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Gene expression is under the control of transcription factors 
and various epigenomic modifications of the chromatin such as 
the methylation patterns of the genomic DNA (gDNA) and various 
chemical changes of histone proteins. Small RNAs are another 
important regulator of plant chromatin structure and gene 
expression [1,2]. The integration of different epigenomic marks 
(i.e. gDNA methylome, histone modifications) with nucleosome 
occupancy, pool of small RNA, cis-elements recognized by 
transcription factors  and transcriptome profiling is essential to 
fully understand how the epigenome and transcription factors 
controls chromatin structure and gene expression. In plants, 
histone post-translational modifications and gDNA methylation 
are reliable marks of euchromatin (transcriptionally active genes) 
or heterochromatin (transcriptionally inactive genes; for review, 
[3]). For instance, in Arabidopsis thaliana, 5-methyl cytosine (5-
mC) is present predominantly over repetitive DNA sequences 
(e.g. silent transposable elements) but is also detected in the 
body of expressed genes [1,3-11]. H3K4me3 and H3K27me3 
are mainly associated with actively expressed and repressed/
lowly expressed genes, respectively, and not with intergenic or 
heterochromatic sequences [7,12,13]. 

To date, plant biologists integrate the transcriptome with the 
chromosomal position of epigenomic marks on the chromatin 
fiber and the pool of small RNAs collected from entire plant or 
plant organs to understand the impact of the epigenome and 
small RNAs on gene expression. The multicellular complexity 
of the plant samples used in these studies is a difficulty when 
accessing in details the molecular mechanisms controlling 
gene expression because the data collected reflect the average 
contribution of each cell composing the plant and organ. As a 
consequence, working at the level of complex organs is diluting 
the datasets, are not revealing cell type specific transcripts, 
small RNA and epigenomes, and is challenging researchers when 
correlating epigenomic changes and role of transcription factors 
with the transcriptional regulation of genes.

Ideally, what is needed is a system biology approach at 
the level of a single cell to deeply investigate and integrate 
the transcriptome, the epigenome, the molecular function 
of DNA-binding proteins (i.e. protein-protein interactions of 
transcription factors and chromatin remodeling complexes, 
protein-DNA interactions) and the role of non-coding small 

RNAs. Of course, these regulations and interactions will change 
over time increasing the complexity of the model. Technological 
limitations are restraining the capture of these molecular changes 
at the level of one single cell. However, upon isolation, current 
technologies can be used to unravel the mechanisms controlling 
gene expression focusing on one single cell type. 

The root hair cell (Figure 1) has recently emerged as an 
attractive single cell type model complementing already existing 
single plant cell type models such as pollen and cotton fiber. 
The advantage of the root hair cell compared to these two 
other models is related to the basic functions of the root hair 
cell: uptake of water and nutrients for the plant. Such essential 
function makes the root hair cell an attractive model to study 
the adaptation of plant cell to various environmental stresses 
including drought, salinity, nutrient deprivation, extreme pH, 
etc. Based on their characteristic lateral expansion, the root 
hair cell is also a model for studying plant cell determination, 
differentiation and elongation. Finally, when working on legume 
root hair cells, this single cell type is also a valuable system to 
investigate plant cell response to biotic stress (i.e. numerous –
omic studies focused on the response of the soybean root hair 
cells to its inoculation by Bradyrhizobium japonicum, the soybean 
nitrogen-fixing symbiotic bacteria involved in nodulation [14-
16]).

The root hair cell has received for years the interest of the 
plant science community. Many genes, mostly characterized in 
the model plant Arabidopsis thaliana, have been characterized 
for their role in controlling root hair biology. Recently, iRootHair 
[17], a comprehensive database of root hair genomics, lists these 

Figure 1 Surface electron microcopy picture of soybean root hair cells.
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genes as well as genes from other plant species controlling root 
hair determination, initiation and elongation. Among these 
genes, transcription factor genes are characterized as master 
regulators of root hair cell development. These include the A. 
thaliana WEREWOLF and CAPRICE genes encoding MYB-related 
proteins and GLABRA2 encoding a homeobox transcription factor 
[18-20]. In legume, root hair development is under the control 
of the Lotus japonicus ROOTHAIRLESS1 (RHL1) gene which 
encodes a basic helix-loop-helix (bHLH) protein [21]. A. thaliana 
RHL1 orthologs (At2g24260, At4g30980 and At5g58010) share 
the same function [21]). In rice, another bHLH protein, OsRHL1 
(ROOTHAIRLESS1), regulates root hair growth (i.e. the Osrhl1 
mutant shows a defect in root hair cell elongation compared 
to wild-type plants [22]). A similar phenotype was observed 
consecutively to the mutagenesis of the Arabidopsis thaliana 
R2R3-MYB transcription factor At5g45420 [23] and the bHLHs 
AtRSL2 and AtRSL4 gene (ROOT HAIR DEFECTIVE 6-LIKE 2 and 
4, At4g33880 and At1g27740, respectively; [24]). Interestingly, 
RSL4 gene is expressed just before the outgrowth of root hair 
cell and exclusively during root hair cell elongation (i.e. the 
expression of AtRSL4 in not detected in fully elongated root hair 
cells). Its overexpression leads to an unprecedented elongation 
of root hair cell supporting AtRSL4 to be a master regulator of 
root hair cell development [24].

To provide a more global understanding of the root hair 
cell biology and more specifically focus on the gene regulatory 
networks controlling gene expression and root hair cell adaptation 
to stresses, a system biology approach is needed. This approach 
will require the use of high-throughput sequencing technologies 
to generate transcriptomic, and epigenomic data sets as well as 
identify the pool of root hair small RNAs. Strong bioinformatic 
support will allow the integration of the various datasets. 
Ultimately, visualization tools might be developed enhancing the 
analysis of the datasets. Preliminary to any analysis, plant root 
hair cells will need to be evenly treated to insure consistency and 
repeatability of the experiments then isolated from the rest of the 
root system.

Having access to isolated root hair cell will have several 
major impacts on plant biology. Working at the level of one single 
cell type will help to clarify the regulation of gene expression and 
their perturbation to environmental stresses and will enhance 
the mapping of gene regulatory networks. Ultimately, controlling 
the activation and repression of these networks will lead to 
enhance plant root hair resistance to stresses. 
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