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INTRODUCTION

Spinoza’s monism can be operationally reformulated in Hilbert-space language: one substance, many modes as 
observable algebras. Within this CUCE/Spinoza/Hilbert programme, the CUP-Ω∗ equation supplies a universal dynamical 
law that is (a) covariant at the level of foliation by Cauchy hypersurfaces, (b) completely positive at finite steps, and (c) 
thermodynamically consistent via a modular target  capturing both KMS equilibrium and observer/prior information 
through an affine geometric mean. Our presentation emphasizes rigorous mathematical structure and empirical 
consequences.

MAIN EQUATION

Let ρ[Σ] be the state functional on a Cauchy hypersurface Σ. The local Tomonaga–Schwinger (TS) evolution at 

x ∈ Σ reads

The jump operators are modular with respect to the unified thermodynamic target ,

and

Abstract

We present a covariant, completely positive and thermodynamically consistent refinement of the universal equation within the CUCE/Spinoza/Hilbert 
framework, denoted CUP-Ω*. The formulation unifies Tomonaga–Schwinger evolution on Cauchy hypersurfaces with a modular Gorini–Kossakowski–Lindblad–
Sudarshan (GKLS) generator that obeys detailed balance in the GNS metric with respect to a unified thermodynamic target σ*. We prove (i) foliation 
independence under local commutation, (ii) complete positivity of the finite-step propagator, (iii) existence of a global Lyapunov functional  [ ] ( || *)relf DSF r = r s  
ensuring the second law, (iv) primitivity with a unique attractor σ*, and (v) local conservation via consistent coupling to the Einstein–Langevin equation with 
conserved stochastic sources. We further outline falsifiable predictions with quantitative protocols in superconducting circuits and optomechanics.
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Where  denotes the affine geometric mean. Equation (1) couples to semiclassical gravity via a conserved 
stochastic source through

Axioms

(Causal) Local commutation. For spacelike separated x, y, the local superoperators commute:  and 

(CPTP) Bochner positivity.  and the rates  arise from positive-definite (Bochner) environment correlators 
so that e  is CPTP for any finite step 

(GNS) Detailed balance. With modular jumps (2), the generator is symmetric in the GNS inner product 

 

(Prim) Primitivity. The set  generates the full local ∗-algebra (all  in the spectral basis of ), implying a 
unique faithful stationary state.

(Cons) Conservation and gauge. Fα are BRST-invariant; (4) uses conserved noise with fluctuation–dissipation relations.

Global Lyapunov functional and the second law

Define

Theorem 1 (Monotonicity and exponential convergence). Under axioms (GNS) and (CPTP),  If in 
addition (Prim) holds, then  exponentially with a rate bounded below by the GNS spectral gap 

Proof. Modularity (2) implies GNS symmetry [1]:  Hence  is positive in this metric and 
coincides with the gradient of , yielding monotonicity. Primitivity makes the zero eigenspace one-dimensional 
and opens a spectral gap; the GNS Poincaré inequality then gives exponential decay of Φ.

Finite-step complete positivity

Theorem 2 (Finite-step CPTP). If  and  come from positive-definite correlators (Bochner), the finite-step 
propagator  is CPTP for any .

Proof. The GKLS form ensures complete positivity of infinitesimal maps with Kossakowski matrix positive semidefinite 
[2,3]. The kernel  makes the finite-step map a convex average of CP maps. Trace preservation follows from the Lindblad 
form.

Primitivity and uniqueness of the attractor

Theorem 3 (Unique fixed point). If  generates the full local algebra, the semigroup is primitive: ker  and 
the stationary state is unique.

Proof. Irreducibility implies that the commutant of  is ; standard quantum semigroup theory then yields 
uniqueness of the fixed point and a positive spectral gap.

TS integrability and causality

Theorem 4 (Foliation independence). If  and  satisfies the 
hypersurface deformation algebra, then the TS evolution is independent of the chosen foliation Σ.

Proof. Adapt Schwinger’s argument: local commutators integrate to zero over spacelike-separated elements, ensuring 
path-independence of the ordered exponential along deformations of Σ.	  
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Conservation and Einstein–Langevin coupling

Theorem 5 (Local conservation). With conserved noise  and fluctuation–dissipation relations, and including the 
Lamb-shift HLS , the renormalized stress tensor satisfies  and (4) is consistent with Bianchi identities.

Falsifiability and quantitative predictions

We outline protocols that access the modular structure and the conserved stochastic back-reaction:

1.	 Entropy production bound in a qubit. Engineering {Fa} to be the full set of matrix units on a superconducting 
qubit makes the dynamics primitive. The relative-entropy half-life obeys  For  we predict 

2.	 Equilibrium test of the unified target. For a 5 GHz qubit at T = 50 mK, the KMS factor is  and the 
excited-state fraction is . Any deviation explained by  in (3) can be estimated by tomography.

3.	 Choi test of finite-step CPTP. Reconstruct the Choi matrix of the propagator over a finite TS “slab”; positivity 
must hold within uncertainties fixed by the noise kernel.

4.	 Optomechanical probe of conserved noise. For a membrane of mass10-11kg at fm = 100 kHz, Q = 106, the on-
resonance displacement noise floor is  at room temperature; a conserved Einstein–Langevin 
contribution at the level of 10−4 of thermal noise would be marginally resolvable with state-of-the-art interferometry.

Limiting regimes

The principal asymptotic limits of CUP-Ω∗ and the corresponding recovered theories are summa- rized in Table 1.

Figures (TikZ/PGFPlots) 

METHODS

GNS detailed balance and modular jumps. Choosing  makes  self-adjoint in the GNS inner 
product and pins  as the unique fixed point under (Prim). This identifies the flow with a gradient flow for  
in the sense of quantum information geometry [1] (Figure 1).

Finite-step CPTP with Bochner kernels. Bochner positivity guarantees the Kossakowski matrix is positive 
semidefinite; the finite-step propagator is a convex mixture of infinitesimal CPTP maps, hence CPTP (Figure 2).

Einstein–Langevin consistency. Conserved noise ensures  Bianchi identities then ensure 
compatibility of (4) (Figure 3).

Figure 1 Local TS block: unitary plus modular GKLS applied on a surface element.

Figure 2 Local integrability under spacelike separation



Gallardo VM (2026)

J Phys Appl and Mech 3(1): 1016 (2026) 4/4

Central

Data availability: No datasets were generated or analysed for this theoretical study.

Code Availability: All LaTeX/TikZ/PGFPlots code to reproduce the manuscript is included in the accompanying 
project.

Author Contributions: VMG conceived the CUP-Ω∗ framework, developed the mathematical proofs and wrote the 
manuscript.

Acknowledgements

We thank the broader communities working on GKLS dynamics, information geometry and stochastic gravity for 
foundational insights.

REFERENCES
1.	 Carlen EA, Jan Maas. Gradient flow and entropy inequalities for quantum markov semigroups with detailed balance. J Functional Analysis. 2017; 

273: 1810-1869.

2.	 Gorini V, Kossakowski A, Sudarshan ECG. Completely positive dynamical semigroups of n-level systems. J Mathematical Physics. 1976; 17: 821-825. 

3.	 Lindblad G. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics. 1976; 48: 119-130.

Figure 3 Typical Lyapunov descent of relative entropy with rate bound 2λgap.
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