second prior values, respectively. On the other hand, due 
to the impact of its values from three years ago at a 5% 
level of importance, IMR will show a decline of 51.9% on 
itself in the short term (Table 7).

Long run causality for IMR

The adjustment term (-0.0041) suggested that previous 
year’s error (or deviation from long-run equilibrium) is 
corrected for within the current year at a convergence 
speed of 0.041% annually.

In the short run (6 years), more than 80% of the 
forecast error variance is explained by IMR itself, and very 
little influence is seen from GDP and GDPP. In the long run 
(10 to 15 years), the influence of the LGDP increases while 
that of the GDPP remains stagnant. This meant that GDP 
exhibited a strong influence on IMR in the long run, yet 
IMR had a weak endogenous influence on itself (Table 8).

Neonatal mortality rate in VECM 

In the long run, LGDP has a negative impact on LNMR, 
while LGDPP has a positive impact on LNMR, and the 
coefficients are significant at the 1% level. In conclusion, I 
found out that LGDP and LGDPP have a symmetric impact 
on NMR in the long run-on average, ceteris paribus. The 
VECM fit the data very well overall, with an adjusted 
R squared of 97.7%; additionally, the F-statistics were 
significant at the 1% level. 

Diagnostic check under NMR

The model’s post-estimation results revealed no 
serial correlation; error terms were normally distributed, 
with no heteroscedasticity based on the Breusch-Pagan-
Godfrey test at 5%; and the VECM specification imposed 
2-unit moduli, implying a high level of stability (Table 9). 

Short-run causality

The VECM results revealed no short-run causality 
running from the lagged values of NMR; in particular, 
the current values of NMR tend to increase with neonatal 
mortality before 99%. Furthermore, there were no short-

Table 7: VECM with Johansen normalization restriction imposed

Beta Coef. Std. Err. T P>t
LIMR (-1) 1 . . .
LGDP (-1) 3.2731 0.9661 3.3880 0.0390

LGDPP (-1) -5.16348 1.5234 -3.8301 0.0060
_Cons -44.9754 . . .

Table 8: Short and long run influence of study variable on IMR based on forecast 
error variance decomposition.

 Period 
(Years) S.E. LIMR LGDP LGDPP

 1  0.005393  100.0000  0.000000  0.000000

 2  0.011180  96.22578  3.749129  0.025095

 3  0.020700  92.30293  7.613713  0.083361

 4  0.032036  87.41467  12.40978  0.175549

 5  0.045769  83.56496  16.14786  0.287174

 6  0.060560  80.66349  19.00394  0.332573

 7  0.076559  78.11233  21.54645  0.341219

 8  0.093319  75.74225  23.95256  0.305192

 9  0.110961  73.48256  26.27398  0.243456

 10  0.129382  71.21862  28.60170  0.179676

 11  0.148480  68.98844  30.85553  0.156031

 12  0.168143  66.65012  33.12385  0.226030

 13  0.188259  64.17239  35.38761  0.440003

 14  0.208703  61.54723  37.62696  0.825811

 15  0.229395  58.82590  39.80220  1.371894

Table 9: Neonatal mortality Rates VECM (Data 1954-2018)

Variables Coefficient Std. Error t-Statistic Prob.  

ECT (-1) -0.014009 0.003697 -3.789779 <0.001*

LNMR

LD. 0.989889 0.182500 5.424048 <0.001*

L2D. -2.206255 1.564052 -1.410602 0.1672

L3D. 2.207011 1.563942 1.411185 0.1670

L4D. 0.179099 0.252715 0.708698 0.4832

LGDP

LD. 5.372330 4.102797 1.309431 0.1989

L2D. -5.376400 4.102640 -1.310473 0.1986

L3D. -0.328703 0.251977 -1.304497 0.2006

L4D. -5.391813 4.149732 -1.299316 0.2023

LGDPP

LD. 5.385482 4.149856 1.297751 0.2029

L2D. -0.203926 0.178766 -1.140742 0.2617

L3D. 1.442991 1.642640 0.878458 0.3857

L4D. -1.446025 1.642367 -0.880451 0.3846

Cons 0.017644 0.007611 2.318407 0.0264

R-squared 0.983543     Mean dependent var -0.020638

Adjusted 
R-squared 0.977431     S.D. dependent var 0.011313

S.E. of regression 0.001700     Akaike info criterion -9.681903

Sum squared 
Resid 0.000101     Schwarz criterion -9.141383

Log likelihood 251.2066     Hannan-Quinn criter. -9.476831

F-statistic 160.9079     Durbin-Watson stat 1.923443

Prob(F-statistic) 0.000000
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run causalities from lagged GDP and GDPP values to NMR 
because their coefficients were not significant at the 5% 
level, implying that there is no short-run causality from 
LGDP and LGDPP to LNM (Table 10).

Long-run causality

The VECM results showed an adjustment term of -0.014, 
suggesting that the previous year’s errors are corrected 
within the current year at a convergence speed of 1.4% 
annually, towards long-run equilibrium. Furthermore, 
it indicated long-run causality running from LGDP and 
LGDPP to LNMR.

In the short run (1–6 years), the majority of the neonatal 
mortality forecast error variances (over 89%) were 
explained by themselves, and only a very small percentage 
was explained by GDP and GDPP. This influence reduced 
with time to the extent that, between 10 and 15 years, the 
influence of GDPP on NMR became stronger and that of 
GDP remained weak all through the period (Table 11).

Forecast of infant and neonatal mortality in Uganda

After assessing the forecasting powers of the models, 
predictions for infant and neonatal mortality in the long 
run up to 2035 based on the Vector Error Correction Model 
(VECM) were estimated since it proved to be more reliable 
in making long-term forecasts (Table 12).

Globally, there has been a steady decline in NMR 
figures over the years, particularly in Uganda; however, 
this appears to have stalled in recent years, and this trend 
of slow decline is expected to continue during the lifespan 
of the Sustainable Development Goals if nothing is done. As 
presented in Figure 3, we applied the suitable prediction 
model (VECM) after a deeper investigation of its capability 
to conduct both the short- and long-term forecast. It was 
observed that by 2035, Uganda will have about 17 deaths 
per 1,000 live births.Results presented in Figure 4 show 
that the decline of NMR will continue to slow over the 
next 15 years. The projections here presented provide 
an indication of where the health practitioner should 
focus. If the goal of eradicating infant mortality is to be 
realized, more emphasis should be placed on new-born life 
throughout the country. 

DISCUSSION

My analysis of the association between IMR, NMR, 
and GDP as well as GDPP showed a significant negative 
correlation; as the GDP and GDPP of the country increase, 
the resources available for investment in the health 
subsector increase, thereby increasing access to improved 
health services by citizens, which in turn increases the 
survival rate of infants. In a nutshell, the response of 
LIMR to a one standard deviation (SD) shock (innovation) 
in LGDP remained steady at about zero in the first five 
years and increased slightly in the subsequent five years; 
however, beyond 10 years, LIMR rose quickly as compared 
to the previous period and it remains in the positive 
region. That is, shocks to LGDP will have a positive impact 
on LIMR in both the short and long run. According to the 
coefficients (pv=0.05), the long run equation also revealed 
that LGDP has a negative effect on IMR while GDPP has a 

Table 10: VECM with Johansen normalization restriction imposed

Beta Coef. Std. Err. z P>z
LNMR (-1) 1.0000 . . .
LGDP (-1) 1.0155 0.1049 9.6795 0.000

LGDPP (-1) -1.1797 0.1998 -5.9061 0.000
Cons -19.6917 . . .

Table 11: VECM projection error Variance Decomposition of LNMR

 Period 
(Years) S.E. LNMR LGDP LGDPP

 1  0.001700  100.0000  0.000000  0.000000

 2  0.004075  97.91209  1.393570  0.694340

 3  0.007194  97.15839  1.209350  1.632262

 4  0.010488  96.43193  0.580207  2.987866

 5  0.013667  94.26186  0.658029  5.080107

 6  0.016684  89.90393  1.688806  8.407265

 7  0.019628  83.41279  2.999677  13.58754

 8  0.022695  75.56837  3.619241  20.81239

 9  0.026055  67.15857  3.348640  29.49279

 10  0.029772  59.10897  2.638423  38.25261

 11  0.033746  52.17818  2.089350  45.73247

 12  0.037718  46.72443  1.964940  51.31063

 13  0.041405  42.73652  2.264125  54.99935

 14  0.044613  39.97626  2.919827  57.10391

 15  0.047295  38.14498  3.918061  57.93695

Table 12: Forecast of Infant Mortality Rate (IMR) and Neonatal Mortality Rate 
(NMR)

Time 
period Lower limits IMR Upper limits Lower limits NMR Upper 

limits
2020 31.9 32.3 32.6 19.4 19.4 19.5
2021 30.5 31.2 31.9 18.7 18.8 19.0
2022 29.0 30.1 31.3 18.0 18.2 18.4
2023 27.6 29.2 30.9 17.3 17.6 17.9
2024 26.2 28.3 30.5 16.7 17.1 17.4
2025 25.0 27.5 30.2 16.2 16.7 17.1
2026 23.8 26.7 29.9 15.9 16.4 16.8
2027 22.7 25.16 29.4 15.7 16.2 16.7
2028 21.5 24.9 28.8 15.5 16.0 16.6
2029 20.3 23.9 28.1 15.2 15.16 16.4
2030 19.1 22.8 27.1 14.9 15.5 16.2
2031 17.9 21.6 26.0 14.5 15.2 15.9
2032 16.8 20.4 24.9 14.1 14.8 15.5
2033 15.16 19.3 23.7 13.7 14.4 15.1
2034 14.8 18.3 22.6 13.3 14.0 14.7
2035 13.9 17.3 21.5 12.9 13.6 14.3
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positive effect on infant mortality. In a nutshell, LGDP and 
LGDPP have a symmetric effect on LIMR in the long run, 
on average, ceteris paribus. This result was consistent with 
the findings of Khan et al., (2019), who forecasted IMR for 
Asian countries using the log-log regression and ARIMA 
models, which included GDP and infant mortality. Their 
studies showed that IMR and GDP did correlate well.

Other studies also looked at the effect of economic 
recession measured in terms of GDP on infant and maternal 
mortality [4]. The study suggested that recessions do have 
a negative association with maternal and infant outcomes, 
particularly in the earlier stages of a country’s development, 
although the effects vary widely across different systems. 
Almost all of the 20 least wealthy countries have suffered a 
reduction of 10% or more in GDP per capita in at least one 
of the last five decades. Economic development seems to 
provide an important context that should be coupled with 
broader health-system interventions. The study noticed 
that there is a significant two-way causality between IMR 
and GDPP and a one-way causal effect from IMR to GDP. 
Interestingly, it was then clear that GDP only causes IMR 
through GDPP. There was a strong relationship between 
health outcomes (such as IMR and NMR), and GDP, just 
like GDPP, which could be due to the level of human 
capital dependency and the higher marginal effect of 
health spending on LIC and LMIC. This was in agreement 
with the research conducted by Amiria and Gerdtham [6], 
who found that there was a stronger relationship because 
the effects of GDP on health are stronger in LIC and LMIC 
compared to HIC and UMIC, while in contrast, the effects of 
health on GDP are stronger in HIC and UMIC compared to 
LIC and LMIC.

In a study that compared the SAARC bloc’s GDP per 
capita, health spending, and education spending to its 
human development index from 1990 to 2016, panel data 
analysis revealed that the HDI of SAARC has been rising 
with upward structural breaks [10]. Between 1990 and 
2016, the HDI was inversely correlated with spending on 
health and education and positively correlated with GDP 
per capita. They have at least one cointegrating equation 
and significant long-run causalities from GDP per capita, 
health spending, and education spending to the SAARC 
human development index, but no immediate ones. 
Instead, there was a direct causal link between the human 
development index and the SAARC countries’ health 
spending [11].

While investigating the forecasting powers of different 
econometric models such as BVAR, VAR, and VECM to 
ascertain which of these models could best be employed 
in the short and long run, I discovered that BVAR and VAR 

models are best suited for short-run forecasts, while VECM 
yielded very convincing long-run forecast accuracy. The 
accuracy of these models was assessed in a 15-year out-of-
sample forecast for both IMR and NMR based on root mean 
squared error (RMSE), mean absolute error (MAE), mean 
absolute percent error (MAPE), and the Theil inequality 
coefficient. Other results from the modeling of mortality 
in Australia using Bayesian Vector Autoregression (BVAR) 
showed how the Bayesian Vector Autoregressive (BVAR) 
models improve forecast accuracy compared to VAR 
models and quantify parameter risk, which is shown to be 
significant [10]. 

The supremacy of VECM follows the conclusion from 
similar studies in Australia by Kurniasih et al.[10], they 
said that in order to guarantee the existence of long-run 
correlations between mortality rate improvements, they 
suggested a large vector autoregressive (VAR) model fitted 
on the differences in the log-mortality rates. In addition, 
the study by Arnold & Sherris [15], applied VECMs to 
cause-of-death mortality rates to assess the dependence 
between these competing risks in Switzerland. The 
analysis confirms the existence of a long-run stationary 
relationship between these five causes. Zhou et al. [14], 
investigated how the modeling of the stochastic factors 
may be improved by using a Vector Error Correction 
Model. These findings support the notion that VECM 
provides more reliable long-term forecasts. 

CONCLUSIONS

Macroeconomic variables such as GDP and GDPP are 
important components that can be used to predict infant 
mortality in both the short and long run. The analysis 
results showed that the short run forecasts could be made 
using univariate time series (ARIMA), since for both NMR 
and IMR, the majority of the forecast error variance can be 
explained by themselves, and this was also further alluded 
to in the short run coefficient of the VECM. Although long-
run forecasts of both IMR and NMR can be done more 
accurately and successfully using VECM than VAR and 
BVAR models.

Although GDPP had a longer-term advantage over GDP 
on measures of infant mortality (IMR), GDPP had a longer-
term advantage over GDP on these measures. In general, the 
ability to forecast IMR over the long term more accurately 
with GDP and NMR more effectively with GDPP Since the 
nation’s GDP is collective in nature, it was only natural that 
it would favor infants in terms of infrastructure and social 
service supply in the nation that supports baby survival. 
The GDPP, on the other hand, offers the closest amount of 
resources at the individual level that can meet the demands 
of children.
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The study findings revealed that VAR or BVAR perform 
best in making short run forecast as compared to VECM 
based on RMSE, and hence for future long-run forecasts, 
there is a need to use VECM. In general, the ability to 
forecast IMR over the long term more accurately with GDP 
and NMR more effectively with GDPP Since the nation’s 
GDP is collective in nature, it was only natural that it would 
favor infants in terms of infrastructure and social service 
supply in the nation that supports baby survival. The GDPP, 
on the other hand, offers the closest amount of resources at 
the individual level that can meet the demands of children.
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