
International Journal of Plant Biology & Research

Cite this article: Rozin B, Rozin N (2025) Proof of a Recursive Biomechanical Model of Flat Spiral Phyllotaxis Morphogenesis. Int J Plant Biol Res 13(1): 1143.

Central

*Corresponding author
Boris Rozin, Independent researcher, 3735 Oakleaf 
Road, Columbia SC, USA

Submitted: 29 August, 2025

Accepted: 18 September, 2025

Published: 22 September, 2025

ISSN: 2333-6668

Copyright
© 2024 Rozin B, et al.

 OPEN ACCESS 

Keywords
•	Spiral Phyllotaxis
•	Morphogenesis
•	Fibonacci Sequence
•	Dynamic Modeling
•	Biomechanical Model

Research Article

Proof  of  a Recursive 
Biomechanical Model of  Flat 
Spiral Phyllotaxis 
Morphogenesis
Boris Rozin* and Natali Rozin
Independent researcher, 3735 Oakleaf Road, Columbia SC, USA

Abstract
This study presents a recursive biomechanical model that validates that spiral phyllotaxis can be explained solely by Newtonian mechanics, without 

invoking additional forces or interactions. The model conceptualizes phyllotactic elements as expanding, non-deformable circles, driven by two primary forces: 
growth pressure, resulting from their continuous expansion, and outside pressure, arising from surrounding medium resistance. Results demonstrate that spiral 
structures emerge naturally, with patterns corresponding predominantly to Fibonacci and Lucas sequences. The computational implementation of the model 
demonstrates its capacity to produce biologically realistic patterns and reveals key insights into the dynamics of pattern formation, such as the stabilization 
of divergence angles and the emergence of densely packed structures. The study includes step-by-step video demonstrations and functional program code, 
allowing independent verification by researchers.

INTRODUCTION

Basic Terminology

•	 Phyllotaxis (from the Greek — leaf and táxis 
— arrangement): refers to the structured, often 
helical, periodic, and symmetrical growth patterns 
observed in botanical structures. These formations, 
exhibiting intrinsic mathematical properties, are 
commonly known as phyllotactic patterns. 

•	 Primordium (plural primordia): a discrete 
biological entity (seed, seed, leafmagi, petal, shoot) 
of a phyllotactic pattern.

•	 Parastichy (plural parastichies): visually 
identifiable right- or left-handed spiral formed by 
primordia.

•	 The parastichy index: The numerical count of 
parastichies with the same twist. 

•	 Fibonacci phyllotaxis: A pattern of spiral 
phyllotaxis where parastichies indexes are equal to 
the Fibonacci numbers (Figure 1).

•	 Genetic spiral: An imaginary spiral that sequentially 
passes through all primordia. 

•	 Divergence angle: The smaller angle between two 
consecutive primordia, typically aligning with the 
golden angle 2π/τ2 in Fibonacci phyllotaxis. 

•	 Planar spiral phyllotaxis: A pattern observed in 
a flat or convex inflorescence, such as a sunflower 
head, where multiple spiral families coexist. 	
(Figure 1).

Figure 1 Planar spiral phyllotaxis in sunflower at inflorescence with a 
visible parastichy index of (21, 34, 55). Parastichies with indices (55, 
89).
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•	 Element of a phyllotactic pattern (EPP, plural 
EPPs,): a mathematical abstraction of a primordium, 
often represented as a circle or disk in 2D models.

•	 EPP(i): EPP number i.

•	 Recurrent sequence: an integer sequence series 
formed by the recurrence formula Gn = Gn–1 + Gn–2 with 
initial terms {G1,G2}. Moreover 
.does not depend on the initial terms.

•	 Fibonacci sequence (or Fibonacci numbers): 
an integer recurring series with initial terms {1,1} 
({0,1} or {1,2}).

•	 Fibonacci phyllotaxis: A pattern of spiral 
phyllotaxis in which parastichies indexes is equal to 
the Fibonacci numbers (Figure 1).

•	 The generating recurrent sequence: a recurrent 
sequence whose elements serve as parastichy 
indices in a given pattern.

•	 The phyllotaxis rises: the visual transition from a 
pair of parastichies with the index (F(i-1),Fi ) to (Fi,F_

(i+1)), a defining feature of spiral phyllotaxis.

Philosophical Aspects of Phyllotaxis

Unlike a plant, which represents a continuous biological 
entity, a phyllotactic pattern is composed of discrete 
elements known as primordia. The conceptual difference 
between the plant as a whole and individual primordia led 
[1], to define phyllotaxis morphogenesis as the process 
emergence discrete structures from a continuous system. 
This perspective implies that the morphogenesis of 
phyllotaxis patterns is fundamentally distinct from that of 
other plant structures, such as roots, leaves, or stems.

The question “Why do we perceive parastichies?” was 
addressed by [2], who proposed that human perception 
subconsciously groups adjacent primordia into pseudo-
structures, akin to how stars are mentally grouped into 
constellations. This effect is demonstrated in Video 1 
https://youtu.be/ZOeF8zSulW0 [3], where stretching or 
compressing a cylindrical phyllotactic pattern causes EPPs 
to visually merge into parastichies (straight lines) before 
disassembling again.

Mathematical Aspects of Phyllotaxis

The fundamental relationship between recursive 
sequences and the golden ratio can be illustrated using a 
classical mathematical problem:

Problem: need to computelim , where the 

terms Fn and F(n+1) are defined by the recursive relation:

F(n+2) =F(n+1)+Fn 	 	 	 	 (1)

with real initial conditions F1>0 and F2>0

Solution: divide both sides of the recurrence relation 
(1) by F(n+1)

From the properties of limits:

Let us denotelim  and substitute into (1): 
τ=1+1/τ .

Substituting into the equation above yields the quadratic 
equationτ2-τ-1= 0, whose positive root corresponds to the 
golden ratio:

This result demonstrates that the limit of the ratio 
of consecutive terms in any recurrent sequence is 
independent of initial conditions.

Furthermore, any term of an arbitrary recurrence 
sequence can be expressed in terms of the Fibonacci 
sequence with initial values {1,2}, which serves as the 
fundamental recurrence sequence [2]:

Gn = Fn-2 G2 + Fn-3 G1

Modern science considers a plant as a biological 
object consisting of many cells between which various 
physical and chemical processes occur. These processes 
are adequately described by statistical and differential-
integral mathematical tools. Therefore, a significant 
number of researchers employ these well-tested 
mathematical methods to construct models of phyllotaxis 
morphogenesis. However, Fibonacci numbers do not arise 
as basic constants, either in statistics or in differential-
integral calculus, as, for example, the constant arises in 
trigonometry or in differential-integral calculus. As argued 
by Rozin [2], Fibonacci numbers only arise in the solution 
of problems involving recursion. This observation has 
led to the hypothesis that the morphogenesis of spiral 
phyllotaxis is inherently a recursive process.

Static Model

A static model represents a phyllotactic pattern as a 
structured arrangement of discrete elements (EPPs). 

The sunflower inflorescence (Figure 1) is a striking 
example of flat spiral phyllotaxis, where the primordia 
are achenes. In Figure 1, several families of parastichies 
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formed by achenes are visible, with the number of 
spirals in each family precisely corresponding to one 
of the Fibonacci numbers. When ignoring the visible 
spirals, it becomes evident from Figure 1 that the mutual 
arrangement of achenes closely resembles Axial, Point, 
and Circular symmetry. From an analysis of this quasi-
symmetry, Braun [4] and Schimper [5], proposed that it 
might be possible to trace a spiral through all primordia 
and number these discrete elements in accordance with 
their increasing distance from the center of the spiral. This 
ingenious hypothesis laid the foundation for mathematical 
phyllotaxis, and this quasi-symmetry was named Spiral 
Symmetry [6].

Contemporary research primarily focuses on the 
mechanisms underlying spiral pattern formation, 
emphasizing the spatial arrangement of primordia [2-10]. 
In [2], a mathematical analysis of the static model of spiral 
phyllotaxis led to the following key insights:

•	 The centers of EPPs in spiral phyllotaxis lie at 
the intersections of two counter-rotating genetic 
spirals, forming a Double Helix Model.

•	 Parastichies are perceptual artifacts that group 
adjacent EPPs into visually spiral-like pseudo-
objects.

These findings yielded novel quantitative and 
qualitative relationships, some of which are used in this 
study:

•	 The parameters defining a static spiral phyllotactic 
model are categorized into linear (genetic spiral 
shape, EPP diameter, Plastochrone ratio R) and 
angular (divergence angle, visible parastichy 
indices, inter-parastichy angles).

•	 The divergence angle in a spiral phyllotactic pattern 
is determined by non-multiplicative recurrence 
sequences with initial values {G1, G2}, where 1 < 
G1; 2G1 ≤ G2; gcd(G1, G2) = 1; G1, G2, A1, A2 ∈ N. The 
divergence angle can be calculated from the system 
of equations:

•	 the visual phenomenon of “The phyllotaxis rise” 
is observed if the genetic spiral has the form of an 
exponential spiral, and not a logarithmic one as it 
was previously thought;

•	 if the static model of the pattern is built on the 
exponential genetic spiral, then the distance from 
EPP(i) to the center of the pattern will be equal to:

L(i)=iv 					           (3)

and the diameter of EPP(i) is calculated as:

Video 2 https://youtu.be/9H7Nf6BjDaA [11], shows 
how the static model of the pattern changes when the 
parameter 𝜈 = 0.5÷3 changes, while the divergence angle 
and indices of visible parastichies remain unchanged. It 
is established that the Archimedean spiral represents a 
specific case of the exponential spiral with v=1, thus for a 
static model based on an Archimedean spiral, the following 
relationships hold: L(i)=i and D(i)=√2πi. Prior to Rozin [2], 
this latter formula was known as D(i)=√6i [8].

Overview of Dynamic Models

In Rozin [11], four primary types of dynamic models 
describing the morphogenesis of phyllotaxis patterns were 
identified: biochemical, a model based on “Hofmeister 
rule”, bioinformatic, and biomechanical.

Biochemical model: A major proponent of the 
biochemical approach was Alan Turing, one of the 
most influential mathematicians of the modern era. In 
his seminal work [12], he described self-organization 
processes in matter through self-oscillating chemical 
reactions described by second-order differential equations. 
Turing was particularly interested in the phenomenon of 
phyllotaxis and attempted to model its morphogenesis 
using the same mathematical framework. His unfinished 
manuscript published posthumously [13], explored the 
possibility that Fibonacci spiral patterns in plants arise as 
a consequence of self-oscillating chemical reactions.

Counterargument: As previously discussed, Fibonacci 
numbers do not naturally emerge from second-order 
differential equations, casting doubt on the viability of 
this approach as a complete explanation for phyllotaxis 
morphogenesis.

The criticism of “Hofmeister rule”: Figure 2A from [8], 
depicts an early stage of phyllotactic pattern formation in 
sunflower inflorescence. In the center of the inflorescence 
(a circle with a radius of 2/3 of the total inflorescence 
radius), no protuberances are observed. However, within 
an outer ring of thickness 1/3 of the inflorescence radius, 
over 300 primordia are distinctly visible, forming paired 
parastichies with indices (55, 89).

Hofmeister [14], while observing such early stages 
of morphogenesis, noted that new protuberances 
(proprimordia) appear at the boundary between the outer 
and inner rings, suggesting that pattern formation from the 
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periphery toward the center. Based on these observations, 
he formulated the “Hofmeister rule”, which postulates 
that a new primordium forms at the point farthest from 
existing ones.

Jean [8], describes the phyllotaxis morphogenesis 
model, which is based on the analysis of this micrograph: 
“Showing the process of floret initiation proceeding toward 
the center on the generative front with a remarkable degree 
of symmetry”. Ibid: “the primordial florets are initiated in 
rapid succession from the periphery to the center of the 
apex”. That is, Jean [8], suggests that under the influence 
of a certain mysterious mechanism, primordia “initiated” 
from the outer edge to the center. Moreover, divergence 
angle is maintained with the highest accuracy and the 
process itself is not subject to probabilistic deviations.

Counterargument: This explanation is reminiscent 
of the humorous statement that “a nuclear bomb always 
hits the epicenter of the explosion.” In biological systems, 
particularly those in living organisms, stochastic deviations 
are inevitable. Attempts to explain Hofmeister’s rule and 
the absence of visible primordia in the center of young 
inflorescences have led to numerous hypotheses based on 
forces not found in other phenomena of living nature, such 
as standing waves or interactions that contradict classical 
physics [15-20].

According to the authors, these issues stem from a 
misinterpretation of causality in the “Hofmeister rule”: a 
new primordium does not physically emerge but rather 
transitions from an invisible to a visible state.

Despite its speculative nature, the Hofmeister rule 
contains a kernel of truth: primordia located on the 
periphery of the inflorescence are older than those near 
the center. The age of a primordium is directly proportional 
to its distance from the center. Rozin [1,2] proposed an 
alternative explanation for the Hofmeister rule as a visual 
phenomenon, where each primordium undergoes an initial 
invisible stage before becoming visible (Video 3 https://
youtu.be/sJFrB7TnqPc [1]). The validity of this hypothesis 
can be assessed by comparing Figure 2A and 2B.

Bioinformatic models and the role of auxin in 
phyllotaxis morphogenesis: A dominant contemporary 
hypothesis attributes the emergence of Fibonacci 
phyllotactic patterns to the role of auxin (a plant growth 
hormone) in conveying positional information for new 
primordium formation [21-25]. This proposed mechanism 
aligns with the Hofmeister rule.

Counterargument: If auxin were the primary driver 
of phyllotaxis morphogenesis, artificially increasing its 

concentration should lead to an abnormal proliferation 
of primordia, disrupting the spiral pattern. However, 
experimental data show that auxin supplementation 
instead induces enhanced growth of pre-existing 
primordia, without generating new ones [26].

According to the authors, the informational role 
of auxin has been misinterpreted due to an incorrect 
construction of cause-and-effect relationships. Specifically, 
the increase in auxin concentration is a consequence of the 
primordium’s growth process during its transition from an 
invisible to a visible state, rather than a determinant of its 
location or emergence.

Prerequisites for the Biomechanical model: The 
foundations of a mechanical approach to phyllotaxis 
morphogenesis were established by Bravais & Bravais 
[27], and later developed by Church [7], Mitchinson [28], 
Jean [8], Niklas [29,30], and Lee & Levitov [31]. A key 
contribution came from Adler [32-34], who formulated 
the Contact Pressure Model. Researchers following Adler’s 
work (Vogel [35], Roberts [36-38]; Ridley [39,40], Douady 
& Couder [41], Hellwig et al. [42]), sought to develop 
models that generate spiral patterns with a constant 
divergence angle. However, these models presupposed 
the golden angle rather than deriving it as an emergent 
property. For example, Ridley [39], explicitly placed 
each new primordium at a fixed angular offset from its 
predecessor.

For the sake of fairness, it should be noted that the 
illustrations and videos from Rozin [1-11], were also 
generated using program code that incorporates the 
golden angle. However, these illustrations and videos 
serve only as explanations or visual representations of 
the expected results of the model’s operation and do not 
constitute the dynamic model itself. Building on Adler’s 
Contact Pressure Model, Rozin [2], proposed a recursive 

A B

Figure 2 (А) Micrograph taken by J. H. Palmer using a scanning electron 
microscope [8]. Reproduced with permission from The Licensor through 
PLSclear. (B) Phyllotaxis pattern for 2000 elements, obtained similarly to the 
method demonstrated in Video 3 https://youtu.be/sJFrB7TnqPc [1].
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algorithm to transition from a phyllotactic pattern with N 
EPPs to a pattern with N+1 EPPs. This algorithm serves as 
a fundamental prerequisite for a dynamic model of spiral 
phyllotaxis morphogenesis:

• 	 each new EPP appears at the center of the 
inflorescence at regular intervals;

• 	 each EPP continuously grows;

• 	 the increasing size of each EPP generates mechanical 
pressure on neighboring EPPs. The resultant force 
vector is directed outward from the center, causing 
each EPP to move radially outward;

• 	 due to the rectilinear movement of each EPP from 
the center of the inflorescence, the divergence angle 
remains constant.	

The operation of this recursive algorithm is explained 
in Video 4 https://youtu.be/nqOuWhGp82w [1]. Using 
this recursive algorithm [1], analytically demonstrated 
that if three families of parastichies (Q, R, and S from Figure 
3) are observed in a pattern, their indices are consecutive 
terms of a recursive series (Q + R = S).

Cylindrical Phyllotaxis

Another important issue is the morphogenesis of 
cylindrical phyllotaxis. Unlike the spiral phyllotaxis, in 
cylindrical phyllotaxis all EPPs are of the same size. This 
has led many researchers [8- 46], to falsely assume that it 
would be easier to construct a morphogenesis model for 
cylindrical phyllotaxis patterns since they have one less 
parameter, namely the growth function of EPPs. 

Counterargument: A distinctive feature of spiral 
cylindrical phyllotaxis patterns observed in nature is 
that the opposing pair of parastichies intersect at a right 

angle [2-11]. On the other hand, it is well known that the 
optimal dense packing of spheres or disks of the same size 
is the Hexagonal Close-Packed (HCP) arrangement, which 
exhibits a 60-degree angle between visible “parastichies” 
(Figure 4). The fact that the angle between the opposing 
parastichy in spiral cylindrical phyllotaxis is a right angle 
indicates that this packing of EPPs is not dense, suggesting 
a more complex morphogenetic process.

Rozin [2-11], hypothesized that cylindrical spiral 
phyllotaxis originates directly from a flat spiral pattern. 
According to this model, after the establishment of a 
flat phyllotactic pattern with a constant divergence 
angle, the apical center of the inflorescence gradually 
moves perpendicularly to the plane of the pattern. As 
this movement occurs, EPPs shift outward, forming a 
cylindrical arrangement while preserving the divergence 
angle and visible parastichy indices (Video 5 https://youtu.
be/tzkj8FuNTPw [11]). This 3D transformation occurs 
exclusively under the influence of mechanical forces, 
without requiring additional biochemical or informational 
factors.

The validity of the biomechanical model for spiral 
cylindrical phyllotaxis morphogenesis is supported by 
the strong visual correspondence between the natural 
cylindrical structures observed in Figure 5 and the 
simulated pattern in Figure 6.

METHODS

Recursive Biomechanical Model

The objective of this study is to demonstrate that the 
morphogenesis of flat spiral phyllotaxis patterns can be 
adequately described by simple mechanical interactions 

Figure 3 Phyllotaxis pattern explaining Q+R=S [3]. Figure 4 Hexagonal Close-Packed (HCP) and its visible “parastichies.
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that do not go beyond classic physics. This will be proven 
by the results of testing a recursive biomechanical model. 
In this model, the Element of a phyllotactic pattern (EPP) 
is represented by the simplest object - a non-deformable 
circle, whose diameter increases continuously according 
to Formula 4. The increase in the size of the EPP creates 
pressure on other EPPs. EPPs press on each other, resulting 
in their movement according to Newton’s third law. The 
mechanical interaction will henceforth be referred to as 
growth pressure.

During the formation stage of a real inflorescence, it is 
evident that the structure does not develop in a vacuum 
but is instead surrounded by a dense and viscous plant 
matrix. As the inflorescence expands, it exerts force 
against this surrounding medium, which in turn generates 
a counteracting pressure directed toward the center of the 
inflorescence. This opposing force will be termed outside 
pressure.

Thus, two primary mechanical forces drive the 
morphogenesis of spiral phyllotaxis:

•	 Growth pressure, resulting from the continuous 
expansion of each EPP;

•	 Outside pressure, exerted by the resistance of the 
surrounding plant matrix.

The recursive biomechanical model of spiral phyllotaxis 
morphogenesis can be formalized as a recursive process 
wherein:

•	 each new EPP emerges in the space between three 
preceding EPPs at equal intervals at that interval 
representing the model step;

•	 each EPP undergoes continuous expansion as 
described by Formula 4;

•	 The increasing size of each EPP generates growth 
pressure on adjacent EPPs;

•	 the surrounding medium exerts outside pressure on 
all EPPs, directed toward the center of the structure;

•	 each EPP moves under the combined influence of 
growth pressure and outside pressure.

Expected Results

Given that the recursive biomechanical model 
incorporates two primary mechanical forces, the model’s 
behavior is expected to depend on two key parameters: 

•	 the growth rate parameter for EPP diameter 
expansion, denoted asv from Formula 4; 

•	 the Coefficient of Outside Pressure (COP) per model 
step.

To evaluate the model, the authors developed a 
computational program biomodel_statistic in C#, which 
step-by-step calculates the coordinates and radii of each 
EPP for given v and COP. After a predefined number of 
steps, the program calculates the visible parastichies index, 
divergence angle and its standard deviation, while also 
generating graphical representations resulting patterns. 
The outputs for various combinations of v and COP serve 
as the basis for analyzing the model’s behavior.

In addition to numerical analysis, visual observation 
of the stepwise morphogenesis process is of interest. 
To facilitate this, biomodel_statistic was adapted into 
biomodel_video, which generates sequential graphical 
frames illustrating the model’s progression. These 
frames can be compiled into a video, enabling dynamic 

Figure 5 Micrograph of a Norway spruce bud (courtesy of Rolf Rutishauser).

Figure 6 Final frame from Video 5 [11].
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visualization other recursive biomechanical model over 
time.

The authors aimed to develop the simplest and most 
transparent program code possible, ensuring that any 
researcher with basic programming knowledge can verify 
the code’s fidelity to the stated algorithm. The model 
contains no pre-programmed mechanisms generating 
Fibonacci numbers or the golden angle. Moreover, 
researchers are encouraged to modify v and СОР, or even 
alter the algorithm, to conduct independent analyses of the 
recursive biomechanical model.

Appendix A provides the full biomodel_statistic source 
code, while Appendix B contains a detailed its explanation 
provided. Appendix C includes execution instructions and 
supplementary code for generating 644 patterns in a single 
run. Similarly, Appendix D presents the biomodel_video 
source code, with its explanation provided in Appendix E.

Computational Aspects of the Model

The numbering convention for EPPs differs between 
static and dynamic models. In the static model [8], 
numbering extends radially from the center to the 
periphery. However, this system is ineffective for dynamic 
modeling, as each EPP must retain a consistent identifier 
throughout growth. To resolve this, the recursive 
biomechanical model adopts a sequential numbering 
scheme based on the order of EPP appearance. As a result, 
lower-numbered EPPs remain near the periphery, while 
the most recently generated EPP always has the highest 
index at a given step.

At the N-th iteration of the model, a newly EPP(N) 
appears, and its diameter calculated as follow:

To ensure smooth and biologically plausible growth, 
the model employs substeps, subdividing each step 
into smaller increments. The diameter of EPP(i) is thus 
computed as:

where s is the substep number, s_max is the number of 
substeps in a step.

The precise placement of new EPPs is a critical aspect 
of the model. Each newly generated EPP(N) emerges in 
the space between EPP(N-1), EPP(N-2), and EPP(N-3), 
with its coordinates determined such that its edges are 
equidistant from these three neighboring EPPs. Under 
the combined influence of growth pressure and outside 

pressure, each pair of contacting EPPs exerts repulsive 
forces on one another. Consequently, each EPP within 
a contacting pair moves along the line connecting their 
centers. As demonstrated in [2], the near-centrally 
symmetric structure of spiral phyllotaxis ensures that the 
total mechanical stress vector is directed outward from 
the center. This allows for a simplification: within each 
contacting pair, only the EPP located farther from the 
center undergoes displacement.

At each iteration (substep) of the model, the system’s 
state undergoes a series of recalculations:

•	 Diameter Recalculation: The diameters of all EPPs 
are updated according to Formula 5;

•	 Coordinate Adjustment Under External Pressure: 
The centers of each EPP are adjusted based on the 
external pressure, with the shift toward the center 
computed as:

•	 Coordinate Adjustment Under Mechanical Pressure: 
Each pair of EPPs is analyzed sequentially from the 
center outward. If two EPPs come into contact, the 
one positioned further from the center is displaced 
by a distance equal to the difference between the 
sum of their radii and the current distance between 
their centers along the axis connecting them.

These iterative recalculations ensure the model 
accurately simulates the dynamic interactions governing 
spiral phyllotaxis formation.

Following the final iteration, calculated: the parastichy 
indices; the arithmetic mean of the divergence angle; 
the standard deviation of the divergence angle to assess 
the pattern’s conformity to an ideal spiral structure. 
Calculation is taken within a range defined as base-
50 to base+50, where base ≈ 0.6180N. To calculate the 
parastichies index, we find the EPPs that are close to the 
EPP (base). According to Rozin [2], the parastichies indices 
are calculated as the difference between the numbers of 
the nearby EPPs and the base.

By utilizing the known coordinates of all EPPs, the 
arithmetic mean of the divergence angle can be calculated 
by measuring the divergence angle for all pairs of EPP(i) 
and EPP(i+1) within the base range. The relative standard 
deviation for this range serves as a numerical criterion 
for assessing the pattern’s spiral nature. If the standard 
deviation of the divergence angle is below 3%, the pattern 
is classified as spiral and deemed suitable for further 
analysis.

https://www.jscimedcentral.com/public/assets/supplementary/1758543830_88400a0f955f7e2fb22f.docx
https://www.jscimedcentral.com/public/assets/supplementary/1758543925_1d02ef16124e8becde4f.docx
https://www.jscimedcentral.com/public/assets/supplementary/1758543936_4feb64dd4c54619daa5d.docx
https://www.jscimedcentral.com/public/assets/supplementary/1758543948_60208b493da484658f68.docx
https://www.jscimedcentral.com/public/assets/supplementary/1758543959_3ca0e32249d509f0eddd.docx
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The model exclusively employs the EPP growth 
function (Formula 4 without using the distance function 
from the pattern center to the EPP center (Formula 3). 
This enables the Formulation of an additional numerical 
criterion for validating the recursive biomechanical 
model: a comparison between the theoretically predicted 
and computed distances from the pattern center to each 
EPP. This criterion is quantified as the relative standard 
deviation between these two values for all EPPs within the 
base range.

RESULTS

The recursive algorithm introduced by Rozin [2], did 
not take into account external pressure, since the only 
determining parameter was the EPP growth function 
(Formula 4). Figure 7 presents two patterns produced by 
the biomodel_statistic program under conditions of COP 
= 0 (absence of external pressure). These patterns exhibit 
a degree of spiral structure but feature significant empty 
spaces between EPPs. Previous studies [35-46], have 
suggested that dense packing of primordia is a defining 
characteristic of spiral patterns. Based on this principle, it 
has been hypothesized that an additional mechanical force 
— external pressure directed toward the center plays a role 
in minimizing inter-EPP spacing during morphogenesis.

To conduct a statistical evaluation of the recursive 
biomechanical model, 644 patterns were generated by 
systematically varying two parameters:

•	 Growth rate parameter (v) ranging from 0.5 to 3.25, 
with increments of 0.125.

•	 Coefficient of outside pressure (COP) ranging from 
0 to 1.4, with increments of 0.05.

Due to space constraints, the full set of 644 generated 
patterns is not included in this publication. However, 
researchers can independently generate patterns with 

various parameter settings by executing the biomodel_
statistic program (Appendix A). Additionally, Appendix 
C provides guidance on modifying the program to generate 
all 644 patterns in a single execution.

Figure 9 and Figure 10 summarize the analysis of over 
600 patterns, with each pattern represented as a colored 
square at the intersection of specific v and COP values. 
Figure 9 employs a color-coded system to depict the 
distribution of generating recurrent sequences (parastichy 
indices), while Figure 10 visualizes the relative deviation 
between the theoretical and computed distances from the 
pattern center to each EPP.

Figure 7 Patterns generated with COP = 0, = 1 and COP = 0, .

the relative deviation between the theoretical and computed distances from the pattern center to each EPP. 

   
https://youtu.be/qBZrIjCBfc0  https://youtu.be/KAw_GUgqyno https://youtu.be/54zP4dUtQQs 

= 1  COP = 0.5 = 1.125   COP = 2.0 = 3  COP = 2.5 

A B  C 

Video 6. Execution of the biomechanical model over 
time

The outcomes of the biomodel_video program are 
demonstrated in Videos 6. The selected v and COP values 
for the three segments in Video 6 illustrate the model’s 
behavior across different parameter ranges:

Video 6A https://youtu.be/qBZrIjCBfc0: Both 
parameters have low values.

Video 6B https://youtu.be/KAw_GUgqyno: Growth 
rate is low, while external pressure is high.

Video 6C https://youtu.be/54zP4dUtQQs: Both 
parameters have high values.

DISCUSSION

Figure 9 and Figure 10 reveal two distinct anomalous 
zones that coincide in both illustrations. The first is a 
horizontal region at v=0.5, where the generated patterns 
do not exhibit a spiral structure. This can be attributed to 
the fact that at v=0.5, all EPPs maintain the same diameter 
from the moment of their formation, as dictated by Formula 
5. While this issue could potentially be addressed by 
modifying the model to include more complex functions—
such as allowing the “newborn” EPP to grow only during its 
initial step—the authors have intentionally opted for the 
simplest possible mathematical functions. This approach 

https://youtu.be/qBZrIjCBfc0
https://youtu.be/KAw_GUgqyno
https://youtu.be/54zP4dUtQQs
https://www.jscimedcentral.com/public/assets/supplementary/1758543830_88400a0f955f7e2fb22f.docx
https://www.jscimedcentral.com/public/assets/supplementary/1758543936_4feb64dd4c54619daa5d.docx
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Figure 8 Sample Patterns Generated by biomodel_statistic program.

Figure 9  Distribution of generating recurring series.

Figure 10  Relative Deviation between Theoretically Predicted and Computed 
Distances from the pattern’s center to EPP’s center.

ensures that the algorithm remains transparent, and the 
results are easily verifiable. The second anomalous zone 
appears as a vertical line at COP = 0, representing patterns 
that form in the absence of external pressure. Since these 
two extreme cases do not occur in real botanical structures, 
they remain theoretical constructs within the model.

All other patterns generated by the biomodel_statistic 
program with parameters v>0.625 and COP > 0 exhibit a 
relative deviation of less than 4% between the theoretically 
predicted and computed distances from the pattern’s 
center to each EPP (Figure 10). This finding serves as 
strong empirical validation of the biomechanical model’s 
reliability in explaining spiral phyllotaxis morphogenesis. 
A model based solely on Newtonian mechanics shows that 
the emergence of spiral patterns requires neither unknown 
forces nor information interactions between primordia.
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Figure 9 shows that over 50% of the squares are 
marked in red, corresponding to Fibonacci phyllotaxis. 
The remaining patterns, in the region where v>0.625 and 
COP > 0, are associated with only four different generating 
recurrent sequences. Patterns with generating series 
{3,11} and {3,8} occur predominantly in regions with low 
COP values across the full range of growth rate parameters. 
These patterns are relatively rare in nature, suggesting 
that most plant species exhibit COP > 0.5. 

Phyllotactic patterns corresponding to the Lucas 
generating sequence {1,3} [8], are the second most 
frequently observed in nature. As indicated in Figure 9, 
these patterns occupy the region where both v and COP 
attain their maximum values. This observation suggests 
a fundamental relationship between the generating 
sequence of a pattern and the interplay of v and COP. This 
insight is particularly significant, as no prior studies have 
offered a well-founded hypothesis explaining the differing 
morphogenetic pathways leading to Fibonacci and Lucas 
phyllotaxis.

Analysis of Video 6 and Figure 11 yields several notable 
findings. The most important is that during the initial 100 
iterations of the model, EPPs exhibit quasi-chaotic motion, 
with no apparent spiral structure. The divergence angle 
fluctuates widely. However, after approximately 100 
iterations, the emergence of a well-defined spiral structure 
becomes evident in Video 6, with the divergence angle 
stabilizing within 2.5% of its theoretical value (Formula 
2), as indicated by the cyan lines in Figure 11. Notably, as 
one progresses from Figure 11A to Figure 11C, the graph 
becomes progressively smoother. This trend is attributed 
to increasing external pressure, which enhances structural 
rigidity and reduces divergence angle deviations per 
iteration.

Video 6 also reveals two distinct secondary effects that 
differentiate the simulated patterns from the idealized 
model described in [2,3]:

•	 Pattern rotation;

•	 Pulsation of the overall pattern diameter.

The phenomenon of pulsation, characterized by periodic 
reductions in overall pattern diameter, arises from the fact 
that the angular distance between EPPs increases more 
rapidly than their diameters during growth. At a certain 
iteration, an EPP “falls” into an available space, causing 
a temporary contraction in the pattern’s overall size. A 
comparable phenomenon has been described by Hellwig 
[42], using centroidal Voronoi relaxation to model EPP 
displacement under external pressure. Fundamentally, 
this effect reflects the system’s tendency to evolve toward 
a minimal-energy configuration, favoring denser packing 
arrangements.

Pattern rotation is a direct consequence of the idealized 
assumptions inherent to the model. The EPPs are treated 
as incompressible, non-deformable discs with smooth 
surfaces, experiencing no frictional forces. In contrast, 
real primordia behave as elastic bodies capable of 
deformation without volume reduction, and their surfaces 
interact through frictional forces. Incorporating elasticity 
and friction into the model could potentially yield more 
biologically realistic pattern formations and a smoother 
distribution of generating sequences. However, as 
previously stated, the authors have deliberately employed 
the simplest possible mathematical framework to ensure 
that the model remains both computationally tractable 
and easily verifiable.

CONCLUSION

This study introduces a recursive biomechanical 
model to explain the morphogenesis of flat spiral 
phyllotaxis patterns based purely on classical mechanics. 
By simulating the interactions between growth pressure 
arising from the continuous expansion of phyllotactic 
elements and outside pressure, the model demonstrates 
how spiral structures emerge as a natural consequence 
of these forces. Computational implementation, which 
avoids any pre-programmed mechanisms to generate 
Fibonacci sequences or the golden angle, confirms 
that spiral phyllotaxis patterns can develop without 
invoking informational or unknown interactions between 
primordia.

Key findings include the emergence of Fibonacci and 
Lucas sequences as dominant patterns, with parameter Figure 11  Evolution of the Divergence Angle.
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areas where alternative phyllotactic patterns arise, such 
as those governed by less common generating series. The 
results also show that external pressure plays a crucial 
role in producing dense, biologically realistic patterns, 
distinguishing them from the loosely packed structures 
observed when this force is absent. Additionally, the 
stabilization of divergence angles and the reduction in 
structural irregularities over time reflect the system’s 
tendency toward an energy-minimizing configuration.

The model reveals two notable anomalous behaviors: 
the failure to form spiral structures at minimal growth 
rates and the generation of unrealistic patterns in the 
absence of external pressure. These insights offer a clearer 
understanding of how real-world biological systems 
operate within constrained parameter spaces. Moreover, 
the dynamic visualization of the pattern formation process 
uncovers secondary phenomena, such as pattern rotation 
and pulsation, which provide further evidence of the 
mechanical nature of phyllotaxis development.

Recently, a group of respected phyllotaxis researchers 
published a book “Do Plants Know Mathematics?” [41]. Of 
course, plants do not know mathematics, but they do obey 
the laws of physics.
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Appendix A. Program code biomodel_statistic on C# from MS Visio. 

using System; 

using System.Drawing; 

using System.Drawing.Imaging; 

namespace biomodel_statistic 

{ 

 class Program 

 { 

 static float Radi(float y, double t) 

 { 

 return (float)(Math.Sqrt(Math.PI / 2 * t) * Math.Pow(y, t - 0.5D)); 

 } 

 static void Main(string[] args) 

 { 

 int i, j, N, S_max, S, N_max, Base_EPP, e1 = 0, e2 = 0, e3; 

 float A, B, RR, Xt, Yt, G1, m2 = 100000001, m1 = 100000000, center_X = 1920F / 2F + 400F, center_Y = 

1080F / 2F; 

 double G, U, Zoom, COP, v, Divergence_angel_average = 0, Divergence_angel_deviation = 0, L_deviation = 0; 

 string direct, file_name; 

 float[] Tx = new float[1200]; 

 float[] Ty = new float[1200]; 

 float[] Rd = new float[1200]; 

 double[] Angel_d = new double[1200]; 

 Font FFont = new Font("Arial", 32); 

 Font FFont1 = new Font("Arial", 14); 

 Font FFont2 = new Font("Arial", 40, FontStyle.Bold); 

 Pen Pen_black = new Pen(Color.Black, 3); 

 Brush Brush_black = new SolidBrush(Color.Black); 

 Brush color_blue = new SolidBrush(Color.DeepSkyBlue); 

 Brush color_red = new SolidBrush(Color.Red); 



 Brush color_green = new SolidBrush(Color.Lime); 

 Brush color_orange = new SolidBrush(Color.Orange); 

 Brush color_gray = new SolidBrush(Color.Gray); 

 //parameters 

 v = 1D; 

 COP = 0.5D; 

 S_max = 1600; 

 N_max = 350; 

 direct = "C:\\biomodel_statistic\\"; 

 Base_EPP = 150; 

 //end parameters  

 for (i = 1; i < 400; i++) 

 { 

 Rd[i] = 0F; Tx[i] = 0F; Ty[i] = 0F; 

 } 

 Rd[1] = Radi(4 - 1, v); // three first EPP 

 Rd[2] = Radi(4 - 2, v); 

 Rd[3] = Radi(4 - 3, v); 

 // calculating center EPP#3  

 Tx[3] = (float)(Math.Pow((Rd[1] + Rd[3]), 2) + Math.Pow((Rd[1] + Rd[2]), 2) - Math.Pow((Rd[3] + Rd[2]), 

2)) / (Rd[1] + Rd[2]) / 2F; 

 Ty[3] = -(float)Math.Sqrt((Rd[1] + Rd[3]) * (Rd[1] + Rd[3]) - Tx[3] * Tx[3]); 

 // calculating radius incircle EPP#4 

 A = 1f / Rd[1] + 1f / Rd[2] + 1f / Rd[3]; 

 B = 1f / (Rd[1] * Rd[2]) + 1f / (Rd[1] * Rd[3]) + 1f / (Rd[2] * Rd[3]); 

 Rd[4] = 1F / (float)(A + 2 * Math.Sqrt(B)); 

 //calculating center EPP#4  

 Tx[4] = -(float)(Math.Pow((Rd[4] + Rd[2]), 2) - Math.Pow((Rd[4] + Rd[1]), 2) - Math.Pow((Rd[2] + Rd[1]), 

2)) / (Rd[1] + Rd[2]) / 2F; 

 Ty[4] = -(float)Math.Sqrt((Rd[4] + Rd[1]) * (Rd[4] + Rd[1]) - Tx[4] * Tx[4]); 



 //shift EPPs to center 

 Tx[1] = -Tx[4]; Ty[1] = -Ty[4]; 

 Tx[2] = Rd[1] + Rd[2] - Tx[4]; Ty[2] = -Ty[4]; 

 Tx[3] = Tx[3] - Tx[4]; Ty[3] = Ty[3] - Ty[4]; 

 Tx[4] = 0; Ty[4] = 0; 

 // start step cycle. new EPP have #N 

 for (N = 4; N < N_max; N++) // 

 { 

 if (N > 4) 

 { 

 Tx[N] = (Tx[N - 1] / Rd[N - 1] + Tx[N - 2] / Rd[N - 2] + Tx[N - 3] / Rd[N - 3]) / (1 / Rd[N - 1] + 1 / Rd[N - 2] 

+ 1 / Rd[N - 3]); 

 Ty[N] = (Ty[N - 1] / Rd[N - 1] + Ty[N - 2] / Rd[N - 2] + Ty[N - 3] / Rd[N - 3]) / (1 / Rd[N - 1] + 1 / Rd[N - 2] 

+ 1 / Rd[N - 3]); 

 } 

 for (S = 0; S <= S_max; S++)//start Sub step cycle 

 { 

 for (i = 1; i <= N; i++) // calculation of radii all EPP in step (N + k) 

 { 

 Rd[i] = Radi(N - i + (float)S / (float)S_max, v); 

 } 

 for (j = N - 1; j >= 1; j--)// Displacement of the EPP under outside pressure  

 { 

 G = COP * (float)Math.Pow(N - j + (float)S / (float)S_max, v + 0.5F) / (float)S_max; 

 if (Tx[j] != 0) 

 { 

 U = Math.Atan(Math.Abs(Ty[j] / Tx[j])); 

 if (Tx[j] < 0) Tx[j] = Tx[j] + (float)(G * Math.Cos(U)); 

 else Tx[j] = Tx[j] - (float)(G * Math.Cos(U)); 

 if (Ty[j] < 0) Ty[j] = Ty[j] + (float)(G * Math.Sin(U)); 



 else Ty[j] = Ty[j] - (float)(G * Math.Sin(U)); 

 } 

 } 

 // look over pairs EPP(i) and EPP(j) ,  

 for (i = N; i > 1; i--) 

 { 

 for (j = i - 1; j >= 1; j--) 

 { 

 G = Math.Sqrt((Tx[i] - Tx[j]) * (Tx[i] - Tx[j]) + (Ty[i] - Ty[j]) * (Ty[i] - Ty[j]));  

 if (G < (Rd[i] + Rd[j])) 

 { 

 U = Math.Atan(Math.Abs((Ty[i] - Ty[j]) / (Tx[i] - Tx[j])));// 

 if ((Tx[j] - Tx[i]) > 0) 

 Tx[j] = Tx[j] + (float)((Rd[i] + Rd[j] - G) * Math.Cos(U)); 

 else Tx[j] = Tx[j] - (float)((Rd[i] + Rd[j] - G) * Math.Cos(U)); 

 if ((Ty[j] - Ty[i]) > 0) 

 Ty[j] = Ty[j] + (float)((Rd[i] + Rd[j] - G) * Math.Sin(U)); 

 else Ty[j] = Ty[j] - (float)((Rd[i] + Rd[j] - G) * Math.Sin(U)); 

 } 

 } 

 } 

 }//end Sub step cycle 

 }//end step cycle 

 for (i = Base_EPP - 50; i < Base_EPP + 50; i++)// -------divergence angle average 

 { 

 Angel_d[i] = (Math.Atan((Ty[i] / Tx[i])) - Math.Atan((Ty[i + 1] / Tx[i + 1]))) * 180D / Math.PI; 

 if (Angel_d[i] < 0) Angel_d[i] = Angel_d[i] + 180D; 

 Divergence_angel_average = Divergence_angel_average + Angel_d[i] / 100D; 

 } 

 for (i = Base_EPP - 50; i < Base_EPP + 50; i++)// -------divergence angle deviation 



 { 

 Divergence_angel_deviation = Divergence_angel_deviation + Math.Pow(Divergence_angel_average - 

Angel_d[i], 2) / 100D; 

 L_deviation = L_deviation + Math.Pow((1 - Math.Sqrt(Tx[i] * Tx[i] + Ty[i] * Ty[i]) / Math.Pow(N - i, v)), 2) 

/ 100D; 

 } 

 Divergence_angel_deviation = Math.Sqrt(Divergence_angel_deviation) / Divergence_angel_average; 

 L_deviation = Math.Sqrt(L_deviation); 

 for (i = Base_EPP - 1; i > 1; i--) //==========index parastri=========================== 

 { 

 G1 = (float)Math.Sqrt((Tx[i] - Tx[Base_EPP]) * (Tx[i] - Tx[Base_EPP]) + (Ty[i] - Ty[Base_EPP]) * (Ty[i] - 

Ty[Base_EPP])); 

 if (G1 <= m1) 

 { 

 m2 = m1; e2 = e1; 

 m1 = G1; e1 = Base_EPP - i; 

 } 

 else if (G1 <= m2) 

 { 

 m2 = G1; e2 = Base_EPP - i; 

 } 

 } 

 if (e1 > e2) 

 { 

 i = e1; e1 = e2; e2 = i; 

 } 

 e3 = e1 + e2; 

 //-------------start grafics 

 Zoom = 520D / (Math.Sqrt(Tx[1] * Tx[1] + Ty[1] * Ty[1]) + Rd[1]); 

 Bitmap bmp = new Bitmap(1920, 1080); 



 Graphics gBmp = Graphics.FromImage(bmp); 

 gBmp.Clear(Color.White); 

 for (i = 1; i <= N_max; i++) 

 { 

 RR = (float)(Zoom * Rd[i]); 

 Xt = (float)(Zoom * Tx[i]); 

 Yt = (float)(Zoom * Ty[i]); 

 if ((RR > 1) & (e1 - e2 != 0)) 

 { 

 if (((i % (e2 - e1)) == 0) & (i <= 301) & (i > 80) & (e2 < 2 * e1)) 

 gBmp.FillEllipse(color_blue, Xt - RR + center_X, Yt - RR + center_Y, 2F * RR, 2F * RR);//blue 

 if (((i % e1) == 0) & (i <= 231) & (i > 20)) 

 gBmp.FillEllipse(color_green, Xt - RR + center_X, Yt - RR + center_Y, 2F * RR, 2F * RR);//green 

 if (((i % e2) == 0) & (i <= 245)) 

 gBmp.FillEllipse(color_red, Xt - RR + center_X, Yt - RR + center_Y, 2F * RR, 2F * RR);//red 

 if (((i % (e3)) == 0) & (i <= 180)) 

 gBmp.FillEllipse(color_orange, Xt - RR + center_X, Yt - RR + center_Y, 2F * RR, 2F * RR);//red 

 if (i == Base_EPP) 

 gBmp.FillEllipse(color_gray, Xt - RR + center_X, Yt - RR + center_Y, 2F * RR, 2F * RR);//gray 

 if (Math.Abs(i - Base_EPP) < 100) 

 gBmp.DrawString(i.ToString(), FFont1, Brush_black, Xt + center_X - RR / 2, Yt + center_Y - RR / 2); 

 gBmp.DrawEllipse(Pen_black, Xt - RR + center_X, Yt - RR + center_Y, 2F * RR, 2F * RR); 

 } 

 } 

 if (e2 < 2 * e1) 

 { 

 gBmp.FillEllipse(color_blue, 50, 50, 100, 100); 

 gBmp.DrawString((e2 - e1).ToString(), FFont2, Brush_black, 65, 65); 

 } 

 gBmp.FillEllipse(color_green, 50, 150, 100, 100); 



 gBmp.DrawString(e1.ToString(), FFont2, Brush_black, 65, 165); 

 gBmp.FillEllipse(color_red, 50, 250, 100, 100); 

 gBmp.DrawString(e2.ToString(), FFont2, Brush_black, 65, 265); 

 gBmp.FillEllipse(color_orange, 50, 350, 100, 100); 

 gBmp.DrawString((e3).ToString(), FFont2, Brush_black, 65, 365); 

 gBmp.DrawString("v=" + v.ToString(), FFont, Brush_black, 60, 500); 

 gBmp.DrawString("Outside Pressure=" + COP.ToString(), FFont, Brush_black, 60, 570); 

 gBmp.DrawString("The Divergence Angle", FFont, Brush_black, 60, 700); 

 gBmp.DrawString("Arithmetic Mean = " + ((float)Divergence_angel_average).ToString(), FFont, 

Brush_black, 60, 770); 

 gBmp.DrawString("Relative Standard Deviation =" + ((float)Divergence_angel_deviation * 

100F).ToString() + "%", FFont, Brush_black, 60, 830); 

 gBmp.DrawString("2024©Rozin", FFont, Brush_black, 1600, 1000); 

 gBmp.DrawString("Relative Standard Deviation between", FFont, Brush_black, 60, 920); 

 gBmp.DrawString("theoretical and obtained distance", FFont, Brush_black, 60, 960); 

 gBmp.DrawString("from the pattern's center to EPP = " + ((float)L_deviation * 100F).ToString() + "%", 

FFont, Brush_black, 60, 999); 

 file_name = "pr=" + COP.ToString() + "_v=" + v.ToString() + ".jpg"; 

 bmp.Save(direct + file_name, ImageFormat.Jpeg); 

 bmp.Dispose(); gBmp.Dispose(); //------------- end grafics  

 } 

 } 

}  

 

Appendix B: Explanation to the program code biomodel_statistic 

Data Structure. The biomodel_statistic program represents each EPP(i) using three variables: the center 

coordinates xi and yi, and the radius Ri. These are stored in the corresponding arrays Tx[i], Ty[i], and Rd[i]. 

Additionally, the model includes several key parameters: 

• 𝑣: Growth parameter of the EPP 

• COP: Pressure coefficient per step 

• N_max: Maximum number of program steps (number of EPPs) 



• S_max: Number of substeps per step 

Model Initialization. The model starts with three initial EPPs: EPP(1), EPP(2), and EPP(3), which are in 

contact with each other (Figure B1). Their coordinates are: 

• EPP(1): (0, 0); 

• EPP(2): (0, Rd[1]+Rd[2]); 

• EPP(3): Computed from the system of equations: 

{
(𝑥3 − 0)2 + (𝑦3 − 0)2 = (𝑅𝑑[1] + 𝑅d[3])2

(𝑥3 − (𝑅𝑑[1] + 𝑅𝑑[2]))2 + (𝑦3 − 0)2 = (𝑅𝑑[3] + 𝑅𝑑[2])2 . 

To compute the coordinates of the center of EPP(4), we must first determine its radius using Descartes' 

Theorem [48]: 

1

𝑅𝑑[4]
=

1

𝑅𝑑[1]
+

1

𝑅𝑑[2]
+

1

𝑅𝑑[3]
+ 2√

1

𝑅𝑑[1] ∙ 𝑅𝑑[2]
+

1

𝑅𝑑[1] ∙ 𝑅𝑑[3]
+

1

𝑅𝑑[2] ∙ [3]
 

 

 

Figure B1: Three touching circles Figure B2: A circle inscribed in three osculating 

circles 

 

Once the radius of EPP(4) is determined, its coordinates are computed using (Figure B2): 

{
(𝑥4 − 0)2 + (𝑦4 − 0)2 = (𝑅𝑑[1] + 𝑅𝑑[4])2

(𝑥4 − (𝑅𝑑[1] + 𝑅𝑑[2]))2 + (𝑦4 − 0)2 = (𝑅𝑑[4] + 𝑅𝑑[2])2 

All four EPPs are then shifted so that EPP(4) is centered on the coordinate grid. 

Iterative pattern calculation. Unlike the initialization step, ЕPP(N-1), ЕPP(N-2), and ЕPP(N-3) may not 

touch be in contact at the moment a new EPP(N) appears. Therefore, the center of EPP(N) is computed as 

a weighted average: 
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Substeps cycle. 

The radii of all EPPs for the substep (
𝑠

𝑠𝑚𝑎𝑥
− 𝑖) are calculated according to Formula 5. 

External Pressure Influence. The inclination angle of the external pressure vector relative to the OX-axis is 

computed as: 

𝑈𝑖 = tan−1 |
𝑇𝑦[𝑖]

𝑇𝑥[𝑖]
| 

New EPP center coordinates after the external pressure influence: 

𝑇𝑥[𝑖] = 𝑇𝑥[𝑖] + 𝐶𝑂𝑃 ∙ (𝑁 + 𝑠/𝑠𝑚𝑎𝑥 − 𝑖)𝑣+0.5  ∙ cos 𝑈𝑖  

𝑇𝑦[𝑖] = 𝑇𝑦[𝑖] + C𝑂𝑃 ∙ (𝑁 + 𝑠/𝑠𝑚𝑎𝑥 − 𝑖)𝑣+0.5  ∙ sin 𝑈𝑖  

Handling EPP Collisions. If two EPPs come into contact, the one farther from the center shifts. The algorithm 

iterates over all EPP pairs, starting from the center. The distance between two EPPs, EPP(i) and EPP(j), is 

computed as: 

𝐺𝑖,𝑗 = √(𝑇𝑥[𝑖] − 𝑇𝑥[𝑗])2+(𝑇𝑦[𝑖] − 𝑇𝑦[𝑗])2 − (𝑅𝑑[𝑖] + 𝑅𝑑[𝑗]) 

If 𝐺𝑖,𝑗  is positive, the next pair is analyzed. Otherwise, the farther EPP is shifted by 𝐺𝑖,𝑗 . The angle of 

inclination of the line connecting their centers is calculated as: 

𝑈𝑖,𝑗 = tan−1 |
𝑇𝑦[𝑖] − 𝑇𝑦[𝑗]

𝑇𝑥[𝑖] − 𝑇𝑥[𝑗]
| 

The new coordinates for the substep (
𝑠

𝑠𝑚𝑎𝑥
− 𝑖): 

𝑇𝑥[𝑖] = 𝑇𝑥[𝑖] + 𝐺𝑖,𝑗  ∙ cos 𝑈𝑖,𝑗   

𝑇𝑦[𝑖] = 𝑇𝑦[𝑖] + 𝐺𝑖,𝑗  ∙ sin 𝑈𝑖,𝑗   

After completing all substep and step cycles, the output parameters of the phyllotactic pattern are 

calculated. 

Divergence angel. The divergence angle between EPP(i) and EPP(i+1) is given by: 



𝑈𝑖 = tan−1 |
𝑇𝑦[𝑖] − 𝑇𝑦[𝑖 + 1]

𝑇𝑥[𝑖] − 𝑇𝑥[𝑖 + 1]
| 

 

Mean Divergence Angle. The average divergence angle over the base range is calculated.: 

 

𝑈 =
1

100
∑ 𝑈𝑖

base+49

base−50

 

Relative Standard Deviation of the Divergence Angle. The deviation between the obtained and theoretical 

distances from the pattern’s center to EPP(i) is calculated: 

∆𝑈 =
1

𝑈
√ ∑

(𝑈 − 𝑈𝑖)
2

100

base+49

base−50

 

Relative Standard Deviation of Distance from Center. The relative standard deviation between the obtained 

and theoretical distances from the pattern’s center to EPP(i) is calculated as: 

∆𝐿 = √ ∑
1

100
(1 −

√(𝑇𝑥[𝑖])2+(𝑇𝑦[𝑖])2

𝑖𝑣
)

2base+49

base−50

 

This value quantifies the deviation of the computed pattern from theoretical predictions. 

Parastichy Index Calculation. Parastichies are visual groupings of adjacent EPPs. The parastichy index is 

defined as the numerical difference between adjacent EPPs forming a parastichy. Using an exhaustive 

search from EPP(1) to EPP(base-1), the algorithm identifies the two closest EPPs to EPP(base): EPP(base-

e1) and EPP(base-e2). The pair (e1, e2) represents the parastichy indices of the pattern. 

Pattern Visualization. A graphical representation of the pattern is generated by coloring EPPs according to 

whether their numbers are multiples of e2-e1, e1, e2, or e1+e2. 

 

Appendix C: Instructions for running the biomodel_statistic program code. 

To execute the biomodel_statistic program, you need any version of MS Visual C# or MS Visual Studio with 

FrameWork 3.5 or higher. 

1. Steps to Run the Program Launch MS Visual C#,  

2. create new project named “biomodel_statistic” as Consol Application (.NET Framework) C#;  

3. Open Program.cs, remove all existing text in the window;  

4. copy and past the code from Appendix A into the Program.cs window;  

5. add reference to System.Drawing (part from FrameWork); 



6. create folder for storing the program’s results. By default, the directory is C:/biomodel_statistic/. 

If you prefer a different output folder, modify the corresponding variable in the code; 

7. To adjust the parameters 𝑣 and COP, modify their values in the code; 

8. run the program. 

Execution Time. Generating a single pattern typically takes 150–200 seconds. Generating Multiple Patterns. 

By default, the program generates one pattern per execution. To generate all 644 patterns (to verify the 

authors' statistical analysis or conduct independent research), modify the code as follows: Insert the 

following loop after the //end parameters line:  

 for (COP = 0D; COP <= 1.4D; COP= COP+0.05D) 

 { 

 for (v = 0.5D; v <=3.2z5D; v=v+0.125D)  

 { 

 e1=0; e2=0; m2=100000001; m1=100000000; Divergence_angel_average=0; 

Divergence_angel_deviation=0; L_deviation=0; 

Insert the following code after the line: “bmp.Dispose(); gBmp.Dispose(); //------------- end grafics”: 

 } 

 } 

Console.WriteLine(direct + file_name); 

This modification enables batch generation of all patterns for further analysis. 

Appendix D: Program code biomodel_video 

using System; 

using System.Drawing; 

using System.Drawing.Imaging; 

using System.IO; 

namespace biomodel_Video 

{ 

 class Program 

 { 

 static float Radi(float y, double t) 

 { 

 return (float)(Math.Sqrt(Math.PI / 2 * t) * Math.Pow(y, t - 0.5D)); 



 } 

 static void Main(string[] args) 

 { 

 Font FFont = new Font("Arial", 32); 

 Pen Pen_black = new Pen(Color.Black, 3); 

 Brush Brush_black = new SolidBrush(Color.Black); 

 Brush Brush_white = new SolidBrush(Color.White); 

 Brush color_blue = new SolidBrush(Color.Blue); 

 Brush color_red = new SolidBrush(Color.Red); 

 Brush color_green = new SolidBrush(Color.Green); 

 Brush color_orange = new SolidBrush(Color.Orange); 

 float[] Tx = new float[1200]; 

 float[] Ty = new float[1200]; 

 float[] Rd = new float[1200]; 

 int i, j, N, S_max, S, N_max, e2, e3, Kr; 

 float A, B, RR, Xt, Yt, center_X = 1920F / 2F, center_Y = 1080F / 2F; 

 double G, U, Zoom, COP, v; 

 string direct, file_name; 

 //parameters 

 v = 1D;// exponent of the radius growth function EPP 

 COP = 0.5D;// external pressure coefficient 

 e2 = 13; // The parastichy index 

 e3 = 21; 

 S_max = 1600;// number of Sub steps per step 

 N_max = 350;// number of steps - quantity EPPs 

 direct = "C:\\biomodel_Video\\"; // destination folder name  

 //end parameters  

 for (i = 1; i < 400; i++) // filling arrays with zeros 

 { 

 Rd[i] = 0F; // radius EPP#i 



 Tx[i] = 0F; // coordinate X of EPP#i 

 Ty[i] = 0F; // coordinate Y of EPP#i 

 } 

 Rd[1] = Radi(4 - 1, v);// three first EPP 

 Rd[2] = Radi(4 - 2, v); 

 Rd[3] = Radi(4 - 3, v); 

 // calculation center EPP#3  

 Tx[3] = (float)(Math.Pow((Rd[1] + Rd[3]), 2) + Math.Pow((Rd[1] + Rd[2]), 2) - Math.Pow((Rd[3] + Rd[2]), 

2)) / (Rd[1] + Rd[2]) / 2F; 

 Ty[3] = -(float)Math.Sqrt((Rd[1] + Rd[3]) * (Rd[1] + Rd[3]) - Tx[3] * Tx[3]); 

 // calculating radius incircle EPP#4 

 A = 1f / Rd[1] + 1f / Rd[2] + 1f / Rd[3]; 

 B = 1f / (Rd[1] * Rd[1]) + 1f / (Rd[2] * Rd[2]) + 1f / (Rd[3] * Rd[3]); 

 //calculating center EPP#4  

 Rd[4] = 1F / (float)(A + Math.Sqrt(2 * (A * A - B))); 

 Tx[4] = -(float)(Math.Pow((Rd[4] + Rd[2]), 2) - Math.Pow((Rd[4] + Rd[1]), 2) - Math.Pow((Rd[2] + Rd[1]), 

2)) / (Rd[1] + Rd[2]) / 2F; 

 Ty[4] = -(float)Math.Sqrt((Rd[4] + Rd[1]) * (Rd[4] + Rd[1]) - Tx[4] * Tx[4]); 

 //shift EPPs to center 

 Tx[1] = -Tx[4]; Ty[1] = -Ty[4]; 

 Tx[2] = Rd[1] + Rd[2] - Tx[4]; Ty[2] = -Ty[4]; 

 Tx[3] = Tx[3] - Tx[4]; Ty[3] = Ty[3] - Ty[4]; 

 Tx[4] = 0; Ty[4] = 0; 

 // start step cycle. new EPP have #N 

 for (N = 4; N < N_max; N++)   

 { 

 if (N > 4)    

 { 

 Tx[N] = (Tx[N - 1] / Rd[N - 1] + Tx[N - 2] / Rd[N - 2] + Tx[N - 3] / Rd[N - 3]) / (1 / Rd[N - 1] + 1 / Rd[N - 2] 

+ 1 / Rd[N - 3]); 



 Ty[N] = (Ty[N - 1] / Rd[N - 1] + Ty[N - 2] / Rd[N - 2] + Ty[N - 3] / Rd[N - 3]) / (1 / Rd[N - 1] + 1 / Rd[N - 2] 

+ 1 / Rd[N - 3]); 

 } 

 Kr = 200; 

 if (N < 150) Kr = 160; 

 if (N < 80) Kr = 100; 

 if (N < 40) Kr = 80; 

 if (N < 20) Kr = 50; 

 if (N < 10) Kr = 40; 

 for (S = 0; S < S_max; S++) //start Sub step cycle 

 { 

 for (i = 1; i <= N; i++) // calculation of radii all EPP in step (N + k) 

 { 

 Rd[i] = Radi(N - i + (float)S / (float)S_max, v); 

 } 

 for (j = N - 1; j >= 1; j--)//Displacement of the EPP under outside pressure  

 { 

 G = COP * (float)Math.Pow(N - j + (float)S / (float)S_max, v + 0.5F) / (float)S_max; 

 if (Tx[j] != 0) 

 { 

 U = Math.Atan(Math.Abs(Ty[j] / Tx[j])); 

 if (Tx[j] < 0) Tx[j] = Tx[j] + (float)(G * Math.Cos(U)); 

 else Tx[j] = Tx[j] - (float)(G * Math.Cos(U)); 

 if (Ty[j] < 0) Ty[j] = Ty[j] + (float)(G * Math.Sin(U)); 

 else Ty[j] = Ty[j] - (float)(G * Math.Sin(U)); 

 } 

 } 

 // look over pairs EPP(i) and EPP(j)  

 for (i = N; i > 1; i--)//cycle for smaller radius of EPP  

 { 



 for (j = i - 1; j >= 1; j--)//cycle for bigger radius of EPP 

 { 

 G = Math.Sqrt((Tx[i] - Tx[j]) * (Tx[i] - Tx[j]) + (Ty[i] - Ty[j]) * (Ty[i] - Ty[j]));  

 if (G < (Rd[i] + Rd[j])) 

 { 

 U = Math.Atan(Math.Abs((Ty[i] - Ty[j]) / (Tx[i] - Tx[j])));// 

 if ((Tx[j] - Tx[i]) > 0) 

 Tx[j] = Tx[j] + (float)((Rd[i] + Rd[j] - G) * Math.Cos(U)); 

 else Tx[j] = Tx[j] - (float)((Rd[i] + Rd[j] - G) * Math.Cos(U)); 

 if ((Ty[j] - Ty[i]) > 0) 

 Ty[j] = Ty[j] + (float)((Rd[i] + Rd[j] - G) * Math.Sin(U)); 

 else Ty[j] = Ty[j] - (float)((Rd[i] + Rd[j] - G) * Math.Sin(U)); 

 } 

 } 

 } 

 if ((S % Kr) == 0) //------------------------- start graphics 

 { 

 Zoom = 520D / (Math.Sqrt(Tx[1] * Tx[1] + Ty[1] * Ty[1]) + Rd[1]);//calculation zoom coefficient  

 Bitmap bmp = new Bitmap(1920, 1080); 

 Graphics gBmp = Graphics.FromImage(bmp); 

 gBmp.Clear(Color.White); 

 for (i = 1; i <= N; i++) 

 { 

 RR = (float)(Zoom * Rd[i]); 

 Xt = (float)(Zoom * Tx[i]); 

 Yt = (float)(Zoom * Ty[i]); 

 if (RR > 1) 

 { 

 gBmp.DrawEllipse(Pen_black, Xt - RR + center_X, Yt - RR + center_Y, 2F * RR, 2F * RR); 

 if (((i % (e3 - e2)) == 0)) //blue 



 gBmp.FillEllipse(color_blue, Xt - RR + center_X, Yt - RR + center_Y, 2F * RR, 2F * RR); 

 if (((i % e2) == 0) & (i < 260)) //green 

 gBmp.FillEllipse(color_green, Xt - RR + center_X, Yt - RR + center_Y, 2F * RR, 2F * RR); 

 if (((i % e3) == 0) & (i < 280)) //red 

 gBmp.FillEllipse(color_red, Xt - RR + center_X, Yt - RR + center_Y, 2F * RR, 2F * RR); 

 if (((i % (e2 + e3)) == 0) & (i <= 280)) //orange 

 gBmp.FillEllipse(color_orange, Xt - RR + center_X, Yt - RR + center_Y, 2F * RR, 2F * RR); 

 } 

 } 

 gBmp.DrawLine(new Pen(Color.DarkCyan, 2), 100, center_Y, 1820, center_Y); 

 gBmp.DrawLine(new Pen(Color.DarkCyan, 2), center_X, 100, center_X, 980); 

 gBmp.FillEllipse(color_blue, 50, 50, 100, 100); 

 gBmp.DrawString((e3 - e2).ToString(), FFont, Brush_white, 65, 65); 

 gBmp.FillEllipse(color_green, 50, 150, 100, 100); 

 gBmp.DrawString(e2.ToString(), FFont, Brush_white, 65, 165); 

 gBmp.FillEllipse(color_red, 50, 250, 100, 100); 

 gBmp.DrawString(e3.ToString(), FFont, Brush_white, 65, 265); 

 gBmp.FillEllipse(color_orange, 50, 350, 100, 100); 

 gBmp.DrawString((e3 + e2).ToString(), FFont, Brush_white, 65, 365); 

 gBmp.DrawString("Step = " + N.ToString(), FFont, Brush_black, 60, 660); 

 gBmp.DrawString("Sub step= " + S.ToString(), FFont, Brush_black, 60, 730); 

 gBmp.DrawString("v = " + v.ToString(), FFont, Brush_black, 60, 860); 

 gBmp.DrawString("Outside Pressure = " + COP.ToString(), FFont, Brush_black, 60, 930); 

 file_name = (10000*N + S).ToString() + ".png"; 

 Console.WriteLine(direct + file_name); 

 bmp.Save(direct + file_name, ImageFormat.Png); 

 bmp.Dispose(); 

 gBmp.Dispose(); 

 }//---------------------- end graphics 

 }//end Sub step cycle 



 }// end step cycle 

 } 

 } 

} 

 

Appendix E: Explanation of the biomodel_video program code and instructions for execution it 

The biomodel_video program shares the same computational core and data structure as 

biomodel_statistic. However, in biomodel_video the calculation for of the parastichies index, relative 

standard deviation of the divergence angel, and relative standard deviation between the obtained and 

theoretical distance from the pattern's center to EPP(i) are omitted. These parameters are precomputed 

using biomodel_statistic for the given values of 𝑣 and COP. 

The biomodel_video program generates a sequence of graphical files, capturing the step-by-step 

morphogenesis of the pattern. These images can later be compiled into a video clip. 

Enhancements for Visualization. To improve the clarity of the morphogenesis process, the speed of video 

playback has been optimized by increasing the frame selection frequency. The selection frequency 

(variable Kr) increases as the number of iteration steps progresses. Additionally, to enhance visualization, 

EPPs belonging to parastichies with indices e3-e2, e2, e3, e2+e3 are colored accordingly. To achieve this, e2 

and e3 (representing the parastichy index) are added as input parameters, precomputed in 

biomodel_statistic for the given 𝑣 and COP values. 

The biomodel_video program is executed in the same manner as biomodel_statistic, create a directory 

C:\biomodel_video where the program will store over a thousand generated graphical files. Use video 

editing software to compile the generated images into a video clip. There are numerous tools available for 

converting image sequences into video. The authors used setting the frame duration to 0.04 seconds 

(resulting in a playback rate of 25 frames per second). 
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