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Abstract

Schizophrenia is a debilitating disorder that affects a considerable number 
of people worldwide with positive, negative and cognitive domains. The etiology 
of this disorder is not yet fully established. Frequently used medications to treat 
symptoms of schizophrenia include haloperidol and clozapine. While haloperidol is 
a typical neuroleptic commonly used for acutely ill patients, clozapine is an atypical 
neuroleptic and its prescription is restricted to refractory patients. Also, cerebrolysin 
has recently been used to treat cognitive deficits in schizophrenics. The neonatal ventral 
hippocampal lesion (nVHL) has emerged as a key model of schizophrenia related 
behavior producing numerous behavioral deficits, neuronal hypotrophy, reducing the 
number of neurons in the basolateral amygdala (BLA) and increasing nitric oxide (NO) 
levels. Our group has shown that clozapine and cerebrolysin reshape neurons in the 
prefrontal cortex (PFC), (BLA) and striatum. Cerebrolysin treatment also increases 
the spine density and the number of cells in the (PFC) in the (nVHL) rat. Moreover, 
clozapine and haloperidol normalize the abnormal high levels of (NO) in the (PFC). 
Clozapine and haloperidol target dopamine and serotonin neurotransmitter systems 
respectively, and (NO) modulates both of these systems. Thus the (nVHL) is a key model 
to understand schizophrenia and (NO) seems to be an ultimate effector. 

INTRODUCTION
Schizophrenia is one of the diseases described in ancient 

medical writings. In every stage of the human history, 
attempts were made to explain this complex disorder with the 
available scientific elements. A new stage in understanding of 
schizophrenia occurred with the development of neuroleptics and 
antipsychotics in the 1950s. The first generation of neuroleptics 
chlorpromazine, haloperidol, trifluperacine etc., suggested that 
the dopamine (DA) neurotransmitter dysfunction is implicated 
in the etiology of this disorder [1-3]. Further progress in the 
study of neuromorphology and neurochemistry of the limbic 
system supports new hypothesis in the etiology of schizophrenia. 
In the last two decades, animal models of schizophrenia-related 
behavior have emerged and have tried to explain biochemical 
and signaling systems or synaptic communication changes in 
relation to the development and the appearance of symptoms 
after puberty, which are comparable to symptoms present in 
human. The main symptoms of schizophrenia are classified as: 
positive, negative and cognitive deficits (Figure 1). While positive 

symptoms comprise auditory and visual hallucinations, delusions 
and thought disorders, negative symptoms include deficits in 
social interaction and emotional expression with poor quality 
of speech and inability to initiate and persist in goal-directed 
activities. Finally, schizophrenic patients exhibit cognitive deficits 
such as attention, visual and verbal learning and memory, working 
memory and executive functioning such as time to respond [3,4]. 
A new generation of neuroleptics such as clozapine, olanzapine, 
risperidone, aripiprazole, etc. appeared in 1990s (Figure 1). While 
the first generation of neuroleptics is known as typical (Figure 1), 
the second generation is better known as atypical neuroleptics. 
The typical or atypical term implicates the therapeutic action. 
While typical neuroleptics modulate positive symptoms, atypical 
neuroleptics have an effect on positive and negative symptoms 
[5,6]. Interestingly, both types of neuroleptics have limited and 
poor effect on the cognitive impairment [6]. While haloperidol 
blocks (DA) receptors, clozapine is the first atypical antipsychotic 
with known effects on (DA), serotonin, glutamate and gamma 
Aminobutyric acid (GABA) receptors [7]. Haloperidol is used 
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in acutely-ill patients and in contrast clozapine prescription is 
restricted to refractory patients [7]. Recently, cerebrolysin is a 
preparation of peptides derived from porcine brain with effects 
in neuronal survival, adulth neurogenesis and neuroplasticity 
[8,9]. Moreover, cerebrolysin mimics the action of endogenous 
neurotrophic factors [8], has shown cognitive improvement in 
schizophrenic patients [10]. The present manuscript review 
recent literature of the behavioral and neuronal effects of 
clozapine, haloperidol and cerebrolysin in the neonatal lesion of 
the ventral hippocampus (nLVH) model of schizophrenia-related 
behavior 

Hippocampus-prefrontal cortex pathway

Communication between the hippocampus and prefrontal 
cortex (PFC) has been known for several decades. Optimal 
connectivity is critical in the development of various behaviors, 
such as spatial memory. To better understand the function of a 
given structure, it is essential to describe how these structures 
are connected to different brain regions. At the end of the first 
month of gestation in humans, the neural tube is closed embryonic 
day 25. The six layers of the (PFC) and three layers of the 
hippocampus are fully established at gestational week (GW) 22 
[11] as well as the connection between thalamus and (PFC) starts 
at the end of the five months of gestation and finishes 4 weeks 
later (GW)22-27 [11,12]. Interestingly, the connection between 
hippocampus, (PFC) and amygdala is established at the end of the 
seventh month of gestation [13,14]. Accordingly, there is an order 
of communication among various brain regions. When this order 
is altered, wrong communications may develop. Finally, between 

the eighth and ninth month of gestation, the communication 
between these structures receives and sends input to other 
regions as well. For example, both (PFC) and hippocampus send 
glutamatergic projections to nucleus accumbens NAcc [3]. The 
main population of neurons in the (PFC) and hippocampus is 
glutamatergic pyramidal neurons (Figure 2). Hippocampus may 
regulate the activity of (GABA)ergic neurons of the NAcc, and 
medium spine neurons, directly and indirectly via (PFC) [3]. The 
medium spine neurons of the NAcc send (GABA)ergic projections 
to the ventral pallidum (Figure 2). The main neurons of the 
ventral pallidum send (GABA)ergic projections to the dorso-
medial (DM) nucleus of the thalamus. Finally, the (DM) nucleus of 
the thalamus sends glutamatergic projections back to the (PFC) 
(Figure 3).

Neonatal ventral hippocampus lesion in rats

Pharmacological models of schizophrenia were predominant 
until the advent of the (nLVH) model. Developmental aspects 
of disrupting the prefrontal-hippocampus connectivity 
were addressed in this lesion [1,3,14-17]. Key research in 
schizophrenia in this model has been based on three aspects: 
multi-faceted behavioral effects, alterations of circuits and 
neurotransmitters and the periadolescent onset of abnormal 
neuronal and behavioral consequences, all of these symptoms 
are similar to what is seen in the schizophrenic patients [14]. All 
together numerous authors have suggested (nLVH) as a heuristic 
neurodevelopment model of schizophrenia. Indeed, (nLVH) rats 
present a delayed, post pubertal onset of behavioral changes 
such as locomotor hyper-responsiveness to novel environment 

Figure 1 This diagram shows the relationship between schizophrenia symptoms and various types of neuroleptics.
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Figure 2 This diagram illustrates the connections among the prefrontal cortex, the hippocampus and the basolateral amygdala, as well as the 
nucleus accumbens and dorso-medial (DM) thalamus. Blue lines indicate (GABA)ergic projections and red lines show glutamatergic projections.

Figure 3 This figure displays alterations in dendritic arborization and spine density in the pyramidal neurons of the prefrontal cortex (PFC), 
nucleus accumbens (NAcc) and basolateral amygdala (BLA) in adult rats with neonatal ventral hippocampus lesion (nVHL), an animal model of 
schizophrenia. Also, the schematic diagrams show how clozapine, an atypical neuroleptic leads to changes in the number of dendritic spines and 
dendritic arborization in this animal model of schizophrenia.

and stress, deficits in social interaction, sensor motor gating 
and learning and memory [3]. These behavioral changes after 
puberty are associated with decreased (DA) D3 receptors in the 
NAcc [16], increased nitric oxide (NO) levels in the (PFC) [18,19] 
and dendritic arbor atrophy and reduced spinogenesis in the 
(PFC) [17,18,20,21]. It is important to note that the behavioral 
and neurochemical effects of these lesions are different in several 
aspects if the lesions were performed in adult animals [22,23]. 
Therefore, the effects of this lesion may not be explained only 
in terms of the loss of ventral hippocampal neurons as the 

developing brain is an important additional factor. 

Neuronal changes in the neonatal ventral 
hippocampus lesion before and after Neuroleptic 
administration

The shape of dendritic arbor of a neuron determines the 
number and distribution of receptive synaptic contacts [24]. 
Moreover, dendritic spines are the main site of input and 
therefore alterations in spine density results in either gain or loss 
of connectivity [25]. Modifications in dendritic arbor and spine 
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density disrupt neuronal stability. Neuronal rearrangement and 
alterations in spine density are observed in postmortem brains 
of the patients with schizophrenia [26] and animal models 
of schizophrenia-related behavior [3]. The (nLVH) induced 
hypotrophy and decreased dendritic spine density in the (PFC), 
basolateral amygdala (BLA) and NAcc [18,20, 21,27]. In addition, 
the number of neurons is decreased in the (BLA) and (PFC) in 
(nVHL) rats [27]. Treatment with clozapine and cerebrolysin 
results in specific neuronal modifications in the (nVHL) rat. 
Clozapine increased the arborization in NAcc, (BLA) and (PFC) 
neurons with no modification in spine density [18] (Figure 
3). Cerebrolysin increased the neuronal arborization without 
modifying the spine density in the (BLA). Moreover, cerebrolysin 
increased the number of cells in the (BLA) [27]. In the (nVHL) 
rat, cerebrolysin normalized the dendritic arborization and spine 
density in the (PFC) and arborization in NAcc neurons [21,27]. 
Finally, cerebrolysin treatment increased the number of cells in 
the (BLA) and (PFC) in the (nVHL) rat [21,27]. But the possible 
effects of haloperidol in dendritic arborization and spine density 
are yet to be described.

Nitric oxide levels in the neonatal ventral hippocampus 
lesion before and after neuroleptic administration

(NO) is a soluble, short-lived and freely diffusible gas 
considered as a key inter- and intra-cellular messenger [28]. 
(NO) is involved in numerous physiological processes including 
synaptic and neuronal plasticity that may produce functional 
modifications in brain circuits [29]. Indeed, processes known 
to be involved in the pathogenesis of schizophrenia [3] and 
accumulated evidence show involvement of (NO) in schizophrenia 
[30-32]. For example, schizophrenic subjects present increased 
level of plasma (NO) [33] and polymorphism of the neural nitric 
oxide synthase increases the genetic risk of schizophrenia [34]. 
Moreover, postnatal blockade of (NO) resulted in amphetamine- 
and novel-induced hyper locomotion and neuronal hypotrophy 
in the (PFC) and hippocampus [35,36]. In line with preclinical 
and clinical data, the (nVHL) rat presents increased levels of 
(NO) in the (PFC), occipital cortex (OC) and striatum [18,19,37]. 
Moreover, adult rats with (nVHL) also showed an increased (NO)
S immunostaining in the (PFC) [38]. Clozapine administration 
decreased (NO) levels in the striatum with reduced locomotion 
in the (nVHL) rat [18]. This pharmaceutical also increased (NO) 
levels in the (PFC) and OC in sham animals with any behavioral 
modification [18]. Haloperidol reduced (NO) levels in the (PFC) 
and striatum as well as normalized locomotion in the (nVHL) rat 
[19]. But the effect of cerebrolysin on (NO) levels in the (nVHL) 
rat still needs to be investigated. However, recent reports show 
that the cerebrolysin treatment was able to reduce elevated 
hippocampal (NO) levels in an animal model of streptozotocin-
induced diabetes mellitus [39]. In addition, several reports have 
demonstrated that cerebrolysin increases neurotrophins such 
as nerve growth factor (NGF) and brain-derived growth factor 
(BDNF) [40-42]. Both of these neurotrophins are implicated in 
synaptic plasticity [43]. 

Pioneer work from our group suggests that haloperidol and 
clozapine reduce behavioral deficits and neuronal hypotrophy in 
diverse key brain regions by modifying (NO) levels and display 
different receptor targets. However, it is well established that (NO) 

interacts with glutamate, serotonin and (DA) neurotransmitters 
[32]. In particular (NO) is a second messenger of N-methyl-D-
aspartate (NMDA) receptors, a subtype of glutamate receptors. 
Our working hypothesis suggests that upon activation of (NMDA) 
receptors, haloperidol and clozapine interact with dopaminergic 
and serotoninergic pathways [44]. Therefore both haloperidol 
and clozapine have been able to achieve similar behavioral and 
neuronal effects.

CONCLUSION
Schizophrenia is a devastating disorder with numerous 

symptoms negative, positive, and cognitive domains. Clinical and 
preclinical results suggest that this disorder present neuronal 
remodeling in several brain regions [3]. In particular, the (nVHL) 
model produced neuronal reshaping in the (PFC), (BLA) and NAcc 
[18,21,27]. The long term administration of clozapine as well as 
cerebrolysin reversed the behavioral deficits and normalized the 
dendritic arborization in (nVHL) rats. Moreover haloperidol and 
clozapine reduced the abnormal high levels of (NO) observed 
in (nVHL) rats. Furthermore, cerebrolysin also increased the 
number of cells in the (PFC) and (BLA). The beneficial effects of 
an increase in the number of cells may be based on antioxidant 
properties of cerebrolysin. Further studies are warranted to test 
the effects of other antipsychotics on (NO) levels and neuronal 
reshaping in the brain. 
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