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Abstract

Rush skeletonweed (Chondrilla juncea L.: Asteraceae) is a deep-rooted perennial 
invasive plant that infests well-drained, sandy-textured soils commonly found in the 
mountain foothills and canyon grasslands of the Pacific Northwest United States. 
The species can spread locally through rhizomes and over longer distances by wind, 
with its pappus-bearing seed. Our objective was to produce a dispersal model that 
would predict long-range movement and aid land managers in their efforts to find 
new populations of rush skeletonweed. A study area in the arid canyon grasslands 
within the Salmon River Canyon, Idaho, was used to develop a wind dispersal model 
for rush skeletonweed. Rush skeletonweed distribution data were from ground based 
surveys conducted in 1996, 1999-2001, and 2003-2012. Wind maps were created 
with topographic information and vegetation indices in a multi-layer perceptron (MLP) 
network analysis to predict average wind speed and wind direction. These maps were 
then incorporated into a GIS network modeling algorithm to predict seed dispersal. 
Algorithm settings were evaluated and optimized to match predicted dispersal maps 
with observed dispersal patterns. Wind dispersal maps provided information about 
the distance and direction of rush skeletonweed movement. In the canyon grasslands of 
central Idaho, rush skeletonweed seed consistently moved in the general direction of 
the wind. Rush skeletonweed patches were found to move within a range of 4 to 12 km 
in an estimated time period of 5 to 12 years, suggesting that land managers should 
anticipate searching for susceptible plant communities within that distance from current 
infestations. Dispersal within the study was predicted in the north to north-east direction 
at a rate of 500 to 1000 m/yr. Knowledge about dispersal distance and direction, 
and how they are modified by terrain, will be critical to land managers who seek to 
limit further expansion of invasive rush skeletonweed within Idaho and adjacent states.

INTRODUCTION
Rush skeletonweed (Chondrilla juncea L.) was likely 

introduced to eastern North America in contaminated grain 
seed brought from Europe [1]. Rush skeletonweed reduces 
biodiversity and forage production for both domestic and native 
herbivores by growing in dense monocultures and displacing 
native plants on rangelands [2,3]. Although it is spreading 
primarily on rangelands, its potential risk to agricultural crops is 

also of concern as it competes aggressively with these crops for 
light, water, and nutrients [4,5].

Rush skeletonweed is a perennial invasive plant within 
Asteraceae that predominantly infests light-textured soils found 
in the mountain foothills and canyon grasslands of the Pacific 
Northwest United States. Approximately 1.2 million ha are 
infested in Idaho, with dispersal into adjacent Montana. Rush 
skeletonweed is designated as a noxious species in seven US 
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states (AZ, CO, ID, MT, NV, OR, and WA). The species thrives on 
well-drained soils and occurs at elevations from less than 225 
m to over 1,830 m that receive 250 mm to 1500 mm annual 
precipitation [3,6].

Flowering, seed set, and dispersal of rush skeletonweed take 
place in the summer and continue into fall in the intermountain 
and Pacific Northwest regions [7,8]. Rush skeletonweed is 
apomictic with flowers that open in the morning, when seeds are 
mature and have an opportunity to disperse. Flowering occurs 
from mid-July until first frosts Liao et at., [9]. About two weeks 
after flowering, seeds are fully developed and a small number 
of seeds have been observed to germinate three days after 
flowering. In July and August, seed production peaks but can 
continue into November. Rush skeletonweed can produce as high 
as 10,000 seeds per plant under field conditions [10]. Seeds are 
carried by wind, water, animals, machinery, and vehicles [3,11]. 
Most local population increase is due to vegetative regeneration, 
however, seed dispersal by the wind accounts for most long-
range dispersal of rush skeletonweed [10].

One invasion front occurs in central Idaho, along the Salmon 
River canyon. Understanding dispersal along the invasion front 
provides land managers with knowledge critical to preventing 
further expansion. Although detection and delineation of weed 
infestations are carried out using visual observations, such 
methods are time- and labor intensive, particularly when trying 
to detect sparse infestations in remote areas. The process of 
detection can be made more efficient by targeting surveys based 
on the predicted probability of rush skeletonweed occurrence 
and the potential for its dispersal. Land managers can focus on 
sites with a high likelihood of infestation based on landscape 
characteristics of currently infested sites. The approach may 
improve both the efficiency and success of management actions 
such as containment and eradication.

Understanding factors that influence landscape-level 
vegetation patterns is critical to successful ecosystem 
management. An in-depth knowledge of where and at what 
rate a species moves across the landscape is a prerequisite to 
understanding seed dispersal patterns. The ability to model 
dispersal patterns upon the landscape would improve knowledge 
of rush skeletonweed movement, providing land managers with 
a useful management tool.

In recent years, several studies addressed the importance 
of seed dispersal in ecological processes [12-16]. The most 
important of these studies consider modeling seed dispersal 
using both the phenomenological approach [12,17-20] and the 
mechanistic approach, especially for wind dispersal [14,21-
32]. Though a phenomenological approach has been favored 
for modeling dispersal in large-scale and long-term population 
studies [16,17,33], due to its inherent simplicity, it still requires 
plant location data for calibration, which limits the use for 
any new species or environmental settings [31]. Mechanistic 
approaches, despite their advantages of being estimated 
independently of the dispersal data and providing insights into 
the underlying transport mechanisms, still require computer-
intensive simulations of wind statistics and hence are impractical 
for large-scale, long-term applications [31]. Seed dispersal 
takes place across a wide range of scales; long-distance seed 

dispersal is increasingly recognized as both important and 
overlooked (Nathan 2006) [34]. Part of the reason long-distance 
seed dispersal has been neglected is that it is fundamentally a 
landscape-level process.

The standard empirical and mechanistic models 
[19,28,30,35,] which model seed movement in wind for different 
plant or tree species lack the ability to be applied to extensive 
landscapes. To address dispersal across extensive landscapes, 
a spatial network model algorithm has been recently used to 
describe dispersal in heterogeneous environments [36], and 
for modeling seed dispersal incorporating plant community 
and topography across the landscapes [37]. These algorithms 
anticipate long-distance dispersal considering parameters such 
as wind speed, wind direction, topography (slope, aspect, and 
elevation), and vegetation structure. It is important to develop a 
network representation of rush skeletonweed dispersal and find 
the shortest, least-cost path between two points in the network 
to predict rush skeletonweed dispersal and future infestations.

Rush skeletonweed is just one of the invasive plants in 
rangelands of the Pacific Northwest. Management of invasive 
species such as rush skeletonweed across extensive areas is 
challenging and would benefit from a landscape-level decision 
support tool. The purpose of this research was to produce a 
dispersal model that would aid land managers in their efforts to 
find new populations of rush skeletonweed across the landscape. 
The method incorporates information from a vegetation index, 
as well as topographical and weather variables (wind speed and 
wind direction) to predict rush skeletonweed dispersal.

METHODS

Study area

The bounding coordinates for rush skeletonweed study area 
were -117o to -115o longitude, and 44o to 48o latitude. Model 
training data was split into two regions: Region 1 (Adams, 
Washington, Valley, Idaho counties of central Idaho) was used 
for dispersal model building, while Region 2 ( Latah, Benewah, 
Clearwater, and Nez Perce counties) was used for dispersal model 
validation (Figure 1). Rush skeletonweed distribution data were 
collected by ground-based survey crews who collected plant 
location data within the study area during a span of 16 years,� 
specifically in the following years: 1996, 1999-2001, 2003, 
2004-2012. The area is large so surveys conducted each year 
do not necessarily overlap in their coverage. Five GIS polygons, 
representing rush skeletonweed infestations, referred to here 
as areas 1 through 5, were selected from Region 1 for dispersal 
model building (Figure 2). The training data were selected based 
on the year the infestations were surveyed (older infestations 
were considered more desirable) as well as the polygon size 
(larger polygons were assumed to be older). For dispersal model 
validation, five additional GIS polygons from Latah and Nez 
Perce counties of Region 2 were selected (Figure 1). Data for 
dispersal model validation were selected based on the size of the 
infestation; polygons were more than 0.1 acres while point data 
were less than 0.1 acres.

Spatial dependence model

To examine spatial patterns for rush skeletonweed 
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Figure 1 Idaho map showing rush skeletonweed infestations (points in grey color, polygons and lines in black color) with two regions (Region 1 and 
Region 2) in black color rectangles; a) Region 1 which was used for dispersal modeling and b) Region 2 which was used for validating the dispersal 
model.

infestations across the Salmon River canyon and relate those to 
the role of wind direction in determining the potential patterns of 
dispersal, semivariograms were used [38,39]. According to Cressie 
(1993) [40] a variogram is composed of the variance between 
all field value pairs (x and y) separated by a given distance, h. A 
complete variogram is then defined across all possible distances. 
The empirical semivariogram, developed from observed data, 
characterizes the average degree of similarity between values in 
different locations (rush skeletonweed infestations in this case) 
as a function of their separation distance as well as direction 
[41]. Such an empirical semivariogram can be estimated from the 
available data by:

 ( )21
2h i h i

h

Z Z
N

γ += −∑
                                                              

(1)

Where γ(h) is the empirical semivariance for the lag h 
(separation distance), zi and zi+h are the infestation values at 
location i and i+h, respectively, and N(h) is the number of pairs 
of points separated by distance h. Following computation of the 
empirical semivariance values, theoretical semivariance models 
such as the spherical, exponential [42,43], wave, power, and 
linear were fitted using ordinary least squares [40,41]. Each 
model describes spatial continuity differently based on how each 
increases monotonically as a function of distance. Each model 
can also be described by its parameters such as the range (a), sill 
(c), and nugget (cn) which determine the shape of the theoretical 
semivariogram. Variability between observations separated 
by very short distances is described by the nugget effect (y 
intercept of the variogram model) [44]. The level at which a 
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Figure 2 Black ellipses (on inset Idaho map) indicate the study area along the Salmon River Canyon (right hand) and calibration area along the town 
of Riggins (Left hand), both in Idaho County, Idaho. Small circles represent five areas (1 to 5) used for dispersal model building; small light grey 
squares represent Pittsburg Landing and Slate Creek weather stations; black polygons or points represent rush skeletonweed infestations.

model plateaus (called the sill) represents the variance between 
independent and spatially uncorrelated locations. The distance 
at which the sill occurs is referred to as the range. The study area 
in and around the Salmon River was selected for use in spatial 
dependence modeling. In order to increase the computational 
efficiency, however, the area was divided into five subunits, with 
each being modeled separately. 

Potential characteristic variables used for rush 
skeletonweed wind dispersal model

Wind-dispersed mechanistic models may incorporate many 
factors including the effects of morphology, release heights, 
settling velocities, horizontal wind speeds, convection, local 
topography, forested trees, shrubs, and grassland forbs on 
diaspore movement and dispersal distance curves in (Table 
1) [21,22,24,26,28,29,45,46,]. Our spatial network dispersal 
model considered explanatory variables such as elevation (m), 

slope, aspect [37], and transformed soil adjusted vegetation 
index (TSAVI) [47], land surface feature shape (categorical data 
describing the surface of the land such as peaks, ridges, saddles, 
flats, ravines, pits, saddle hillsides, slope hillsides, concave- and 
convex hillsides or inflection hillsides), wind flow (direction 
flowing from a pixel), wind speed (m/s), and wind direction (o) 
(Table 1) at the spatial scale of a 10 x 10 m pixel. Remotely sensed 
data of the study area were acquired from LandSat 51 on July 2, 
2011 and July 11, 2011 to calculate TSAV, and landform data 
were calculated from Dimensional Elevation Model [48].

Wind speed and direction data

Hourly average wind direction (degrees) and wind speed 
(mph) for July and August were downloaded from RAWS USA 
Climate Archive (http://www.raws.dri.edu/index.html) for 
weather stations which covering the study area (Idaho) as well 
as portions of Oregon, Washington, Wyoming, and Montana. 

http://www.raws.dri.edu/index.html
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Anemometers in the weather stations were installed at 10 m 
above the ground level. The number of years used to calculate 
average wind speed and direction ranged from 1 to 26 depending 
on available records. Data from stations were removed from the 
analysis if average wind speed was greater than 10 m/s and the 
adjacent stations did not report these sustained high winds.

According to [11], between 10 and 20 days after flowering, 
rush skeletonweed plants begin to shed seeds which can then 
be carried 6 m with a wind speed of 4 m/s [49]. This study 
concentrated on daytime wind speed and wind direction maps 
for rush skeletonweed seed movement since wind direction 
varied considerably during nights for July, August, September, 
and October months (44 to 293o) when compared with the 
days (127o to 252o). The data files for the weather stations were 
merged and separated into day and night designations using the 
latitude-based sunrise and sunset times of each station. Data 
within each year were then averaged on a biweekly basis. July 
and August were considered the primary time period for seed 
production and dispersal; therefore, data from the last week of 
July to second week of August were used for modeling. Twenty 
nine weather stations were available over this time frame for 

model development and twenty weather stations for model 
validation.

1Earth Resources Observation and Science Center, U.S. 
Geological Survey, Mundt Federal Building, Sioux Falls, SD. 
http://lpdaac.usgs.gov

Wind rose plots

Wind rose plots, showing wind direction and wind speed 
patterns, were created to compare the consistency of the wind 
dispersal models with the observed wind patterns. The wind rose 
plots were generated for weather stations closest to the model 
building and model validation areas (Pittsburg Landing and Slate 
Creek weather stations for the model building areas, and Lapwai 
weather station for the validation as shown in Figure 3 and 4).

Wind speed and direction maps

The averaged biweekly (last week of July into second 
week of August) data of wind speed (m/s) and wind direction 
(rad) were used to create the wind speed and wind direction 
maps using the SAS software system (SAS 1999). Bivariate 
polynomial interpolation with an 8-point search radius was 
used to interpolate values between points and make a raster 

Figure 3 Wind rose plots for wind speed and wind direction for the two weather stations located in the model building tile.

Empirical / Mechanistic models Spatial network model

Wind velocity (m/s), horizontal and vertical Wind speed (m/s) measured with

wind speed (turbulence and updrafts) anemometers placed at 10 m height, wind, direction

Elevation (m), release height (m)
Elevation, slope, aspect, flow, curvature at 10 x 10 m pixel size. For 
example if rush skeletonweed is on uphill/downhill, then release 
height will be taken care of by slope, elevation and curvature.

Forested trees, health land shrubs, and Vegetation index considering leaf area

grassland forbs index, vegetation height, phenology

Table 1: Comparison of variables used in empirical/mechanistic models versus those used for the spatial network model in estimating rush 
skeletonweed movement.
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file depicting wind direction and speed with a 100 x 100 m grid. 
Additional grid sizes of 200 x 200 m, 300 x 300 m, and 500 x 500 
m were investigated but results did not significantly differ from 
100 x 100 m grids. The interpolated wind direction data were 
converted back to 10 x 10 m resolution and to degrees for use in 
the dispersal model.

Prior to defining the equations that go into a dispersal model 
algorithm, potential factors influence dispersal, such as wind 
speed, wind direction, topography (slope, aspect, and elevation 
etc), and vegetation structure were identified using multi-layer 
perceptron (MLP). The interpolated wind speed and wind 
direction data were adjusted for topography and vegetation 
using a MLP model [50]. In MLP modeling, training data are 
subjected to a supervised classification algorithm in order to 
define a spatial neural network. This process uses forward and 
backward propagation between the nodes (connection points) in 
the network until the algorithm determines the essential set of 
characteristics, as well as their potential interactions, necessary 
to describe the system [51]. For example, using a backward 
elimination process, starting with six explanatory variables 
(TSAVI, elevation, curvature, slope, flow, and aspect), several 
candidate models (curvature, aspect, slope, elevation, vegetation 
index (CASET); aspect, slope, elevation, vegetation index (ASET); 
slope, elevation, vegetation index (SET); and aspect, elevation, 
vegetation index (AET) were assessed for minimal mean squared 
error (MSE) as well as the structure of the underlying residuals at 
10 x 10 m grid resolution. Additional grid sizes of 30 x 30 m, 50 x 
50 m, and 70 x 70 m were also evaluated; however the results did 
not significantly differ from those of the 10 x 10 m grids.

For candidate models residuals and corresponding MSE 
values were calculated from predicted and observed values 
of each weather station.. When the candidate models were 
compared, the AET wind speed model had the lowest MSE 
compared to other models (CASET, ASET, and SET respectively). 
Evaluation of wind direction models also showed a low MSE for 

the AET model. As with wind speed, residual analysis indicated 
a random normally distributed residual with a mean of zero in 
the model building and validation regions. Hence, the AET model 
was selected as the final model form for predicting wind speed 
and direction for both the model building and validation regions. 

Dispersal modeling

The IDRISI software package module “DISPERSE” was used 
to model rush skeletonweed dispersal. The DISPERSE module 
is a spatial network analysis algorithm that utilizes images 
representing forces and frictions across an area of interest to 
model the cost of movement along a predefined grid of cells (see 
for example Shafii et al. 2003) [52]. For rush skeletonweed, the 
most efficient (least cost) paths from an infestation to all potential 
destinations was determined based on wind speed and direction 
inputs. The process can be evaluated at any possible position on 
the grid, given a cost limit or threshold total cost for movement 
(TTC). As part of its computations, the DISPERSE module uses 
a predefined cost function and an anisotropic function which 
determine the predicted rush skeletonweed movement through 
each network link. These are described below.

Cost Function

Rush skeletonweed dispersal can be viewed as a process 
based on two factors: survival to seed production, and subsequent 
seed movement. These factors can be related to the cost of 
rush skeletonweed movement across a landscape (network). 
Generally, the cost function may be defined by: COST = TS * TM, 
where COST is the probability of existing at a given point [x,y] 
on the network, TS is a component measuring the potential or 
probability of rush skeletonweed surviving to seed production at 
[x,y], and TM is related to the probability of rush skeletonweed 
seed moving to point [x,y]. TS were assumed to be 100 % at this 
stage because we were initially interested in seed movement. The 
effect of variable survival rates on dispersal will be addressed in 
subsequent research. By assuming a complete survival, the model 

Figure 4 Wind rose plots for wind speed and wind direction for weather stations located in the validation tile.
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Figure 5 Biweekly plots indicating wind direction and magnitude (arrow and arrow length, respectively) in north central Idaho a) Region 1 b) 
Region 2; Rush skeletonweed infestations are in black.

A) B)

Figure 6 Dispersal model for area 3, used in the model building process. Contour lines represent 50-300 iterations of the model and are elevation 
map (yellow color - high elevation; dark green -low elevation). Polygons (cross hatched) represent known rush skeletonweed represents year 
infestations were surveyed; two angle setting scenarios are shown: a) k of 2.0; b) k of 0.5.

should produce the farthest predicted movement areas that land 
managers might expect in a year.

The term, TM, is related to the probability of rush 
skeletonweed moving across a link in the grid representing 
the area of interest. For rush skeletonweed, computation of TM 
utilizes both the predicted wind speed and wind direction (as 
forces and frictions) as described above. In theory, the network 
model can apply friction equally in all directions, in an isotropic 
manner, or the friction can change with direction, referred to as 

anisotropic movement. This later method results in slower or 
faster movement along the grid for different directional paths. If 
rush skeletonweed moves along all links at the same rate then TM 
= 1; otherwise, TM is determined as

TM = 1/f, where TM refers to force and f is a friction value.

Here the effective friction (EF) is given as a power function, 
defined in IDRISI as: EF = (SF)*f, where SF is the potential full 
magnitude of the friction and f is given by:
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f = 1/cosk a                                                                                                 (2)

The function in (2) above incorporates the difference between 
the direction of movement and the direction of the applied 
friction, in this case wind direction; the parameter k controls the 
sensitivity to the angle of the difference, which itself ranges from 
0 to 900. A value of k = 0 produces the isotropic (friction is equal 
in all directions) model, while larger values of k lead to a higher 
degree of directionality within the model (anisotropic situation). 
All relative frictions in IDRISI software were expressed as values 
greater than 1 (dispersal is impeded) or as relative forces, values 
less than 1 (dispersal is assisted). Thus, if wind forces were 
considered and had a base force of 10 km/hr, a wind of 30 km/
hr would be specified as a relative force of 0.33. Once cost and 
anisotropic functions are determined, the prediction of rush 
skeletonweed dispersal can be carried out through the network 
model algorithm.

Creating dispersal maps

Five polygons were selected from different areas near Riggins, 
ID. The polygons which were dated earliest (old infestations such 
as infestations of 1997, 1999, and 2000) and larger in size were 
selected as starting points. Older and large polygon infestations 
were selected assuming that they were most likely responsible 
for satellite infestations. Vector format polygons representing the 
infestations in GIS were first converted to a raster graphic format 
where each pixel was denoted as either 0 (infestation absent) or 
1 (presence of infestation). These raster images were considered 
as infestation sources. A predicted wind speed map from the 
MLP corresponding to the polygon region provided the force 
magnitudes while the analogous similar area of the MLP wind 
direction map provided the force direction information. Prior 
to use, the predicted wind speed map was hardened using on a 
logarithmic scale of the wind speed to estimate the magnitude 
of force (ranging from 0 to 1 expressed as relative frictions). The 
predicted wind direction was rotated 180o to represent a force 
in the model.

The results from spatial dependence model showed spatial 
correspondence between infestations at a distance of 250 m up-to 

5000 m. Calibration of the dispersal model time steps determined 
that a model run of 50 time-step increments was approximately 
equivalent to a 1000 m dispersal distance. However, to increase 
the probability of detecting an infestation, this 50 iteration-step 
increment was extended further (one step at a time) by 100, 
150, 200, 250, and 300 increments to ensure better coverage of 
the field surveys. Additionally, two different angle sensitivities 
(k = 0.5 and 2.0) were used to determine the best settings for 
anisotropic infestation prediction.

Dispersal model assessment

Two basic methods were used for assessing the dispersal 
model simulation results for model building and validation 
regions: 1) visual assessment and 2) omissional error rates. 
Visual assessment is a qualitative measure of how well a 
predicted infestation boundary fits the corresponding observed 
boundary. Multiple predicted boundaries (250 or 300 iterations), 
each at differing costs based on magnitude and direction of force 
were used to assess observable trends in prediction patterns. The 
visual inspection, while qualitative, generally allows for quick 
assessment of model predictions and can be easily done by a 
potential user. As a more quantitative measure, the proportion of 
omitted infestations developed into an error matrix (omissional 
/ commissional error rates) was also calculated for each of 
the iteration and k setting. The number of existing infestations 
covered by the predicted dispersal pattern at each time-step was 
calculated and divided by total number of existing infestations to 
give the proportion of coverage. The omissional error rate was 
calculated by subtracting the proportion of coverage from 1 and 
represents the proportion of existing infested polygons omitted 
from the final predicted map.

Dispersal model validation

Validation in this study was done to determine the adequacy 
of the dispersal model, and to assess whether the model is 
applicable to other areas in the landscape, as measured on new 
polygons in the validation areas. For the latter purpose, the 
dispersal model was applied to new infestations in Latah and Nez 
Perce counties (external validation) to assess future spread. The 

Figure 7 Dispersal model validation for area 4 at an angle of k = 0.5. Contour lines (50-300 iterations) overlaid on digital elevation map (yellow/light 
green color - high elevation; dark green -low elevation) red points/polygons represent rush skeletonweed infestations.
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wind dispersal model was applied to an independent area with 
483 rush skeletonweed infestations on the Continental Divide 
between Montana and Idaho.

RESULTS

Spatial dependence model

The spatial arrangement of rush skeletonweed within the 
Salmon River Canyon offers clues into how patches of rush 
skeletonweed are related and if there is directionality to that 
relationship. Infestations of rush skeletonweed were generally 
oriented towards the north (N) and north-east (NE) directions 
i.e., at an angle of 0 - 45o along the terrain for all the five subunits 
(Table 2). The estimated range occurred at a lag (separation) 
distance of 3 km for subunit 1 suggesting that rush skeletonweed 
infestations were not correlated when the distance was more 
than 3 km. However, as the distance between infestations 
became smaller than this interval, there was a higher degree 
of correlation present. For subunit 2 and 3 rush skeletonweed 
infestations were correlated when the distance was less than 1 
km while less than 2 km for subunit 4 and 5 km for subunit 5.

Wind speed and direction maps

Lower wind speeds were located in forested areas in both 
model building and validation regions. The wind speed ranged 
from 0.06 m/s to 3.78 m/s for model building region and 0.60 
m/s to 5.0 m/s for validation region. The predicted wind direction 
was moving from south (S) and south-west (SW) towards N and 
NE direction in model building area (Figure 5a). The predicted 
wind direction moves from SW across the Salmon River Canyon, 
and in Nez Perce forest moves from SE. In validation region the 
predicted wind direction moves from SE and SW (Figure 5b). The 
predicted wind direction was moving from SE and S towards NW 
and N in Latah county and while from SE and SW in Nez Perce 
county.

Dispersal modeling

Wind dispersal maps provide information related to how far 
rush skeletonweed seeds may move and in which direction. The 
output from the dispersal model was converted to a predicted 
rush skeletonweed dispersal distance image (contour map). 
Contour maps for area 3 are given in Figures 6a and 6b, for 
example, at an angle sensitivity setting of, k=0.5 and 2.0. These 
contours are overlaid on the corresponding elevation maps 
where dark blue/black colors represent lower elevations, dark 
to light green are intermediate elevations and yellow to orange 
are higher elevations. Given the change in the angle of setting 
(k = 2 and 0.5), and equation (2), a corresponding change in 
the predicted boundary was observed. A visual assessment of 

the dispersal model results clearly showed that an angle of k = 
0.5 provided a better fit than k = 2.0 (Figure 6a, b). In addition, 
when quantitatively assessed using the omissional error rate, in 
all five modeling areas the number of infestations omitted was 
fewer with a k of 0.5 compared to a k setting of 2.0 (Table 3). 
Nearly 90 to 100 % of known infestations were covered at 250 
to 300 iterations in three of the areas tested (area 1, 2, and 5, 
respectively) at an angle of force, k = 0.5, while only two areas 
(areas 2 and 5) had equivalent coverage at a setting of 2.0. 
Although omissional error rates were similar for both settings 
(Table 3), the total number of known infestations covered at k= 
0.5 setting was higher.

In the dispersal model, rush skeletonweed seeds moved 
towards the N and NE directions with dispersal distances ranging 
from 4 to 12 km in an estimated time period of 5 to 12 years. 
The starting point of infestations used was 1999 when data 
were first recorded in the study region, and known infestations 
downrange from these older infestations were aged at 2006 to 
2011, implying a time period of 7 to 12 years. Visual assessment 
suggested that at 250 to 300 iterations, the dispersal model for 
area 3 had broader predicted boundaries and a maximum number 
of known infestations covered. Similar results were seen in the 
other four areas (results not shown). The omissional error rates 
were lowest at 250 – 300 iterations for all the areas (Table 3). If 
all five areas were considered, the maximum observed dispersal 
distance (from the point of infestation to the predicted boundary) 
was 12 km [53]. Overall, rush skeletonweed is predicted to 
disperse in this area at an average of 500 to 1000 m/yr towards 
N and NE direction. Considering the maximum number of known 
infestations covered and the low omissional error rates over all 
five modeling areas, the dispersal model was found to be good 
in predicting rush skeletonweed seed movement. The predicted 
dispersal in these areas was consistent with the wind rose 
plots directions, where the nearest weather stations (Pittsburg 
Landing and Slate Creek) showed a maximum wind speed in the 
N and NE direction (Figure 3).

Dispersal model validation

Estimated rush skeletonweed dispersal in the validation 
areas were in N and NW directions with dispersal distances 
ranging from 3.4 to 6.5 km. Due to the lack of adequate temporal 
data of rush skeletonweed infestations in validation area, only 
the spatial validation was considered. Visual assessments 
suggested that at 250 iterations, the dispersal model for area 4 
had broader predicted boundaries and covered the maximum 
number of known infestations (Figure 7). Results were similar for 
the other four validation areas [53]. Additionally, the omissional 
error rates were 1 to 10 % for 100-300 iterations compared to 
a 50 iteration setting where error rates ranged from10 to 90 

Model Sill Range Nugget Direction  (degrees)

Subunit 1 Spherical 0.2887 4899.7 NA 45

Subunit 2 Gaussian 0.0757 432.4 NA 0

Subunit 3 Exponential 0.0392 264.4 NA 0

Subunit 4 Wave 0.0231 271.7 0.0127 45

Subunit 5 Wave 0.0449 352 0.0210 0

Table 2: Model parameters obtained from the semivariogram procedures.
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% (Table 4). If all five areas were considered, the maximum 
observed dispersal distance was 6.5 km from point of infestation 
to the predicted extent of 250-300 iterations. In the validation 
analyses, 100-300 iterations were more adequate in predicting 
rush skeletonweed seed movement for all the five areas based 
on the maximum number of known infestations covered and low 
proportion of omissional rates. Seed movement for all the areas 
was in the NW direction except area 4 which was towards N 
direction and which was also found to be inconsistent with the 
nearest weather station, Lapwai, where the wind speed was in 
the N and NE directions (Figure 4).

Finally, the dispersal model at the 250 to 300 time-step range 
resulted in 80-90 % coverage of known infestations and captured 
the pattern of seed movement for the five areas. The distance of 
seed dispersal ranged from 4 to 12 km and consistently moved 
in the general direction of the wind for the canyon grasslands 
of central Idaho. Overall, dispersal model results for model 
building and validation areas showed similar results in relation 
to the maximum number of known infestations coverage and 
proportion of omissional error rates, with the exception of the 
dispersal pattern and directionality in relation to wind rose 
plots for a few areas. The wind rose plots for weather stations 
in the validation area were not always within the same location 
as the validation sites, and weather station data time series was 
shorter for some validation weather stations than in the model 
development weather stations. The main reasons for observing 
deviated directionality patterns in the validation area might be 
insufficient spatial and temporal data in a polygon format, and 
limited weather station data.

Application of wind dispersal model to an independent 
study area

The wind dispersal model was applied to an independent 
area with 483 rush skeletonweed infestations on the Continental 
Divide between Montana and Idaho. Rush skeletonweed locations 

were mapped using GPS by members of the weed management 
unit. Results showed that the wind dispersal model links 90 
% of the infestations when projected seed dispersal was 2 km 
(omissional error 10.56 %, Table 5). The model further indicated 
that nearly all infestations (99.6 %) could be linked by wind 
at predicted dispersal distance of 12 and 14 km. These results 
were used by ground crews to identify new infestations on the 
Continental Divide. The model was also applied to two additional 
independent sites in the Idaho Frank Church Wilderness and 
Idaho Clearwater National Forest, achieving the same level of 
accuracy.

DISCUSSION
Spatial dependence distance ranged from 250 m to 5000 

m and demonstrated an anisotropic pattern from 0 to 45o over 
all of the five subunits. The anisotropic pattern was found 
consistent with wind rose plots for Pittsburg Landing and 
Slate Creek weather stations with wind moving towards N 
and NE corresponding with rush skeletonweed dispersal. The 
sill and the range parameters for each of the structures varied 
suggesting that the spatial correlation was not consistent for 
the five subunits. The most likely reason for the difference in 
ranges was that rush skeletonweed seeds moved in the direction 
of wind due to topographical factors [28,54]. The differing 
speeds that occurred in the N and NE direction may have been 
responsible for the variance. The nugget effect was greater than 
zero in subunits 4 and 5, meaning that observations separated by 
extremely small distances were dissimilar [44]. This dissimilarity 
may have resulted from seed dispersal, germination, mortality 
events that occurred at scales smaller than 2-5 km, local changes 
in topography, or could simply be the result of sampling error. 
The slope of the semivariogram in relation to direction was not 
consistent in the five subunits, suggesting that the pattern of the 
infestations changed with the subunits. The results indicated 
a strong effect of canyon orientations and are likely due to 
local wind patterns within the canyon grasslands. Results also 

Areas with Iterations at k = 2.0 Iterations at k = 0.5
Starting point of 
infestation (year) 50 100 150 200 250 300 50 100 150 200 250 300

Area 1 (1999) 87.5 62.5 37.5 12.5 12.5 0.00 90.9 63.6 54.5 18.2 9.10 0.00

Area 2 (2001) 89.5 84.2 42.1 26.3 5.30 0.00 90.9 68.2 31.8 9.10 0.00 0.00

Area 3 (1999) 97.1 77.1 54.3 28.6 11.4 0.00 96.4 73.2 57.1 41.1 21.4 0.00

Area 4 (1997) 88.9 66.7 61.1 38.9 27.8 0.00 89.5 78.9 71.1 60.5 28.9 0.00

Area 5 (2000) 85.7 78.6 64.3 14.3 0.00 0.00 85.0 70.0 35.0 15.0 10.0 0.00

Table 3: Omissional error rates (%) at two different angle settings (k = 2.0, 0.5) for the five model building areas.

Iterations for Model Building Area Iterations for Validation Area
Starting point of 
infestation (year) 50 100 150 200 250 300 50 100 150 200 250 300

Area 1 92.0 92.0 46.0 31.0 8.00 0.00 90.0 13.0 0.00 0.00 0.00 0.00

Area 2 89.0 79.0 53.0 16.0 0.00 0.00 13.0 0.00 0.00 0.00 0.00 0.00

Area 3 94.0 74.0 57.0 32.0 21.0 0.00 21.0 19.0 17.0 1.00 1.00 0.00

Area 4 75.0 69.0 63.0 63.0 25.0 0.00 34.0 7.00 7.00 4.00 0.00 0.00

Area 5 95.0 80.0 50.0 40.0 30.0 0.00 83.0 83.0 83.0 50.0 50.0 0.00

Table 4: Omissional error rates (%) of known infestation for the model building and validation areas.
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provided justification for inclusion of wind as a variable for 
dispersal model.

Wind dispersal models offer a management tool for forecasting 
the direction of movement. Though rush skeletonweed can 
spread vegetatively and through seeds dispersed by animals, 
vehicles, machinery, and water, [3] reported that wind currents 
were more important than other factors in influencing long 
distance dispersal. [49] conducted wind tunnel experiment on 
rush skeletonweed and found that pappus bearing seeds can 
disperse 6 m with a wind speed of 4 m/s [11] reported rush 
skeletonweed can disperse 24 to 32 km/yr.

The rush skeletonweed dispersal models predicted a long 
distance dispersal from 4 to 12 km within a time period of 5 to 12 
years. Modeling studies of seed flight have shown that turbulence 
increase dispersal distances because structured turbulent eddy 
motions tend to lift seeds to higher elevations with higher 
horizontal wind speeds [30]. According to [28], diaspores 
reaching steep hillsides gain altitude relative to ground surface 
greatly increase the flight times and considerably increase 
dispersal distances. Wind speeds and updrafts in open habitats 
and forests are important in moving the seeds long distances 
[29,35]. When seeds are dispersed in dense vegetation, such as 
Nez Perce forest, the wind speed decreased, thereby reducing the 
dispersal distance [55], while [28] reported that a pappus bearing 
diaspore can disperse > 100 m when the terminal velocity is <1.5 
m/s in open habitats. Our landscape-level approach resulted in 
predictions of yearly dispersal distance consistent with [28,29]. 
Horizontal wind speed increases with height above ground 
and the nature of this effect depends on surface roughness, as 
recognized in most small-scale meterological dispersal models.

Models are needed that relate dispersal distances to such 
measurable parameters as wind speed and direction, which 
thereby allow comparisons among different environments. Long-
distance dispersal may be due mainly to the topographic effects 
[28], and if the topographic effects are not considered, they may 
considerably underestimate dispersal of infestations by wind 
[19,23]. Models incorporating wind directionality describe 
seed dispersal data better than other theoretical models, such 
as exponential or Weibull functions, which did not have this 
ability [56]. Taking these conclusions into account, the dispersal 
model provides additional evidence that incorporating elevation, 

aspect, vegetation index, and wind parameters into dispersal 
enables better prediction of long-distance dispersal of seeds or 
pollen on large-scale and long-term population dynamics. The 
landscape approach moves dispersal modeling to an application 
level to inform land managers where an invasive, wind-dispersed 
species may move.

We addressed how seeds could disperse but we did not 
address survival once seeds are moved to new sites. According 
to [57], rush skeletonweed’s prolific nature of seed production 
and the ability of the seed to disperse over considerable 
distances results in wide-spread dispersal even with a very small 
percentage of seedling success. [4] found that dispersed rush 
skeletonweed seeds have no innate dormancy and 95 % of rush 
skeletonweed seeds germinated. Without dormancy and with 
high germinability, the site conditions where rush skeletonweed 
seed exists determine establishment after seed movement. Rush 
skeletonweed seedling establishment is highly variable from 
site to site and year to year [58], depending on soil moisture and 
burial depth. Prediction of rush skeletonweed occurrence will 
therefore require use of landscape characteristics. A complete 
picture of rush skeletonweed will need to incorporate an 
occurrence model (survival) into the dispersal process in order 
to refine model predictions and subsequently help land managers 
understand how far and in which direction rush skeletonweed 
can be expected to move. Until those components are developed, 
however, the current dispersal model provides useful predictions 
of rush skeletonweed movement and helps narrow the focus of 
control efforts.

In summary, knowledge of where and at what rate an invasive 
species such as rush skeletonweed moves across a landscape 
is often limited or nonexistent. Using a spatial network model 
algorithm, we produced a wind dispersal model that would aid 
land managers in their efforts to find new populations of rush 
skeletonweed across the canyon grasslands of central Idaho. 
Rush skeletonweed patches were related up to distances of 4 to 
12 km, suggesting that land managers should survey distances 
of at least 12 km from the current infestations towards the N or 
NE. The region considered for this study displayed a large degree 
of topographic relief. There are steep canyons interspersed with 
flatter areas, as well as forested areas with grassy expanses. Local 
conditions that modify wind patterns likely result in a range of 
distances where rush skeletonweed patches are related. By using 
topographic features in addition to wind patterns, predicted 
bounds for rush skeletonweed movement allows managers to 
meet their objectives for limiting further rush skeletonweed 
expansion within Idaho and other adjacent states. The wind maps 
developed here may also benefit management efforts. A 4 to 12 
km distance suggests there are local conditions that result in this 
range of distances.

ACKNOWLEDGMENTS
This research was supported in part by the USDA CSREES 

Integrated-National Research Initiative Competitive Grants 
Program. Number 2008-02991.

REFERENCES
1. Piper GL, Coombs EM. Fire conditions pre- and post-occurrence 

Distance (km) Infestations linked Omissional error (%)

0 0 100.00

1 386 20.08

2 432 10.56

4 452 6.42

6 470 2.69

8 474 1.86

10 476 1.45

12 481

14 481 0.41

Table 5: Omissional error rate (%) and number of rush skeletonweed 
infestations at various distances.

Total number of infestations = 483

http://www.fs.fed.us/rm/pubs_int/int_gtr313/int_gtr313_031_036.pdf


Central

Shafii et al. (2015)
Email: 

Int J Plant Biol Res 3(1): 1026 (2015) 12/13

of annual grasses on the Snake River Plain.  Stephen BC, Peters EF. 
Proceedings Ecology and Management of Annual Rangelands. Boise. 
31-36

2. Carroll P. Wiry skeletonweed threatens Oregon agriculture, 
Rangelands. Rangelands archives. 1980; 2: 21.

3. Sheley RL, Hudak JM, Grubb RT. Rush Skeletonweed.  Sheley RL, Hudak 
JM.  Rush Skeletonweed: A Threat to Montana’s Agriculture. Montana 
State Univ. Publ. EB-132, Bozeman, MT. 1995; 318-323

4. Schirman R, Robocker WC. Rush skeletonweed-threat to dryland 
agriculture. Weeds. 1967; 15: 310-312.

5. Zimdahl RL. Weed crop competition. Int. Plant Protection Center, 
Corvallis, Ore.1980.

6. Moore RM. Chondrilla juncea L. (Skeletonweed) in Australia. 
Proceedings 7th British Weed Control Conference. 1965; 2: 563-568.

7. Hitchcock CL, Cronquist A. Flora of the Pacific Northwest. Seattle, WA: 
University of Washington Press. 1973; 730.

8. Bussan AJ, Dyer WE. Herbicides and rangeland. In: Sheley, Roger L, 
Petroff JK, eds. Biology and Management of Noxious Rangeland Weeds. 
Corvallis: Oregon State University Press. 1999; 116-132 p.

9. Liao JD, Martin SB, Val Jo A, Shaw L. Seed biology of rush skeletonweed 
in sagebrush steppe. Journal of Range Management. 2000; 53: 544-
549.

10. Jacobs J, Goodwin K, Ogle D. Plant Guide for rush skeletonweed . 
USDA-Natural Resources Conservation Service, Montana State Office, 
Bozeman. 2009.

11. McVean DN. Ecology of Chondrilla juncea L. in south-eastern Australia. 
Journal of Ecology. 1996; 54: 345-365.

12. Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J. Seed dispersal 
near and far: patterns across temperate and tropical forests. Ecology. 
1999; 80: 1475–1494.

13. Nathan R, Muller-Landau HC . Spatial patterns of seed dispersal, their 
determinants and consequences for recruitment. Trends Ecol Evol. 
2000; 15: 278-285.

14. Nathan R, Horn HS, Chave J, Levin S. Mechanistic models for tree 
seed dispersal by wind in dense forests and open landscapes. Seed 
dispersal and frugivory: ecology, evolution and conservation. CABI, 
Wallingford. 2001.

15. Cain ML, Nathan R, Levin SA. Long-distance dispersal. Ecology. 2003; 
84: 1943–1944.

16. Levin SA, Muller-Landau HC, Nathan R, Chave J. The ecology and 
evolution of seed dispersal: a theoretical perspective. Annual Review 
of Ecology Evolution and Systematics. 2003; 34: 575-604.

17. Clark JS. Why trees migrate so fast: confronting theory with dispersal 
biology and the paleorecord. Am Nat. 1998; 152: 204-224.

18. Clark J, Horvath L, Lewis M. On the Estimation of Spread Rate for a 
Biological Population. Statistics and Probability Letters. 2001; 51: 
225–234.

19. Bullock JM, Clarke RT. Long distance seed dispersal by wind: 
measuring and modeling the tail of the curve. Oecologia. 2000; 124: 
506–521.

20. Higgins SI, Nathan R, Cain ML. Are long-distance dispersal events in 
plants usually caused by nonstandard means of dispersal? Ecology. 
2003; 84: 1945–1956.

21. Okubo A, Levin SA. A theoretical framework for data analysis of wind 
dispersal of seeds and pollen. Ecology. 1989; 70: 329–338.

22. Greene DF, Johnson EA. A model for wind dispersal of winged or 

plumed seeds. Ecology. 1989; 70: 339-347.

23. Greene DF, Johnson EA. Long-distance wind dispersal of tree seeds. 
Canadian Journal of Botany. 1995; 73:1036–1045.

24. Greene DF, Johnson EA. Wind dispersal of seeds from a forest into a 
clearing. Ecology. 1996; 77: 595-609.

25. Horn HS, Nathan R, Kaplan SR. Long-distance dispersal of tree seeds 
by wind. Ecological Research. 2001; 16: 877–885.

26. Nathan R, Safriel UN, Noy-Meir I.  Field validation and sensitivity 
analysis of a mechanistic model for tree seed dispersal by wind. 
Ecology. 2001; 82: 374–388.

27. Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, Avissar R, et al. 
Mechanisms of long-distance dispersal of seeds by wind. Nature. 
2002; 418: 409-413.

28. Tackenberg O. Modeling long-distance dispersal of plant diaspores by 
wind. Ecological Monographs. 2003; 73: 173-189.

29. Tackenberg O, Poschlod P, Kahmen S. Dandelion seed dispersal: the 
horizontal wind speed does not matter for long-distance dispersal – it 
is updraft. Plant Biology. 2003; 5: 451-454.

30. Soons MB, Heil GW, Nathan R, Katul GG. Determinants of long-distance 
dispersal by wind in grasslands. Ecology. 2004; 85:3056-3068.

31. Katul GG, Porporato A, Nathan R, Siqueira M, Soons MB, Poggi D, et 
al. Mechanistic analytical models for long-distance seed dispersal by 
wind. Am Nat. 2005; 166: 368-381.

32. Pazos GE, Greene DF, Katul G, Bertiller MB, Soons MB. Seed dispersal 
by wind: towards a conceptual framework of seed abscission and its 
contribution to long-distance dispersal. Journal of Ecology. 2013; 101: 
889-904.

33. Chave J, Levin S. Scale and scaling in ecological and economic systems. 
Environmental and Resource Economics. 2003; 26: 527-557.

34. Nathan R. Long-distance dispersal of plants. Science. 2006; 313: 786-
788.

35. Nathan R, Katul GG, Bohrer G, Kuparinen A, Soons MB, Thompson 
SE, et al. Mechanistic models of seed dispersal by wind. Theoretical 
Ecology. 2011; 4: 113-132.

36. Fortuna MA, Gómez-Rodríguez C, Bascompte J. Spatial network 
structure and amphibian persistence in stochastic environments. Proc 
Biol Sci. 2006; 273: 1429-1434.

37. Lass LW, Prather TS, Shafii B, Price WJ. Tracking invasive weed 
species in rangeland using probability functions to identify site-
specific boundaries: A case study using yellow starthistle (Centaurea 
solstitialis L.). In GIS Applications in Agriculture. CRC Press. 2011; 
277-299.

38. Donald WW. Geostatistics for mapping weeds, with a Canada thistle 
(Cirsium arvense) patch as a case study. Weed Science. 1994; 42: 648-
657.

39. Heisel T, Andreasen C, Ersboll AK. Annual weed distributions can be 
mapped with kriging. Weed Research. 1996; 36: 325-336.

40. Cressie NAC. Statistics for Spatial Data. New York: John Wiley & Sons. 
1993.

41. Rossi RE, Mulla DJ, Journel AG, Franz EH. Geostatistical tools for 
modeling and interpreting ecological spatial dependence. Ecological 
Monographs. 1992; 62: 277-314.

42. Webster R, Oliver MA. Statistical Methods in Soil and Land Resource 
Survey. Oxford University Press, New York, USA. 1990.

43. Deutsch CV, Journel AG. GSLIB: Geostatistical Software Library and 
User’s Guide, Oxford University Press, New York. 1992.

http://www.fs.fed.us/rm/pubs_int/int_gtr313/int_gtr313_031_036.pdf
http://www.fs.fed.us/rm/pubs_int/int_gtr313/int_gtr313_031_036.pdf
http://www.fs.fed.us/rm/pubs_int/int_gtr313/int_gtr313_031_036.pdf
https://journals.uair.arizona.edu/index.php/rangelands/article/view/9935
https://journals.uair.arizona.edu/index.php/rangelands/article/view/9935
http://www.jstor.org/discover/10.2307/4040996?sid=21105198026081&uid=2&uid=3738256&uid=4
http://www.jstor.org/discover/10.2307/4040996?sid=21105198026081&uid=2&uid=3738256&uid=4
https://publications.csiro.au/rpr/pub?list=BRO&pid=procite:cf4d4718-10be-418f-b0a7-df851c8761e4
https://publications.csiro.au/rpr/pub?list=BRO&pid=procite:cf4d4718-10be-418f-b0a7-df851c8761e4
http://www.lib.miamioh.edu/multifacet/record/mu3ugb2723444
http://www.lib.miamioh.edu/multifacet/record/mu3ugb2723444
http://www.lib.miamioh.edu/multifacet/record/mu3ugb2723444
https://journals.uair.arizona.edu/index.php/jrm/article/view/9556
https://journals.uair.arizona.edu/index.php/jrm/article/view/9556
https://journals.uair.arizona.edu/index.php/jrm/article/view/9556
http://www.jstor.org/discover/10.2307/2257954?sid=21105198026081&uid=4&uid=3738256&uid=2
http://www.jstor.org/discover/10.2307/2257954?sid=21105198026081&uid=4&uid=3738256&uid=2
http://www.jstor.org/discover/10.2307/176541?sid=21105198026081&uid=4&uid=3738256&uid=2
http://www.jstor.org/discover/10.2307/176541?sid=21105198026081&uid=4&uid=3738256&uid=2
http://www.jstor.org/discover/10.2307/176541?sid=21105198026081&uid=4&uid=3738256&uid=2
http://www.ncbi.nlm.nih.gov/pubmed/10856948
http://www.ncbi.nlm.nih.gov/pubmed/10856948
http://www.ncbi.nlm.nih.gov/pubmed/10856948
http://chave.ups-tlse.fr/chave/Frugivory_chapter.pdf
http://chave.ups-tlse.fr/chave/Frugivory_chapter.pdf
http://chave.ups-tlse.fr/chave/Frugivory_chapter.pdf
http://chave.ups-tlse.fr/chave/Frugivory_chapter.pdf
http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.34.011802.132428
http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.34.011802.132428
http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.34.011802.132428
http://www.ncbi.nlm.nih.gov/pubmed/18811386
http://www.ncbi.nlm.nih.gov/pubmed/18811386
file:///C:\Users\JSM Biomarkers\Downloads\0c96051fe7c8fbe865000000.pdf
file:///C:\Users\JSM Biomarkers\Downloads\0c96051fe7c8fbe865000000.pdf
file:///C:\Users\JSM Biomarkers\Downloads\0c96051fe7c8fbe865000000.pdf
http://link.springer.com/article/10.1007%2FPL00008876
http://link.springer.com/article/10.1007%2FPL00008876
http://link.springer.com/article/10.1007%2FPL00008876
http://www.jstor.org/discover/10.2307/3450019?sid=21105233651871&uid=3738256&uid=2&uid=4
http://www.jstor.org/discover/10.2307/3450019?sid=21105233651871&uid=3738256&uid=2&uid=4
http://www.jstor.org/discover/10.2307/3450019?sid=21105233651871&uid=3738256&uid=2&uid=4
http://www.esajournals.org/doi/abs/10.2307/1937537
http://www.esajournals.org/doi/abs/10.2307/1937537
http://www.jstor.org/discover/10.2307/1937538?sid=21105233651871&uid=3738256&uid=4&uid=2
http://www.jstor.org/discover/10.2307/1937538?sid=21105233651871&uid=3738256&uid=4&uid=2
http://www.nrcresearchpress.com/doi/abs/10.1139/b95-113?journalCode=cjb1#.VM8JM9KUffI
http://www.nrcresearchpress.com/doi/abs/10.1139/b95-113?journalCode=cjb1#.VM8JM9KUffI
http://www.jstor.org/discover/10.2307/2265633?sid=21105233651871&uid=4&uid=3738256&uid=2
http://www.jstor.org/discover/10.2307/2265633?sid=21105233651871&uid=4&uid=3738256&uid=2
http://onlinelibrary.wiley.com/doi/10.1046/j.1440-1703.2001.00456.x/abstract
http://onlinelibrary.wiley.com/doi/10.1046/j.1440-1703.2001.00456.x/abstract
http://www.jstor.org/discover/10.2307/2679866?sid=21105233651871&uid=2&uid=4&uid=3738256
http://www.jstor.org/discover/10.2307/2679866?sid=21105233651871&uid=2&uid=4&uid=3738256
http://www.jstor.org/discover/10.2307/2679866?sid=21105233651871&uid=2&uid=4&uid=3738256
http://www.ncbi.nlm.nih.gov/pubmed/12140556
http://www.ncbi.nlm.nih.gov/pubmed/12140556
http://www.ncbi.nlm.nih.gov/pubmed/12140556
v
v
http://onlinelibrary.wiley.com/doi/10.1055/s-2003-44789/abstract
http://onlinelibrary.wiley.com/doi/10.1055/s-2003-44789/abstract
http://onlinelibrary.wiley.com/doi/10.1055/s-2003-44789/abstract
http://www.esajournals.org/doi/abs/10.1890/03-0522
http://www.esajournals.org/doi/abs/10.1890/03-0522
http://www.ncbi.nlm.nih.gov/pubmed/16224691
http://www.ncbi.nlm.nih.gov/pubmed/16224691
http://www.ncbi.nlm.nih.gov/pubmed/16224691
http://onlinelibrary.wiley.com/doi/10.1111/1365-2745.12103/abstract
http://onlinelibrary.wiley.com/doi/10.1111/1365-2745.12103/abstract
http://onlinelibrary.wiley.com/doi/10.1111/1365-2745.12103/abstract
http://onlinelibrary.wiley.com/doi/10.1111/1365-2745.12103/abstract
http://link.springer.com/article/10.1023/B%3AEARE.0000007348.42742.49
http://link.springer.com/article/10.1023/B%3AEARE.0000007348.42742.49
http://www.ncbi.nlm.nih.gov/pubmed/16902126
http://www.ncbi.nlm.nih.gov/pubmed/16902126
http://nicholas.duke.edu/people/faculty/katul/Nathan_TE_2011.pdf
http://nicholas.duke.edu/people/faculty/katul/Nathan_TE_2011.pdf
http://nicholas.duke.edu/people/faculty/katul/Nathan_TE_2011.pdf
http://www.ncbi.nlm.nih.gov/pubmed/16777733
http://www.ncbi.nlm.nih.gov/pubmed/16777733
http://www.ncbi.nlm.nih.gov/pubmed/16777733
http://www.ars.usda.gov/sp2UserFiles/Place/50701000/cswq-0136-donald.pdf
http://www.ars.usda.gov/sp2UserFiles/Place/50701000/cswq-0136-donald.pdf
http://www.ars.usda.gov/sp2UserFiles/Place/50701000/cswq-0136-donald.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3180.1996.tb01663.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3180.1996.tb01663.x/abstract
http://www.eea.europa.eu/data-and-maps/indicators/exposure-of-ecosystems-to-acidification-2/statistics-for-spatial-data
http://www.eea.europa.eu/data-and-maps/indicators/exposure-of-ecosystems-to-acidification-2/statistics-for-spatial-data
http://www.jstor.org/discover/10.2307/2937096?sid=21105233651871&uid=3738256&uid=4&uid=2
http://www.jstor.org/discover/10.2307/2937096?sid=21105233651871&uid=3738256&uid=4&uid=2
http://www.jstor.org/discover/10.2307/2937096?sid=21105233651871&uid=3738256&uid=4&uid=2
http://www.researchgate.net/publication/224840136_Statistical_Methods_in_Soil_and_Land_Resource_Survey
http://www.researchgate.net/publication/224840136_Statistical_Methods_in_Soil_and_Land_Resource_Survey


Central

Shafii et al. (2015)
Email: 

Int J Plant Biol Res 3(1): 1026 (2015) 13/13

Kesoju SR, Shafii B, Lass LW, Price WJ, Prather TS (2015) Predicting Rush Skeletonweed (Chondrilla juncea) Dispersal by Wind within the Canyon Grasslands 
of Central Idaho. Int J Plant Biol Res 3(1): 1026.

Cite this article

44. Isaaks EH, Srivastava RM. An introduction to applied geostatistics. 
Oxford University Press, New York, 1989;516.

45. Verkaar HJ, Schenkeveld AJ, van de Klashorst MP. The ecology of short-
lived forbs in chalk grasslands: Dispersal of seeds. New Phytology. 
1983; 95: 335-344.

46. Andersen M. Mechanistic models for the seed shadows of wind-
dispersed seeds. American Naturalist. 1991; 137: 476–497.

47. Baret F, Guyot G, Major DJ. TSAVI: A vegetation index which minimizes 
soil brightness effects on LAI and APAR estimation. Geoscience and 
Remote Sensing Symposium, IGARSS’89. 12th Canadian Symposium 
on Remote Sensing. 1989; 3:1355-1358.

48. Gesch DB. The National Elevation Dataset. In: Digital Elevation Model 
Technologies and Applications: The DEM Users Manual. Maune 
D editor. 2nd Edition: Bethesda, Maryland, American Society for 
Photogrammetry and Remote Sensing. 2007; 99-118.

49. Hensen I, Muller C. Experimental and structural investigations of 
anemochorous dispersal. Plant Ecology. 1997; 133: 169-180.

50. Sreelakshmi K, Ramakanth KP. Neural networks for short term 
wind speed prediction. World Academy of Science, Engineering and 
Technology. 2008; 42: 721-725.

51. Atkinson PM, Tatnall ARL. Neural networks in remote sensing. 
International Journal of Remote Sensing. 1998; 18: 699–709.

52. Shafii B, Price WJ, Prather TS, Lass LW, Thill DC.  Predicting the 
likelihood of yellow starthistle (Centaurea solstitialis) occurrence 
using landscape characteristics. Weed Science. 2003; 51: 748-751.

53. Kesoju SR. Modeling wind dispersal of rush skeletonweed (Chondrilla 
juncea L.) in the canyon grasslands of central Idaho. University of 
Idaho. 2012.

54. Rossi RE, Mulla DJ, Journel AG, Franz EH. Geostatistical tools for 
modeling and interpreting ecological spatial dependence. Ecological 
Monographs. 1992; 62: 277-314.

55. Thiede DA, Augspurger CK. Intraspecific variation in seed dispersion 
of Lepidium campestre (Brassicaceae). American Journal of Botany. 
1996; 83: 856-866.

56. Tufto J, Engen S, Hindar K. Stochastic Dispersal Processes in Plant 
Populations Theor Popul Biol. 1997; 52: 16-26.

57. Kinter C L, Mealor BA, Shaw NL, Hild AL. Postfire invasion potential 
of rush skeletonweed (Chondrilla juncea). Rangeland Ecology and 
Management. 2007; 60: 386-394.

58. Cullen JM, Groves RH. The population biology of Chondrilla juncea in 
Australia. Proceedings of the Ecological Society Australia. 1977; 10: 
121–134.

http://www.amazon.com/Introduction-Applied-Geostatistics-Edward-Isaaks/dp/0195050134
http://www.amazon.com/Introduction-Applied-Geostatistics-Edward-Isaaks/dp/0195050134
http://www.jstor.org/discover/10.2307/2432706?sid=21105233651871&uid=3738256&uid=2&uid=4
http://www.jstor.org/discover/10.2307/2432706?sid=21105233651871&uid=3738256&uid=2&uid=4
http://www.jstor.org/discover/10.2307/2432706?sid=21105233651871&uid=3738256&uid=2&uid=4
http://www.jstor.org/discover/10.2307/2462376?sid=21105233651871&uid=2&uid=3738256&uid=4
http://www.jstor.org/discover/10.2307/2462376?sid=21105233651871&uid=2&uid=3738256&uid=4
v
v
v
v
http://pubs.usgs.gov/fs/2009/3053/pdf/fs2009_3053.pdf
http://pubs.usgs.gov/fs/2009/3053/pdf/fs2009_3053.pdf
http://pubs.usgs.gov/fs/2009/3053/pdf/fs2009_3053.pdf
http://pubs.usgs.gov/fs/2009/3053/pdf/fs2009_3053.pdf
http://link.springer.com/article/10.1023/A%3A1009744518223
http://link.springer.com/article/10.1023/A%3A1009744518223
http://www.waset.org/publications/568
http://www.waset.org/publications/568
http://www.waset.org/publications/568
http://www.tandfonline.com/doi/abs/10.1080/014311697218700?journalCode=tres20#.VM8U_9KUffI
http://www.tandfonline.com/doi/abs/10.1080/014311697218700?journalCode=tres20#.VM8U_9KUffI
v
v
v
http://wssaabstracts.com/public/12/abstract-85.html
http://wssaabstracts.com/public/12/abstract-85.html
http://wssaabstracts.com/public/12/abstract-85.html
http://www.jstor.org/discover/10.2307/2937096?sid=21105233651871&uid=3738256&uid=2&uid=4
http://www.jstor.org/discover/10.2307/2937096?sid=21105233651871&uid=3738256&uid=2&uid=4
http://www.jstor.org/discover/10.2307/2937096?sid=21105233651871&uid=3738256&uid=2&uid=4
http://www.jstor.org/discover/10.2307/2446262?sid=21105233651871&uid=4&uid=2&uid=3738256
http://www.jstor.org/discover/10.2307/2446262?sid=21105233651871&uid=4&uid=2&uid=3738256
http://www.jstor.org/discover/10.2307/2446262?sid=21105233651871&uid=4&uid=2&uid=3738256
http://www.ncbi.nlm.nih.gov/pubmed/9356320
http://www.ncbi.nlm.nih.gov/pubmed/9356320
http://www.srmjournals.org/doi/abs/10.2111/1551-5028%282007%2960%5B386%3APIPORS%5D2.0.CO%3B2
http://www.srmjournals.org/doi/abs/10.2111/1551-5028%282007%2960%5B386%3APIPORS%5D2.0.CO%3B2
http://www.srmjournals.org/doi/abs/10.2111/1551-5028%282007%2960%5B386%3APIPORS%5D2.0.CO%3B2

	Predicting Rush Skeletonweed (Chondrilla juncea) Dispersal by Wind within the Canyon Grasslands of C
	Abstract
	Introduction
	Methods
	Study area
	Spatial dependence model
	Potential characteristic variables used for rush skeletonweed wind dispersal model 
	Wind speed and direction data 
	Wind rose plots 
	Wind speed and direction maps 
	Dispersal modeling 
	Cost Function 
	Creating dispersal maps 
	Dispersal model assessment 
	Dispersal model validation 

	Results
	Spatial dependence model 
	Wind speed and direction maps 
	Dispersal modeling 
	Dispersal model validation 
	Application of wind dispersal model to an independent study area

	Discussion
	Acknowledgments
	References
	Figure 1
	Figure 2
	Table 1
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 2
	Table 3
	Table 4
	Table 5

