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Abstract

It has long been established that nutrients can affect cognition, mood and mental 
health. Nutrients can act on receptors in the peripheral nervous system or through 
direct inhibition of enzymes important in the regulation of mental health and other age 
related diseases including diabetes and multiple sclerosis. These enzymes include but 
are not limited to Acetyl cholinesterase (AChE), b-site APP cleaving enzyme(BACE1), 
Prolylendopeptidase (PEP) and Dipeptidyl peptidase 4 (DPP-IV). Bioactive peptides 
or cryptides are generated from food proteins by hydrolysis with proteolytic enzymes, 
fermentation with generally recognised as safe (GRAS) bacteria and through food 
processing. This paper collates current information on food derived peptides with 
the ability to inhibit enzymes important in the prevention of diseases associated with 
mental health disorders such as AD. It details potential peptide “hits” against enzyme 
targets currently examined and describes known, food-derived peptides that hold 
potential for future development as drugs and/or functional foods. It also discusses the 
blood brain barrier (BBB) and their potential transport across this barrier.

ABBREVIATIONS
AD:Alzheimer’s Disease; ACE-I: Angiotensin Converting 

Enzyme-I; Ache: Acetylcholinesterase; APP: Amyloid Precursor 
Protein; Aβ: Beta-Amyloid; BBB: Blood Brain Barrier; 
BACE1;Beta-Site APP Cleavage Enzyme: Cecs: Cerebral 
Microvessel Endothelial Cells; CNS: Central Nervous System; 
DPP-IV: Dipeptidyl Peptidase 4; GLP-1:Glucagon Like Peptide 
1, Hcmec/D3: Human Cerebral Microvascular Endothelial 
Cells :Insp: Inositol Phosphate; MS: Multiple Sclerosis; PEP: 
Prolylendopeptidase; POP: Prolyoligopeptidase; PTSD: Post 
Traumaticstress Disorder; T2D:Type 2 Diabetes; TDC: 2, 2’, 
4’-Trihydroxychalcone

INTRODUCTION
Since medieval times, food has been considered a tool to 

help modify temperament and mood and human nutrition and 
dietary influences are known to affect brain chemistry. Indeed, 
many neuroactive substances have been identified from foods 
previously [1] and food is known to affect our sleeping patterns, 

mood and overall mental health. For example, short and long-term 
forced dietary interventions can bring about changes in brain 
structure, plasticity, chemistry and physiology [2]. Amyloidosis 
is associated with the development of several diseases including 
Alzheimer’s disease (AD), Multiple Sclerosis (MS), Parkinson’s 
disease, adult onset diabetes, endocrine tumours and macular 
degradation [3]. Indeed, significant epidemiological evidence has 
emerged which suggests that mental health diseases including AD 
belong to the “diseases of civilisation” caused by modern western 
diets. Just as diet is implicated by many as a cause of mental health 
disorders several researchers have suggested that foods, and in 
particular, fermented foods have the potential to influence brain 
health due to a direct influence on the consumers microbiota 
which could enhance antioxidant and anti-inflammatory 
activities, reduce intestinal permeability and improve glycemic 
control, all of which have a positive influence on nutritional 
status, neurotransmission and neuropeptide production [4]. 
Several gut hormones that can enter the brain, or that are 
produced in the brain itself, influence cognitive ability. Regulators 
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of synaptic plasticity, such as brain-derived neurotrophic factor, 
can function as metabolic modulators, responding to peripheral 
signals such as food intake [5].It is therefore not surprising that 
food bioactive compounds including fatty acids [6] and peptides 
[7] are currently of interest for potential use in the prevention of 
mental health disorders such as AD. Indeed, bioactive peptides 
can be produced as a result of fermentation processes [8-11].

Bioactive peptides or cryptides are sequences of between 
2-30 amino acids in length that can impart a health benefit 
to the consumer which goes above and beyond basic, human 
nutrition [12]. Cryptides can be released by enzymes during 
food processing, ripening and heating; during storage and by 
in vitro proteolysis [13,14] as well as by generally recognised 
as safe (GRAS) beneficial bacteria during fermentation [15]. 
Known peptide bioactivities include antihypertensive and 
angiotensin I converting enzyme (ACE-I) inhibitory actions 
[16], renin inhibition [17], dipeptidyl peptidase 4 (DPP-IV) 
inhibition [18], anti-inflammatory, opioid [19], satiety-inducing 
and anti-cholesterol activities as well as a myriad of others [16]. 
In addition to enzyme inhibition, opioid peptides play an active 
role in brain health as they are active in the nervous system and 
are pharmacologically similar to opium [19]. Opioid peptides are 
receptor ligands with agonistic or antagonistic activities and are 

characterised by distinct N-terminal sequences. Opioid peptides 
are similar to enkephalins as both have affinity for opiate 
receptor and display opiate-like effects which can be inhibited 
[19]. Examples include casomorphins, exorphins and rubiscolins 
[20]. The effect of these peptides varies, but they all resemble 
opiates. The opioid food-derived peptides are typically 4-8 amino 
acids in length.

Alzheimer’s disease is the most common cause of dementia 
globally in aging societies. It is a neurodegenerative disorder 
characterised pathologically by plaque formation, where the 
major constituent is the amyloid beta peptide (Aβ), a 39-
43 amino acid peptide derived from proteolytic processing 
of amyloid precursor protein (APP) [21,22]. Insoluble Aβ 
forms filaments and senile plaques in the brain [23]. The non-
physiological metabolism of APP most frequently occurs due to 
damage of the cellular membrane bilayer and exposure of APP 
to scavenger lysosomes [20]. Phosphatidylcholine, a precursor 
of acetyl choline is affected and tau protein becomes heavily 
phosphorylated and glycated. It forms deposits in the white 
matter of the brain, causing nerve tangles which affect this 
communication network and this subsequently causes further 
neuron damage [24].The β-amyloid (Aβ) cascade and tau protein 
hyperphosphorylation are the theories that have been widely 
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Figure 1 Amyloid cascade with the tau protein at the centre
Aβ42is formed from APP following mutations.  The enzyme BACE1 plays a central role in the formation of Aβ42.Multiple phosphorylation events 
of tau play a crucial role during AD-related tau pathology. Tau is aprotein that regulates microtubule stability. During the development of AD, 
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result in synaptic damage and eventually, dementia.
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accepted for AD pathogenesis (Figure 1). Compounds that block 
the formation of Aβ may ultimately be clinically useful for treating 
AD [7,25].

The involvement of enzymes in the development of 
neurodegenerative disorders is well recognised [26,27]. 
Several enzymes including Acetylcholinesterase (AChE), (EC 
3.1.1.7), Prolyl endopeptidase(PEP) or oligopeptidase (POP) 
(EC 3.4.21.26), and β-site APP cleaving enzyme, (BACE1) (EC 
3.4.23.46) are thought to be suitable targets for drugs and 
food-derived peptides for potential prevention of tau protein 
hyperphosphorylation and the Aβ cascade [28]. Moreover, 
impaired glucose metabolism is closely linked to AD development 
and some researchers refer to AD as Type 3 diabetes. 
Furthermore, T2D has been identified as an additional risk factor 
for the development of AD [29]. Therefore, inhibition of enzymes 
such as DPP-IV that are thought important in the development of 
type 2 diabetes may have implications for the development of AD 
and other mental health disorders. Pharmacological agents, such 
as DPP-IV inhibitors, which increase the level of glucagon-like 
peptide-1 (GLP-1) and ameliorate T2D, have become valuable 
candidates as disease modifying agents in the treatment of AD.

Food components and diet are important for human health. 
The aim of this paper is to collate data concerning the enzymatic 
inhibitory role of food derived peptides and how this may 
prevent the development of mental health disorders that result 
due to amyloidosis. 

Aβ formation

Several diseases that occur in the elderly are based on or 
associated with amyloid-like proteins and may be characterised 
by the build-up of extracellular deposits of amyloid or amyloid-
like material that contribute to pathogenesis [30].In the 
development of AD, the first proteolytic step in the processing 
of amyloid precursor protein (APP) to amyloid-beta (Aβ) in the 
brain is performed by β-site APP cleaving enzyme [31]. BACE1is 
a membrane-bound, aspartic protease with high homology with 
the catalytic domain of renin and pepsin [32]. BACE1 is the 
β-secretase essential for Aβ plaque generation. It functions in the 
first step of the pathway leading to the production and deposition 
of Aβ. BACE1 is critical for Aβbiosynthesis and it is likely that 
factors that elevate BACE1 may lead to increased Aβ generation 
and promote AD as we get older [28,33].

BACE1 inhibition

Inhibition of BACE1 using natural products has provided 
promising results in AD therapeutics. Phenolic compounds such 
as catechins obtained from Green tea [34], lavandulyl flavanones 
extracted from Sophora flavescens[35], resveratrol obtained from 
red wine (Vitis vinifera), [36]and TDC obtained from Glycyrrhiza 
glabra[20] have all shown promising results in animals and in 
vitro. Recently, Cox and co-workers identified the flavonoids 
epicatechin and epigallocatechin as potent inhibitors (active in 
nanomolar quantities) of amyloidogenic APP processing using 
invitro screening of dietary flavonoids in primary neurons [37]. 
In addition, substrate-based, pentapeptidic β-secretase (BACE1) 
inhibitors with a hydroxyl methyl carbonyl isostere were also 
identified recently and showed potent BACE1 inhibitory activity 

in enzyme and cell assays, with one peptide, KMI-429, showing 
in vivo inhibition of Aβ production [38]. In addition, Lu identified 
the compound L655, 240 – a new type of BACE1 inhibitor which 
was found not to inhibit other aspartic proteases including renin 
and cathepsin D but which was specific in inhibiting BACE1 
directly and which effectively decreased Aβ40, Aβ42 and APPβ 
production [39] More recently, Lazarus and colleagues [21] 
patented a group of polypeptide and peptide inhibitors of BACE1 
that bind to the active site in a non-canonical fashion. However, 
due to the difficulty in developing drugs that can efficiently cross 
the blood-brain barrier (BBB) and reach appropriate therapeutic 
concentrations in the cerebral parenchyma without causing 
other side effects, few BACE1 inhibitors have been marketed to 
treat AD and those that have been developed are now in phase 1 
of clinical trials [39].

PEP/POP enzyme

Prolyl oligopeptidase (POP) or Prolyl endopeptidase (PEP) 
(EC 3.4.21.26), is a proline-specific endopeptidase that is 
expressed in the brain and is known to cleave neuroactive peptides 
implicated in memory, learning and also in neurodegeneration 
[40]. It is highly conserved and cleaves peptide bonds at the 
carboxyl side of Proline residues in proteins with a relatively 
small molecular weight (30 amino acids in size) containing the 
recognition sequence X-Pro-Y, where X is a peptide or protected 
amino acid and Y is either an amide, a peptide, an amino acid, an 
aromatic amine or an alcohol [41,42]. Furthermore, it is thought 
that POP may be involved in thalamocortical neurotransmission, 
memory and learning functions of hippocampal formation 
and GABAergic regulation of voluntary movements. Tenorio-
Laranga and colleague also identified the involvement of POP 
in the development of Multiple Sclerosis (MS). Welches and 
colleagues found thatPOP is also a major component of the 
enzymatic pathways that participate in angiotensin metabolism 
in canine hypothalamus [43]. Rossner and colleagues found 
that expression of POP in adult and aged transgenic mice which 
expressed Aβ plaques was increased in parallel with memory 
deficits prior to the appearance of Aβ plaques [44]. Furthermore, 
abnormal POP activity levels were reported previously in the 
brains of Alzheimer’s patients [45]and increased POP activity 
is also observed in patients with bipolar disorder (manic), 
schizophrenic and post-traumatic stress disorder (PTSD) [42,46-
48]. It is thought that POP functions in relation to mood disorders 
by acting as a regulator of inositol phosphate (InsP) signalling 
thereby modulating the effect of inositol depleting drugs such as 
Lithium in the treatment of bipolar disorder [49].

PEP/POP inhibition

Previously it was proposed that alterations in the level of POP 
activity in Alzheimer’s disease and dementia account for some 
of the observed changes in neuropeptide levels. In Alzheimer’s 
disease, vasopressin and substance P levels decrease in cortical 
areas and the hippocampus [50]. Manipulations of POP activity 
and its secondary effects on neuropeptide levels could represent 
a potential therapeutic target for treatment of cognitive disorders 
[50]. Several POP inhibitors have been isolated from microbes, 
medical plants and foods or have been chemically synthesised in 
recent times and their anti-amnesic effects have been studied in 
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rat models. Sørensen and colleagues found that peptide fractions 
generated from cod, salmon and trout hydrolysates, autolysates, 
and water-soluble extracts of cheeses inhibited POP [51]. Natural 
POP inhibitors have also been isolated from wine [52], casein 
[53]unsaturated fatty acids[54]and plant phenolics [55]. More 
recently, a protease treated sample of ‘Barquillo’ (Table 1) was 
found to inhibit POP in vitro. ‘Barquillo’ is a by-product obtained 
from cocoa processing by pressing and rolling cocoa butter. 
It is of high biological value due to its high protein content of 
between 20-27%. Furthermore, this hydrolysate was examined 
in the Caenorhabditis elegans Aβ model for oxidative stress 
and Aβ peptide toxicity. A tridecapeptide with the sequence 
DNYDNSAGKWWVT was identified as an inhibitor of Aβ plaque 
formation and β-Amyloid peptide toxicity. Morerecently, POP 
inhibitory polypeptides were identified from hydrolysates of 
Barbelfish skin gelatine [56].

Acetylcholinesterase (AChE) 

Cholinergic abnormalities, alongside senile plaques, 
neurofibrillary tangles, and extensive neuronal loss, are the 
major characteristics in Alzheimer’s disease (AD). AChE present 
in the Central Nervous System (CNS) catalyzes the hydrolysis of 
ACh to choline (Figure 2). ACh is released in the synaptic cleft, 
where it activates both postsynaptic and presynaptic cholin-
ergic receptors, which results in cognition improvement. AChE 
– a cholinesterase enzyme - terminates this neural-stimulating 
activity [57]. In AD sufferers, a deficit of this neurotransmitter is 
observed – the so-called cholinergic hypothesis.AChE (EC3.1.1.7) 
is implicated in the pathogenesis of Alzheimer’s disease. AChE is 
thought to directly interact with Aβ in a manner that increases 
the deposition of this peptide into insoluble plaques [58]. This 
suggests that AChE inhibitors might be able to act as disease-
modifying agents rather than as mere palliatives [58].

AChE inhibitors

AChE inhibitors are used in the treatment of AD. Drugs 
used at the present time as AChE inhibitors include tacrine, 
rivastigmine and donezepil. However, these possess some side 
effects including nausea, vomiting and diarrhoea [59]. Plants 
are rich sources of pharmaceuticals and a study of Brazilian 
plants showed excellent results for AChE inhibition with the 
species Amburana cearensis, Lippia sidoides, Paullinia cupana, 
Plathymiscium floribundum and Solanum asperum [60]. These 
plants were used in traditional medicine for the treatment of 
memory dysfunction for centuries [61]. Coumarin is a vanilla like 
phytochemical found in cassia cinnamon. Previously, a set of 19 
coumarin and 2 chromone derivatives with known inhibitory 
activity toward monoamine oxidase (MAO) A and B were tested 
as acetylcholinesterase (AChE) inhibitors. All compounds 
inhibited AChE with values in the micromolar range (3−100 
μM). A kinetic study showed that most compounds acted as 
noncompetitive AChE inhibitors. More recently, polysaccharide–
peptide complexes were identified in Cordyceps militaris (CPSPs) 
and characterized for their AChE inhibitory properties. Three 
polymers (CPSP-F1, -F2, and -F3) were extracted and separated 
by ultrasound-assisted extraction and diethylaminoethanol 
(DEAE)–Sepharose CL-6B column chromatography. CPSP-F1 
and CPSP-F2 exhibited half maximal inhibitory concentrations 
of 32.2 ± 0.2 mg/mL and 5.3 ± 0.0 mg/mL [62]. A number of 

phytochemical extracts have also demonstrated AChE inhibitory 
activities. For example, phytochemical studies on the ethanolic 
extract of Barleria prionitis, a plantof Sri Lankan origin, resulted 
in the isolation of a new compound, balarenone (1), along with 
three known compounds, pipataline (2), lupeol (3) and 13, 
14-seco-stigmasta-5, 14-diene-3-α-ol (4). These compounds 
showed moderate inhibitory activity against glutathione 
S-transferase(GST) and AChE [63].

Protein hydrolysates are also a source of AChE inhibitory 
peptides (Table 1). Tuna liver is a fish by-product and is normally 
discarded and/or used as fish and animal feed due to poor 
functionality. In a study carried out by Ahn and colleagues, tuna 
fractionated hydrolysates produced by the commercial enzymes 
Alcalase, Neutrase and Protamex following Flavourzyme 
hydrolysis showed excellent antioxidant activities against 
DPPH. Furthermore, all fractionated hydrolysates inhibited 
acetylcholinesterase activity and the high MW fractions showed 
greater AChE inhibitory activities than LMW fractions [64].
The AChE inhibitory activity of Douchi – a traditional Chinese 
salt-fermented soybean food was examined and observed 
inhibition was attributed to bioactive peptides generated from 
soybean protein following fermentation [65]. Similarly, the AChE 
inhibitory activity of Chinese sufu (fermented tofu) was observed 
by Chen and colleagues [66]. In a further study which examined 
the anti-obesity and anti-Alzheimer’s effect of rice bran, bioactive 
peptides <5kDa in size were identified [67].

DPP-IV

It is estimated that the incidence of diabetes globally will 
increase from 285 to 439 million by 2030 [68]. Blood vessel 
damage in the brain of patients with diabetes and high cholesterol 
can lead to symptoms of Alzheimer’s disease and prevention 
of diabetes and high cholesterol can help to reduce the risk of 
developing AD [69]. Type 2 diabetes (T2D) is characterised by 
abnormally high blood glucose levels due to insulin resistance. 
Chronic T2D also negatively affects the CNS and constitutes 
a known risk factor for dementia. Recently, researchers have 
suggested that AD might be a neuroendocrine-like disorder and 
have termed it “Type 3 diabetes” or “brain-specific diabetes” 
[70,71]. Insulin is a common bridge between T2D and AD as 
insulin signalling is involved in the regulation of Aβ plaque and 
neurofibrillary tangle formation, the two major neuropathological 
hallmarks of AD [68].During chronic T2D and chronic glucose 
dysmetabolism brain damaging effects may arise and advanced 
glycation end products (AGEs) are formed[72]. The extent of Aβ 
peptide glycation by AGEs is correlated with its aggregation into 
senile plaques as well as with tau protein hyperphosphorlyation 
and the formation of neurofibrillary tangles [73]. There is 
therefore promising potential in the use of anti-diabetic drugs 
and peptides in the prevention and treatment of AD. 

DPP-IV inhibitory peptides

Diets rich in specific biofunctional ingredients, including 
food protein derived peptides, have emerged as a potential 
strategy for the prevention and management of T2D [74, 75]. 
Dipeptidyl peptidase-4 is a highly specialized, membrane 
boundaminopeptidase that demonstrates wide tissue distribution 
and is present in soluble form in the plasma. Glucagon-like peptide 
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Food source Bioactive compound Inhibitory  activity Reference
Green tea Catechins BACE1 Jeon et al., 2009

Epicatechins BACE1 Cox et al., 2014
Red wine Resveratrol BACE1 Choi et al., 2009
Sopherea flavescens flavanones BACE1 Jwang et a., 2008
Cod hydrolysate peptides POP inhibition Sorensen et al., 2004
Trout hydrolysate peptides POP inhibition Sorensen et al., 2004
Salmon hydrolysate peptides POP inhibition Sorensen et al., 2004
Cheese peptides POP inhibition Sorensen et al., 2004
Red wine unknown POP inhibition Yanai et al., 2003
Casein peptides POP inhibition Asano et al., 1991
Cocoa 'Barquillo' tridecapeptide POP inhibition Martorell et al., 2013
Barbel fish skin gelatine peptides POP inhibition Sila et al., 2015
Cassia cinnamon coumarin AChE inhibition Razavi et al., 2013
Barleria prionitis balarenone AChE inhibition Tsai et al., 2014
Barleria prionitis pipataline AChE inhibition Tsai et al., 2014
Barleria prionitis lupeol AChE inhibition Tsai et al., 2014
Tuna bioactive peptides AChE inhibition Ahn et al., 2010
Salt fermented soybean food -Douchi bioactive peptides AChE inhibition Liu et al., 2009
Fermented tofu - Chinese Sufu bioactive peptides AChE inhibition Chen et al., 2012
Rice bran bioactive peptides <5kDa AChE inhibition Kannan et al., 2012
Dairy hydrolysate bioactive peptides DPP-IV inhibition Harnedy et al., 2015
Salmon hydrolysate bioactive peptides DPP-IV inhibition Harnedy et al., 2015
Tuna hydrolysate bioactive peptides DPP-IV inhibition Harnedy et al., 2015
Amaranth bioactive peptides DPP-IV inhibition Harnedy et al., 2015
Red seaweed Palmaria palmata peptides DPP-IV inhibition Harnedy et al., 2015
Bran rice hydrolysate tridecapeptide DPP-IV inhibition Kannan et al., 2012
Wheat gluten exorphins opioid inducing Zioudrou et al., 1979
α-casein beta-casomorphine-7 opioid inducing Zioudrou et al., 1979
ovine first milk - clostrum Proline-rich polypeptide complex opioid inducing Leszek et al., 1999
Fermented milk - Lactobacillus helveticus bioactive peptides opioid/AChE/BACE1 inhibition Yeon et al., 2010

Table 1:

Figure 2 Acetylcholinesterase inhibitor during cholinergic nerve transmission.
Acetylcholine is produced in the presynaptic neuron by the enzyme choline acetyltransferase from acetyl-coenzyme A and choline. It is released 
in the synaptic cleft where it binds to the acetylcholine receptor. This triggers an intracellular response and synaptic transmission is terminated 
by acetylcholinesterase which hydrolyses acetylcholine into acetate and choline. Choline is transported into the presynaptic neuron by the choline 
carrier and serves as a substrate for the described production of acetylcholine. Acetylcholinesterase prevents the breakdown of acetylcholine into 
acetate and choline and prolongs acetylcholine duration
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1 (GLP-1) and glucose dependent insulinotropic polypeptide 
(GIP) both control blood glucose levels in the body [76]. These 
are degraded by DPP-IV and several research groups are looking 
at the development of DPP-IV inhibitory agents to control 
glucose and prevent T2D [77]. Pharmaceutical DPP-IV inhibitory 
drugs available today include Saxagliptin (Onglyza TM), and 
vildagliptin (Galvus ®). These drugs do have some side effects 
including urinary and upper tract infections [78]. Food derived 
bioactive peptides that inhibit DPP-IV provide an alternative 
for the potential prevention and treatment of both T2D and AD. 
Recently, Amylin, a pancreatic peptide, 37 amino acids in length 
which passes through the BBB easily provided the template for 
the amylin analog pramlintide which serves as an effective drug 
in the clinical treatment of T2D [79]. Furthermore, when injected, 
this peptide reduced behavioural impairment and brain amyloid 
pathology in murine models of Alzheimer’s disease [79].

Peptides derived from dairy, salmon, tuna, rice, amaranth 
and lysozyme proteins were found previously to inhibit DPP-
IV in vitro. Furthermore, thirteen peptides were identified 
from a Corolase PP hydrolysate of the red macroalga Palmaria 
palmata (Harnedy et al., 2014). Kannan identified a pentapeptide 
from a bran rice hydrolysate which showed enhanced anti- 
Alzheimer’s activity. Few in vivo studies with DPP-IV inhibitors 
have been carried out to date in relation to their possible role 
in the prevention of AD. Several recent reports however have 
identified that dipeptidyl DPP-IV inhibitors have suppressive 
effects on atherosclerosis in apolipoprotein E-null (Apoe−/−) mice 
[80]. Furthermore, the protective effects of the DPP-IV inhibitor 
sitagliptin in the blood-retinal barrier in a T2D animal model 
were shown previously [81].

The psycho-immuno-enhancing activity of peptides

The opioid system may be involved in the development of 
AD, including in; cognitive impairment, hyper phosphorylated 
tau formation, Aβ production, and neuro inflammation [82]. 
Opioid receptors can influence neurotransmitters involved in 
the development and pathogenesis of AD including acetylcholine, 
norepinephrine, GABA, glutamate, and serotonin. Non-function 
of opioid receptors can retard degradation of BACE1 and 
γ-secretase and is known to up-regulate BACE1 and γ-secretase 
and the production of Aβ42 (Cai & Ratka, 2012)[82]. Therefore, 
the opioid system is a suitable target for peptides and drugs to 
potentially delay and prevent the development of AD.

Dietary protein including wheat gluten and α-casein are rich 
sources of bioactive and opioid peptides (Table 1) including 
exorphins (wheat gluten derived) and beta-casomorphine-7 
from β-casein.[83,84].Colostrinin® is a proline-rich polypeptide 
complex isolated from ovine colostrum that previously 
demonstrated immunomodulatory properties in mice, rats 
and chickens and was identified as a cytokine-like factor that 
acts as an inducer of interferon γ and other cytokines in the 
human peripheral blood and cord blood leukocyte cultures. 
Colostrinin® also demonstrated psycho-immuno enhancing 
activity in volunteers and was studied for its effect on patients 
with AD. It was found that administration of Colostrinin® 
to patients with mild to moderate dementia improved their 
condition. Studies in rats, demonstrated that the memory of rats 
increased and the speed of memorization of new information 

was accelerated [85]. The opioid effect of food-derived bioactive 
peptides is well documented and the role of casomorphins in 
the CNS is well recognised. Recently [86] an ethanol precipitate 
from fermented milk with L. helveticus IDCC3801 was found to 
improve APP metabolism and memory deficit in rats. Using acell-
based assay and wild type APP and β-secretase over-expressing 
cells, the ethanol precipitates of the fermented milk cultured 
with Lactobacillus helveticus IDCC 3801 were found to induce a 
strong decrease of APP β level in amyloidogenic pathway toward 
β-amyloid production of APP processing. When administered 
orally to rats, the ethanol precipitate significantly reduced Aβ 
level in serum. In the scopolamine-treated mouse model, the 
ethanol precipitate also attenuated memory deficit [86].

Transport of peptides across the blood brain barrier 
(BBB) and suitable in vitro models

The blood-brain-barrier is the active interface between 
the circulatory system and the central nervous system (CNS). 
It functions to restrict the transport of toxic substances to the 
brain and it acts as a carrier for the transport of nutrients to the 
brain and removal of metabolites [87]. It is a significant hurdle 
in the treatment of CNS disorders such as AD. The delivery of 
peptide drugs and food-derived peptides to the brain is limited 
to small, predominantly hydrophobic molecules and is through 
receptor mediated transcytosis (RMT) [88]. Transcytosis in 
the BBB endothelial cells is poorly understood. Several in 
vitro transcytosis assays have been developed but these often 
represent paracellular flux rather than transcytosis in endothelial 
cells. Recently however, an in vitro model of the human BBB 
using immortalised human cerebral microvascular endothelial 
cells (hCMEC/D3) to quantitatively measure protein/peptide 
transcytosis was developed and validated [88]. For bioactives 
with MW greater than 4000 Da, the permeability profile is similar 
to that of bovine and porcine cerebral microvessel endothelial 
cells (CECs) [89]. This model has been used widely to study the 
toxic effects of Aβ peptides on brain microvasculature in AD. This 
model could be useful for assessing if food-derived DPP-IV, POP, 
AChE inhibitory peptides and AD preventative drugs can reach 
their targets in the brain.

CONCLUSION
T2D patients can often develop dementia and T2D patients’ 

also often present hyperglycemia and insulin signalling 
dysfunction. Moreover, anti-T2D drugs are now in trials for 
dementia therapy and some were shown as beneficial against Aβ 
plaque formation. Food derived peptides that inhibit enzymes 
important in the development of Aβ plaque and tau protein hyper 
phosphorylation offer potential therapy for the prevention and 
alleviation of mental health disorders such as AD and warrant 
further research. However, transfer of knowledge from in vitro 
and animal bioassay to humans is an important consideration 
and models to predict transcytosis should also be researched 
further.
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