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Abstract

We present a covariant, completely positive and thermodynamically consistent refinement of the universal equation within the CUCE/Spinoza/Hilbert
framework, denoted CUP-Q". The formulation unifies Tomonaga—Schwinger evolution on Cauchy hypersurfaces with a modular Gorini—Kossakowski-Lindblad—
Sudarshan (GKLS) generator that obeys detailed balance in the GNS metric with respect to a unified thermodynamic target 6*. We prove (i) foliation
independence under local commutation, (ii) complete positivity of the finite-step propagator, (iii) existence of a global Lyapunov functional ®[p]= f.D,,(p || o*)
ensuring the second law, (iv) primitivity with a unique attractor 6*, and (v) local conservation via consistent coupling to the Einstein—Langevin equation with
conserved stochastic sources. We further outline falsifiable predictions with quantitative protocols in superconducting circuits and optomechanics.

INTRODUCTION

Spinoza’s monism can be operationally reformulated in Hilbert-space language: one substance, many modes as
observable algebras. Within this CUCE/Spinoza/Hilbert programme, the CUP-Q* equation supplies a universal dynamical
law that is (a) covariant at the level of foliation by Cauchy hypersurfaces, (b) completely positive at finite steps, and (c)
thermodynamically consistent via a modular target &* capturing both KMS equilibrium and observer/prior information
through an affine geometric mean. Our presentation emphasizes rigorous mathematical structure and empirical
consequences.

MAIN EQUATION

Let p[Z] be the state functional on a Cauchy hypersurface Z. The local Tomonaga-Schwinger (TS) evolution at

X € X reads
dp[X] : f_ it
@) - ! [Hy(z) + His(x), p| + [ d7xe(T) Z“m-(-r]'(ifn pLo— §{Lc1-Li*=p}) - (L)
AT : Y
The jump operators are modular with respect to the unified thermodynamic target @",

Ly(x,7)= cr,l;'u(.r) Folz,T) cr:l"flz(.r)._ Yolz) =0, yel7) =0, f_‘(;;f?‘) dr =1, (2)

and

a’(r) = oxnms(T) 4 0o,.p(T),; 0<n<1, (3)
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Where A #nB denotes the affine geometric mean. Equation (1) couples to semiclassical gravity via a conserved
stochastic source through

G;tu [{-‘] + Jﬂl-,‘,?p.p + ﬁ,i:&(;lrm}lﬂ = 87{(;({1:{”!}'{} + ‘Eurx:]-. vln {’-{-ﬂ-p}p = v;a&'ﬂu = (. {‘1)
Axioms

(Causal) Local commutation. For spacelike separated x, y, the local superoperators commute: [£(x), £(y)] = 0 and

[H | (), L(y)] = 0.

(CPTP) Bochner positivity. x; = 0 and therates {~,, } arise from positive-definite (Bochner) environment correlators
so thate _A¥: £ is CPTP for any finite step A¥.

(GNS) Detailed balance. With modular jumps (2), the generator is symmetric in the GNS inner product

1/2 1/2
#*

(A, B+ = Tr(o,' " Ale.'"B).

(Prim) Primitivity. The set {F,,} generates the full local *-algebra (all |i} {j| in the spectral basis of @), implying a
unique faithful stationary state.

(Cons) Conservation and gauge. F_ are BRST-invariant; (4) uses conserved noise with fluctuation-dissipation relations.

Global Lyapunov functional and the second law

D[p] = / Dya(plle™)dE = f Tr[p(log p — loge™)| dX. (5)
JE =

Theorem 1 (Monotonicity and exponential convergence). Under axioms (GNS) and (CPTP), & /5¥(x) < 0. Ifin
addition (Prim) holds, then p[X] — o* exponentially with a rate bounded below by the GNS spectral gap Ag.;, > (.

Proof. Modularity (2) implies GNS symmetry [1]: (X, £(V)}. = (£(X),V),.. Hence —L is positive in this metric and
coincides with the gradient of D, (:||¢*), yielding monotonicity. Primitivity makes the zero eigenspace one-dimensional

and opens a spectral gap; the GNS Poincaré inequality then gives exponential decay of ®.
Finite-step complete positivity

Theorem 2 (Finite-step CPTP). If x¢ = 0 and {7} come from positive-definite correlators (Bochner), the finite-step
propagator .AX £ is CPTP for any AL > 0.

Proof. The GKLS form ensures complete positivity of infinitesimal maps with Kossakowski matrix positive semidefinite
[2,3]. The kernel X¢ makes the finite-step map a convex average of CP maps. Trace preservation follows from the Lindblad
form.

Primitivity and uniqueness of the attractor

Theorem 3 (Unique fixed point). If { I, } generates the full local algebra, the semigroup is primitive: ker £ = Co* and
the stationary state is unique.

Proof. Irreducibility implies that the commutant of { F},, f"I } is CI; standard quantum semigroup theory then yields
uniqueness of the fixed point and a positive spectral gap.

TS integrability and causality

Theorem 4 (Foliation independence). If [£(x), L(y)] = [Ho(x), L(y)] = 0 for (x —y)* <0 and H, satisfies the
hypersurface deformation algebra, then the TS evolution is independent of the chosen foliation X.

Proof. Adapt Schwinger’s argument: local commutators integrate to zero over spacelike-separated elements, ensuring
path-independence of the ordered exponential along deformations of X.
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Conservation and Einstein-Langevin coupling

Theorem 5 (Local conservation). With conserved noise ¢ and fluctuation-dissipation relations, and including the

Lamb-shift H;, the renormalized stress tensor satisfies ¥, (T, , = 0 and (4) is consistent with Bianchi identities.

Falsifiability and quantitative predictions
We outline protocols that access the modular structure and the conserved stochastic back-reaction:

1. Entropy production bound in a qubit. Engineering {Fa} to be the full set of matrix units on a superconducting

qubit makes the dynamics primitive. The relative-entropy half-life obeys ;5 = 221‘1 For Agp =0.1257! we predict
tijo ~ 2.80s.

2. Equilibrium test of the unified target. For a 5 GHz qubit at T = 50 mK, the KMS factor is jfiw =~ 4.80 and the
excited-state fraction is p. =~ (.0081. Any deviation explained by 7 > 0 in (3) can be estimated by tomography.

3. Choi test of finite-step CPTP. Reconstruct the Choi matrix of the propagator over a finite TS “slab”; positivity
must hold within uncertainties fixed by the noise kernel.

4. Optomechanical probe of conserved noise. For a membrane of mass10''kg at f =100 kHz, Q = 10°, the on-
resonance displacement noise floor is , /S = 1.3 x 10~ 18 mj, /Hz atroom temperature; a conserved Einstein-Langevin
contribution at the level of 10~ of thermal noise would be marginally resolvable with state-of-the-art interferometry.

Limiting regimes

The principal asymptotic limits of CUP-Q* and the corresponding recovered theories are summa- rized in Table 1.
Figures (TikZ/PGFPlots)
METHODS

GNS detailed balance and modular jumps. Choosing L., = rff ’@Iﬂ‘n.r;: Y2 makes £ self-adjoint in the GNS inner

product and pins " as the unique fixed point under (Prim). This identifies the flow with a gradient flow for D, (-||c*)
in the sense of quantum information geometry [1] (Figure 1).

Finite-step CPTP with Bochner Kkernels. Bochner positivity guarantees the Kossakowski matrix is positive
semidefinite; the finite-step propagator is a convex mixture of infinitesimal CPTP maps, hence CPTP (Figure 2).

Einstein-Langevin consistency. Conserved noise ensures WV, {1"%,), =0: Bianchi identities then ensure
compatibility of (4) (Figure 3).
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Figure 1 Local TS block: unitary plus modular GKLS applied on a surface element.

K(x),h’(uﬂ = f

Figure 2 Local integrability under spacelike separation
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Figure 3 Typical Lyapunov descent of relative entropy with rate bound ZKgﬂp.
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