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Abstract

Mold-produced secondary metabolites that are toxic and carcinogenic are 
termed mycotoxins. They are biosynthesized in a number of fungi, mainly from 
species in the Aspergillus, Fusarium and Penicillium genera. Mycotoxins contaminate 
agricultural commodities such as grains, fruits and nuts. Due to their toxic and 
carcinogenic properties, they pose a serious health hazard to animals and humans 
and cause staggering economic losses to growers, packers, processors, and consumers 
annually. Research on major mycotoxins, such as aflatoxins, using molecular biological 
and genetic tools has uncovered the genes, gene clusters, biosynthetic pathways, and 
genetic regulatory mechanisms involved in their formation. The field of genomics has 
empowered scientists with a high throughput tool to study mycotoxin biosynthesis 
and regulatory networks with a new level of scientific rigor. In this paper, the current 
status of genomic investigations on mycotoxigenic fungi has been summarized in order 
to better understand their biosynthesis, genetic regulation, genome structure, and 
evolutionary aspects. In addition, the advantages, challenges, and future perspectives 
in studying mycotoxins are discussed. The information and knowledge contained in this 
chapter may guide possible solutions to abate mycotoxin contamination of agricultural 
commodities for human consumption and animal feed.

ABBREVIATIONS
NGS: Next Generation Sequencing; CPA: Cyclopiazonic 

Acid; DON: Deoxynivalenol; ST: Sterigmatocystin; DHST: 
Dihydrosterigmatocystin; ORF: Open Reading Frames; FFSC: 
Fusarium (Gibberella) fujikuroi Species Complex; OTA: Ochratoxin 
A; SMURF: Secondary Metabolite Unique Region Finder; 
Antismash: Antibiotics And Secondary Metabolite Analysis Shell; 
Aspgd: Aspergillus Genome Database.

INTRODUCTION
Mycotoxins and mycotoxigenic fungi

Fungi are diverse and complex life forms. They play an 
essential role in carbon and nitrogen recycling by breaking 
down organic matter, especially plant biomass (i.e. leaf litter). 
The fungal kingdom also includes harmful pathogens that cause 
diseases of plants, animals, and humans. Some fungi are valued 
as gourmet foodstuffs that regularly appear on our dining tables 
(for example, edible basidiomycetes, truffles, and certain mold 
fermented foods, i.e. camembert cheese) Finally, numerous fungal 
species are capable of producing a broad array of chemically 
diverse secondary metabolites (SM) [1]. Some of the SM 
produced by fungi are beneficial and have useful pharmaceutical 

properties, such as antibiotics and other compounds used as 
drugs [2]. For example, Penicillium chrysogenum produces 
penicillin, a well-known broad spectrum antibiotic drug that 
has saved thousands of lives since World War II. Aspergillus 
terreus produces lovastatin, a potent cholesterol-lowering drug. 
Other Aspergillus species secrete antibiotics (cephalosporin), 
antifungals (griseofulvin), and anti-tumor drugs (terrequinone A) 
[1,3] , while a number of SM are toxic and carcinogenic to animals 
and humans [1,2,4]. Well-studied mycotoxins include aflatoxins, 
ochratoxins, sterigmatocystins, cyclopiazonic acid (CPA), kojic 
acid, patulin, citrinin, fumonisins, trichothecenes, deoxynivalenol 
(DON) toxins, T-2 toxin, and zearalenone toxin [5,6]. These toxins 
are mostly produced by Aspergillus, Fusarium, and Penicillium 
spp., although other fungal genera are also implicated. 

Food and feed contamination by mycotoxins, especially by 
aflatoxins, fumonisins, trichothecenes, ochratoxins, and patulin, 
are a significant food safety issue in developing countries because 
of the lack of detection, monitoring and regulations to safeguard 
the food supply. It is estimated that approximately 4.5 billion 
people living in developing countries are chronically exposed 
to uncontrolled amounts of aflatoxin that results in negatives 
changes in immune and nutritional status [7]. Major outbreaks 
of acute aflatoxicosis from contaminated food in humans have 
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been documented [8]. For example, in western India in 1974, 
108 persons among 397 people affected died from aflatoxin 
poisoning [9]. A more recent incident of aflatoxin poisoning 
occurred in Kenya in July 2004 leading to the death of 125 
people among the 317 reported illnesses due to consumption 
of aflatoxin contaminated corn [8,9]. Due to their toxic and 
carcinogenic effects, aflatoxins have received a lot of attention 
from the research community and the aflatoxin biosynthetic 
pathway is one of the best studied fungal secondary metabolic 
pathways [10-12]. 

The number of uncharacterized secondary compounds 
produced by fungi via various metabolic pathways is unknown. 
These include pathway end products and intermediates 
or shunt metabolites formed along these pathways. These 
uncharacterized compounds are likely to include many new SM 
that will have beneficial pharmaceutical properties that can be 
explored for potential drug discovery, while others may possess 
toxic or carcinogenic properties. To maximize the likelihood of 
discovering new drugs and to minimize the harmful effects of 
mycotoxins for food safety, uncharacterized SM clusters are the 
subject of investigations by scientists worldwide.

Genomics approaches to study mycotoxins and 
mycotoxigenic fungi

Technical breakthroughs in DNA sequencing have provided a 
high throughput tool to study genes and genetics at the genome 
scale. The availability of Next Generation Sequencing (NGS) 
technologies allows scientists to sequence a given fungal genome 
and discover all of the putative functional genes of a genome 
in a very short time [13-15]. NGS technologies are broadly 
applied in functional genomics for transcriptome studies. In the 
post-genomic era, the genomes of numerous biologically and 
economically important fungi have been sequenced. Comparative 
genomics analysis of related toxigenic fungal species has 
revealed a vast array of information concerning mycotoxin 
biosynthetic pathways, pathway genes, gene clusters, genomic 
organization, and their evolution. Genome sequencing data 
enrich our knowledge of the evolutionary status and phylogenetic 
relationships of related fungal species. It is expected that the 
genomic data accumulated over the years, and the accompanying 
knowledge gained through functional genomic studies, can 
be translated into biotechnological strategies for preventing 
mycotoxin contamination in food and feed.

DISCUSSION AND CONCLUSION
Aspergillus toxins and genomics

Mycotoxins have very diverse chemical structures, 
toxic effects, and biological activities [1649]. At sufficient 
concentrations, some mycotoxins have acute toxic effects leading 
to death, while long term exposure to lower concentrations 
results in chronic effects, such as suppressed immune response, 
malnutrition, or cancer [17,18]. Among the identified mycotoxins, 
aflatoxins are the most toxic and potent natural carcinogens. 
These A. flavus toxins were first identified as the cause of a severe 
animal poisoning incident in England in 1960 called Turkey X 
disease [19,20]. Most strains of A. flavus produce aflatoxin B1 and 
B2 whereas the closely related species, A. parasiticus produces 
aflatoxins B1, B2, G1, and G2. Further, aflatoxin M1 is a hydroxylated 

derivative metabolized from aflatoxin B1 by cows and secreted in 
milk [18]. In addition to aflatoxins, A. flavus also produces many 
other mycotoxins such as cyclopiazonic acid (CPA), kojic acid, 
beta-nitropropionic acid, aspertoxin, aflatrem and aspergillic acid 
[21]. Sterigmatocystin (ST) or dihydrosterigmatocystin (DHST), 
the penultimate precursors of aflatoxins, are produced by several 
species including Aspergillus versicolor and Aspergillus nidulans. 
Although somewhat less toxic and carcinogenic than aflatoxins, 
the sterigmatocystins produced by A nidulans and A. versicolor 
share common biochemical pathways, homologous genes, and 
regulatory mechanisms to aflatoxins [12,22]. In A. flavus and A. 
parasiticus a complete aflatoxin pathway gene cluster consisting 
30 genes or open reading frames (ORFs) has been confirmed 
within an 80 kb DNA sequence [12]. 

Aspergillus genomics was initiated during the late 20th 
century by coordinated international efforts to sequence three 
genomes: the medically important Aspergillus fumigatus [23], the 
biological model A. nidulans [24], and the industrially important 
fungus A. oryzae [32]. The papers describing these three 
genomes were published concurrently in Nature in 2005. In the 
early 21st century, A.  flavus (strain: NRRL 3357) whole genome 
sequencing was initiated in order to study aflatoxin biosynthesis 
and genetic regulation for food safety, and the sequencing was 
completed in 2005 [26]. Primary assembly indicated that the A. 
flavus genome consists of 8 chromosomes and a genome size of 
about 36.8 Mb. Preliminary annotation demonstrated that there 
are 13,485 functional genes in the A. flavus genome, a number 
similar to those of other Aspergillus species [23,24,27,28]. 
Using the Secondary Metabolite Unique Region Finder (SMURF) 
program [29], fifty-six (56) SM gene clusters were identified in 
A. flavus and their relative physical locations in the genome were 
determined. The aflatoxin gene cluster is located on chromosome 
III near a sub-telomeric region [30,31]. The sequence data have 
been deposited in the NCBI GenBank database (http://www.
ncbi.nlm.nih.gov) under WGS accession AAIH02000000 and 
the Genome Announcement was submitted to ASM [32]. The 
data are also available through the A. flavus website (http://
www.aspergillusflavus.org), Aspergillus Comparative Database 
of The Broad Institute at MIT (http://www.broadinstitute.
org/annotation/genome/aspergillus_group/MultiHome.html), 
and Central Aspergillus Data Repository in the United Kingdom 
(http://www.cadre-genomes.org.uk/aspergillus_links.html). 

Comparative genomics studies of the aflatoxin-producing 
A. flavus strain NRRL 3357 indicated that it is very similar to A. 
oryzae in genome size (36.7 Mb) and the number of predicted 
genes (12,079). Both genomes are enriched in genes for SM. The 
A. flavus and A. oryzae genomes are predicted to have 35 vs. 30 
polyketide synthases, 24 vs. 24 non-ribosomal peptide synthases, 
and 122 vs. 151 P450 enzymes, respectively. There are 255 genes 
unique to A. flavus and 299 genes unique to A. oryzae.

Genomes of several additional aflatoxin-producing Aspergillus 
strains also have been sequenced. A. parasiticus is a soil-born 
pathogen that infects peanut and produces large amounts of 
aflatoxins (B1, B2, G1, and G2). The A. parasiticus strain SU-1 
genome has been recently sequenced [33]. The A. parasiticus SU-1 
genome is estimated to be about 39 Mb in size and predicted to 
consist of 8 chromosomes with similar sizes to those of A. flavus 
3357. Although, the SU-1 genome size (39Mb) is 2 Mb larger than 

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.aspergillusflavus.org
http://www.aspergillusflavus.org
http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiHome.html
http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiHome.html
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A. flavus NRRL 3357 (36.8 Mb), the number of functional genes in 
both genomes is similar (13,290 and 13,485 genes respectively). 
About 4% of the A. flavus 3357 ORFs have no detectable homolog 
in the A. parasiticus SU-1 genome [33]. Both genomes share 
greater than 90% sequence identity over more than 90% of 
the genome, and both genomes contain about fifty-six SM gene 
clusters as detected by SMURF [29]. In an independent effort, 
A. parasiticus SU-1 and another aflatoxin-producing A. flavus 
strain #70, also have been sequenced. The sequence data are 
under annotation and analysis (Yu et al, unpublished). A. flavus 
#70 produces small sclerotia and large amounts of aflatoxins as 
compared with the previously sequenced A. flavus NRRL 3357 
which produces large sclerotia. A. flavus strain #70 is highly 
virulent and causes infection in cotton bolls. Future studies will 
attempt to identify those factors that contribute to its virulence 
and sclerotial morphology. 

The sequence of Aspergillus niger, a member of the black 
aspergilli that is widely used in biotechnology for the production 
of food ingredients, pharmaceuticals, and industrial enzymes 
was published in 2007 [27]. The genome size of A. niger CBS 
513.88 was about 33.9 Mb. A total of 14,165 open reading frames 
were identified and functional predictions were made for 6,506 
of these genes. The sequence and annotation data of the above 
described genomes, and other related Aspergillus genomes, 
have been curated by the Aspergillus Genome Database (AspGD, 
http://www.aspgd.org/) [34].

Fusarium toxins and genomics

The genus Fusarium is another widespread group of 
filamentous fungal species. Some species of Fusarium produce 
toxigenic SM, including fumonisins and trichothecenes. These 
Fusarium mycotoxins have the potential to contaminate grains 
and animal feeds worldwide, requiring the surveillance of 
international agencies [35].The economic impact of these 
mycotoxins on health costs and their effect on international trade 
is estimated to be in the hundreds of millions of dollars annually 
[36]. 

Fumonisins are a family of mycotoxins including fumonisin 
B1, B2, B3, B4, A1, A2, C1, C3 etc. [16]. Fumonisin-producing species 
are members of the Fusarium (Gibberella) fujikuroi complex (FFC) 
[37]. These include F. moniliforme, F. proliferatum, F. verticillioides 
and F. oxysporum [37]. These fungi are found in soils across the 
world and have the potential to infect crops, particularly maize 
(corn) posing an enormous threat to the health of humans and 
our domesticated animals [38].  Fumonisin B1 has a chemical 
structure similar to that of sphonganine and sphingosine, both 
of which are important substrates in sphingolipid metabolism. 
Fumonisin B1 disrupts sphingolipid metabolism by interfering 
with its biosynthesis via competitive inhibition of ceramide 
synthase which thereby blocks the conversion of sphingolipids 
to ceramides. Human exposure occurs most commonly in 
populations where maize is the dietary staple. In addition to 
a suspected association with neural tube defects, fumonisin 
exposure has been correlated with higher levels of cancer, 
especially esophageal and liver cancer [39,40]. The fumonisin 
biosynthetic pathway and cognate loci consist of at least 16 genes 
[37]. 

Another major group of mycotoxins produced by Fusarium 

species is the trichothecenes. Deoxynivalenol (DON) and T-2 
toxin are the branched products of the trichothecene pathway. 
They are commonly produced by at least 24 Fusarium species 
including F. equisiti, F. graminearum. F. moniliforme and F. 
sporotrichioides [41]. Seven additional fungal genera are also 
reported to produce trichothecenes [16]. It is reported that 
trichothecene biosynthesis involves at least 12 genes [42]. 

Genome sequencing of mycotoxin-producing Fusarium 
species started with Fusarium verticilioides Expressed Sequence 
Tags (EST) reported at a fungal genomics workshop in 2002. 
The genomes of F. verticillioides [43], F. graminearum [44], F. 
fujikuroi IMI [45], and F. oxysporum [43] have been sequenced 
and reported. Comparative genomics studies revealed the genes, 
gene clusters, and cluster evolution responsible for fumonisin and 
trichothecene biosynthesis [46]. The whole genome sequence 
data has facilitated the identification of complete gene clusters 
involved in SM, pigments, and mycotoxins [37,47]. 

Penicillium toxins and genomics

Approximately one hundred Penicillium species are capable 
of producing mycotoxins, however the majority of these are 
not commonly found in food commodities. Nevertheless, three 
major mycotoxins produced by Penicillium spp. are a food safety 
concern to human and animals: ochratoxin A (OTA), patulin, and 
citrinin [48]. P. verrucosum and P. nodicum as well as A. ochraceus 
produce OTA. Patulin is produced by a number of species 
belonging to both Aspergillus and Penicillium [49], however the 
main producers of patulin are P. expansum species that cause 
postharvest decay of apple and pears [48,50]. In addition, P. 
expansum produces citrinin, penicillic acid, penitrem A, and 
rubratoxin B. P. citrinum is the main producer of citrinin. Genetic 
and genomic studies on the biosynthesis of these toxins have 
significantly lagged behind that of aflatoxins and trichothecenes. 
The biosynthetic pathways of OTA and the genes involved 
were identified to consist of 3 genes in a 10 kb DNA region in 
P. nordicum [51]. The patulin biosynthetic pathway is chemically 
well-characterized. A putative patulin gene cluster was first 
reported by genome sequencing of non-producing strains of A. 
fumigatus and A. clavatus [52,53].

The genome sequencing of species in the genus Penicillium 
was initially started for those with pharmaceutical and industrial 
value which include: the penicillin-producing P. chrysogenum 
[54]; the main postharvest pathogen of citrus, P.digitatum 
[55]; the lignocellulose-degrading P. oxalicum (P.decumbens) 
[56]; two cheese-related Penicillium species, P. roqueforti 
and P. camemberti [57], and the endophytic fungal species, P. 
aurantiogriseum [58]. A strain of P. expansum was sequenced 
recently in order to learn more about the genes involved in 
patulin biosynthesis [59]. The patulin gene cluster was first 
identified in Aspergillus clavatus by whole genome sequencing 
[53] and predicted by SMURF [29] to consist of 15 genes in the 
following order: patH, patG, patF, patE, patD, patC, patB, patA, 
patM, patN, patO, patL, patI, patJ, and patK [53]. The functions 
of two of the patulin pathway genes encoding for cytochrome 
P450 type enzymes in A. clavatus were characterized [52]. The 
patulin gene cluster in P. expansum also was reported [60]. These 
genes share 60-70% sequence identity to those in Aspergillus 
clavatus [52,53] although their gene order was different. To 
understand the pathogenicity and mycotoxin biosynthesis of the 

http://www.aspgd.org/
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blue mold fungus that causes postharvest decay of pome fruit 
[61],the most virulent and economically significant strain in our 
collection, P. expansum R19 was sequenced and compared with 
the less virulent strain P. solitum RS1. The calculated genome 
size of P. expansum (R19) contained 31,415,732 bps [59]. This 
is consistent with the genome size reported previously for P. 
chrysogenum [54]. Preliminary annotation demonstrated that the 
P. expansum R19 genome harbors 10,554 predicted genes with 
an average gene length of 1,599 bp. There are 120 tRNA genes 
and 48 5S rRNA genes respectively. It is estimated that there are 
59 gene clusters putatively involved in the biosynthesis of SM as 
predicted by SMURF[29]. This is similar to the result predicted 
by the AntiSMASH program, the Antibiotics and Secondary 
Metabolite Analysis Shell [62], which resulted in 57 clusters. 
Genes that are putatively involved in spore germination, mycelial 
growth, and mycotoxin biosynthesis, specifically patulin and 
citrinin, are under investigation [59]. The genome sequence of 
P. expansum R19 has been deposited at DDBJ/EMBL/GenBank 
under the accession JHUC00000000. The version described in 
this paper is version JHUC01000000. Transcriptome studies on P. 
expansum and comparison with related non-patulin -producing 
strains also have been reported [63]. The recently published 
genomes of Penicillium species [64] indicated that P. expansum 
contain 55 SM gene clusters.

Advantages and limitations of genomic technologies

The expanding list of sequenced genomes provides new 
insights into fungal biology, mycotoxin biosynthesis, genetic 
regulation, pathogenicity, phylogenetic relationships and 
evolution. The availability of whole genome sequence data 
makes it possible to predict all of the genes in the genome, and 
in general the SM pathway genes tend to be grouped together as 
a cluster [65,66]. Based on the characteristic sequence signature 
of SM backbone genes, several software tools were developed to 
rapidly predict SM gene clusters in a given genome. Secondary 
Metabolite Unique Region Finder (SMURF) was the first software 
developed [29], followed by AntiSmash program [62]. The two 
programs give different predictions. For example, in the genomes 
of A. flavus and A. parasiticus, 56 SM gene clusters were predicted 
using the SMURF program; when using the AntiSMASH program, 
about 70 SM gene clusters were predicted, of which some are 
remnant and incomplete. For each fungal species, the number of 
SM gene clusters predicted based on genome sequence data is far 
greater than the number of known SM compounds that have been 
chemically identified --almost 10 times greater. Therefore, it can 
be deduced that most SM gene clusters are silent under normal 
laboratory conditions. It is hypothesized that these clustered 
SM genes are expressed only under very specific conditions (i.e. 
temperature, pH, nutrition, biological niche or in a competing 
situation with other microorganisms) [2]. For that reason, a third 
SM prediction algorithm, MIDAS-M [66] was developed based on 
gene expression patterns detected by EST, microarray or RNA-
Seq data. The advantage of MIDAS-M is that this program detects 
only those SM gene clusters that are expressed. Nevertheless, a 
major challenge remains in distinguishing functional SM gene 
clusters from pseudo, nonfunctional, incomplete, or remnant SM 
gene clusters. This challenge remains a major bottle neck in the 
‘post-genomic’ era and will require major technological advances 
in the functional genetic and/ or mutational analysis arenas to 
conclusively demonstrate their function.

FUTURE PERSPECTIVE
It has been almost two decades since Professor Joan W. 

Bennett suggested that fungal biologists should create a “wish 
list” for fungal genome sequences [4]. Since then, technological 
breakthroughs (i.e. Next Generation Sequencing) greatly have 
increased the speed and lowered the cost of sequencing a fungal 
genome. In fact, the cost per reaction of DNA sequencing has 
fallen with a Moor’s Law [67]. In order to study fungal biology 
and evolution, to address important problems associated with 
energy and the environment, and to explore novel SMs for the 
pharmaceutical drug discovery, The Joint Genome Institute (JGI) 
has geared up to sequence 1000 fungal genomes. Currently, the 
genomes of at least 24 Aspergillus, four Fusarium, and thirteen 
Penicillium species are curated at JGI MycoCosm (http://genome.
jgi-psf.org/programs/fungi/index.jsf). The availability of 
hundreds of fungal genomes in public databases is a reflection 
of the significant progress of the field. Moreover, these growing 
fungal genomics resources will help us to decipher the genes 
and pathways regulating both mycotoxins and virulence and to 
learn more about the genes that affect evolutionary adaptability. 
The RNA-Seq technology has been employed to characterize 
fungal transcriptomes and to reveal quantitative differences 
in gene expression between the environmental conditions 
analyzed. It is anticipated that a high resolution view of entire 
fungal transcriptomes will allow researchers to identify genes 
differentially expressed under conditions conducive and non-
conducive for mycotoxin production. With the rapid progress 
in fungal genomics, a vast amount of new information on gene 
function, genetic regulation and signal transduction will be 
amassed. It is now time to integrate the brute force approach 
of combining the gene-by-gene strategy that was so fruitful 
in the late 20th and early 21st centuries with the mature whole 
genome approach of the 21st century. It has become apparent 
that we must stop thinking about the parts and start thinking 
about the whole. New forms of systems analyses will allow us 
to understand the incredibly complex interactions between 
fungal SM and an ever-changing environment. The genetic and 
genomic resources will significantly enhance our understanding 
of the mechanisms of mycotoxin production, pathogenicity, and 
crop-fungal interactions. This information is vital in assisting 
scientists to discover new pharmaceutical drugs and for devising 
novel strategies to eliminate mycotoxin contamination thereby 
resulting in a safer, nutritious and sustainable food and feed 
supply to nourish a growing planet.
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