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Abstract

Background: Arithmetic average values about disease burden across aging adults are often used in the absence of having reliable access to real life data. 
Those values however assume group homogeneity in characteristics such as age, sex, disease incidence rates, or costs. The question arises about how much the 
overall outcome results, like total disease management costs, obtained under those homogeneity assumptions may deviate from real-world population data 
that may manifest non-homogeneous distributions. Without being able to have easily access to those real-world data and for getting a good approximation of 
the deviations in outcome results, a calculation method is proposed that should also indicate which factor may have a dominant influence on the cost difference 
between homogeneous and non-homogeneous results. The method should help focus the research for obtaining more accurate information from real-world data 
in subsequent steps that better estimate control gain of infectious diseases through new interventions.

Methods: The method explores, as the outcome measure to assess, the relative deviation in overall infection management costs measured with homogeneity 
versus non-homogeneity design in the datasets of aging adults. Population modelling is used with an Extended Sensitivity Analysis Plan (ESAP) that simulates 
non-homogeneous, but realistic, approximates of age-specific distributional spread in demography, infectious disease, and its severity in people aged > 65 
years old over a 1-year period in univariant and multivariant assessments. Disease management costs are adjusted for 3 infection severity levels with increased 
differences between them using multiplication factors up to 20 times the initial unit cost.

Results: The assumed full homogenous dataset systematically overestimates up to 10% the overall disease management cost in aging adults when compared 
with a group simulated with non-homogeneous, but realistic distributions for age, infection, severity, and cost, mainly due to the difference in the demographic 
age composition. However, overall costs of a proposed homogeneous condition tend to underestimate the spending of non-homogeneous conditions when the 
reference case has a partially homogeneous setup instead of a full condition or when the demographic age-change in the non-homogeneous condition evolves 
towards age-demographic homogeneity (same number of people at each age with increasing age), a likely evolution in the coming 15 to 30 years.

Conclusion: Assessing the current cost burden of infectious diseases in aging adults must consider exact age-composition of the demography, the type of 
infection spread with severity levels in function of age and their cost differences between severity levels to avoid unrealistic cost estimates when assuming unreal 
homogeneous group conditions that could currently overestimate the real costs.
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BACKGROUND

When assessing disease burden in children or young adults, 
the structural and distributional composition of the group is often 
considered to be homogeneous for age, sex, and health conditions 
related to the presence of co-morbidities [1]. This assumption of 
homogeneity facilitates the evaluation of summary estimates 
for the group. Calculating arithmetic average values is sufficient 
for obtaining credible overall results. However, homogeneity 
is not always present in all population groups studied [2,3]. 
Ageing adult people above 65 years (y) old for instance, are not 
homogeneous in many ways, differing in composition by their 
distributions in age, sex, health condition, and place of living [4].

Moreover, these characteristics evolve over time as dynamic 
population features, such as living a longer life, which may lead 
to smaller differences in sex numbers and more healthy years 
overall [5]. Meanwhile, non-homogeneity in the distribution of 
variables could have consequences in economic analyses when 
expressing summary outcome measures, such as the overall 
management cost of the disease burden, with arithmetic average 
values, assuming therefore homogeneity in the data spread [6,7]. 
It may wrongly estimate cost gains when new interventions are 
introduced to control specific disease types. When reviewing the 
literature on assessing the burden of infectious disease in aging 
adults, concerns about non-homogeneity in the data are often 
raised, but no clear answers are given on how to adequately 
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address that issue [8]. It leaves researchers with questions 
about the size of the problem caused by non-homogeneity and 
how to adjust following which approach [9]. For instance, data 
on the infection spread of aging adults in hospital care illustrate 
that the stay and duration are strongly non-homogeneously 
distributed by age, sex, co-morbidities, and ward selection [10]. 
Consequently, the overall real management cost of infectious 
diseases could be heavily skewed.

Due to the multiplication of treatment decision processes 
followed and the specific disease evolution patterns seen, such 
as more nosocomial infections in certain subgroups, it leads to 
longer hospital stays that could heavily impact the assumption 
of cost homogeneity in hospital care. However, the issue remains 
that today it is very difficult to get real-live population data of 
the ageing adults because the information is not regularly and 
systematically measured nor are the data appropriately collected 
and reported. Under such circumstances, it is difficult to claim 
the importance of suspected deviation in cost results between 
homogeneity and non-homogeneity for that age-group. The 
search for getting more appropriate estimates becomes therefore 
a critical undertaking that could help explore the elucidation of 
the problem. Consequently, an appropriate evaluation method 
of data analysis from aging adults, is proposed that better 
investigates the duality of homogeneous versus non-homogenous 
datasets. It helps to determine how large the difference in 
summary outcome measures could be. The approach should 
improve our understanding and knowledge about indicating 
the variable distributions in the target population that result in 
most marked differences when compared with the assumption 
of homogeneity. It may also inform the approach to be taken in 
the research performed by the European consortium group that 
evaluates the whole burden of infectious disease in ageing adults, 
presented as an Innovative Medicines Initiatives (IMI)-project 
called VITAL (Vaccines and Infectious Diseases in the Ageing 
Population) [11].

METHODS & AIM

The objective is to demonstrate that, in the absence of 
having easy access to good real-life data, it is possible to explore 
the amount of outcome difference in the infectious disease 
cost burden, influenced by variables that have known non-
homogeneous spreads, when compared to the assumption of 
homogeneity in the same group, using an Extended Sensitivity 
Analysis Plan (ESAP).

Baseline Reference Model

The analysis uses a simple, hypothetical population 
structured model to start with, evaluated over one year, 
called the homogeneous X1 model. It estimates the overall 
disease management cost for the group exposed to infectious 
diseases with standard treatment. The data input for this basic 
homogeneous model is reported in (Table 1), presented as a 
fully homogeneous condition (X1a) or a partially homogeneous 
condition (X1b). In X1a, the categories for 3 different disease 

severity levels by age have the same proportion of 33.33%. In 
X1b, those categories have an adjusted proportional distribution 
of 60% for low, 30% for medium, and 10% for high severity. 
The analysis, using these data, gives the overall cost estimate, 
equivalent to using arithmetic averages for the population under 
study. The outcome result is the baseline reference value for 
the comparison and the calculation of the cost difference with 
simulated non-homogeneous model conditions. Details of the 
data calculation of X1a are presented in (Appendix 1).

Extended Sensitivity Analysis Plan (ESAP)

The basic population model (X1) is now progressively adjusted, 
adding discrete variable spread changes into a new model, called 
X2, using the technique of sensitivity analysis. By having those 
changes in the X1 model, X2 is by nature heterogeneous in its 
composition. Deviations from the overall cost outcome of the 
homogeneous condition, related to these changes, are quantified, 
and compared.

The whole sensitivity analysis is developed within a 
framework of an ESAP (Table 2). The plan encloses a list of basic, 
known explanatory variables for the outcome measure of overall 
cost about demography and infection tested with different levels 
of uncertainties. This is happening in a multistep approach with 
links present between the different steps. Subsequent analyses 
combine some of the variable changes together (two- and 
three-way sensitivity analysis). The following assumptions are 
introduced in model X2 [12]:

•	 The total number of individuals in the population and the 
total number of disease episodes assessed are the same 
as in model X1 except in the demographic change of the 
combination analysis of X2b;

•	 Disease incidence rate (In) exponentially increases with 
older age groups (An) based on the observed exponential 
increase of frailty with age and the observed correlation 
between frailty scores and infection rates [13-16];

•	 Increasing age has a higher proportion of severe disease 
episodes (Isn) compared with younger ages [17];

Table 1: Data input to populate the basic homogeneous model of X
1a (fully 

homogeneous) and X
1b (partially homogeneous).

Variable Values for X1a Values for X1b

Population number 
(N) 1000

Age-range 65-100 years
Age-groups (An) 10 equal age-groups of 3.5 years each

Rate of infection in 
each age-group (In) 15%

Levels of disease 
severity (Is)

low, medium, high 
(33.33% for each)

60% low, 30% medium,  
10% high

Cost of treatment 
(CT)

Average cost for any 
severity level of 20€

Average cost for any severity 
level of 15€

33.33%*10€+33.33%*20€
+33.33%*30€ 60%*10€+30%*20€+10%*30€

Time assessment 1 year

https://www.jscimedcentral.com/public/assets/supplementary/1716181714_4c0ea4467d4f2e57dbed.docx
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Table 2: Extended sensitivity analysis plan (ESAP) to assess the outcome of overall cost in homogeneous conditions X
1a 

and X
1b and in 

non-homogeneous conditions X
2a and X

2b.

Type Steps Model Homogeneous/ Non 
homogenous

Domain

Figure#Demography Infection
Age-

distribution ccDisease rate distribution Severity level Cost

M
ultistep Variation

Step 1

X1a Full-homogeneous
Equivalent 
across age-

groups
Equivalent across age-groups Equivalent across age-

groups
Equivalent across age-

groups
Figure 2

X2a Non-Homogeneous
Realistic 

Belgian age-
distribution

Equivalent across age-groups Equivalent across age-
groups

Equivalent across age-
groups

Step 2

X1a Full-homogeneous
Equivalent 
across age-

groups
Equivalent across age-groups Equivalent across age-

groups
Equivalent across age-

groups

Figure 3

X2a Non-Homogeneous
Realistic 

Belgian age-
distribution

Exponential Equivalent across age-
groups

Equivalent across age-
groups

Step 3

X1a Full-homogeneous
Equivalent 
across age-

groups
Equivalent across age-groups Equivalent across age-

groups
Equivalent across age-

groups
Figure 4

X2a Non-Homogeneous
Realistic 

Belgian age-
distribution

Exponential Low Medium High Equivalent across age-
groups

Step 4

X1a Full-homogeneous
Equivalent 
across age-

groups
Equivalent across age-groups Equivalent across age-

groups
Equivalent across age-

groups

Figure 5

X2a Non-Homogeneous
Realistic 

Belgian age-
distribution

Exponential Adj Low Adj 
Medium

Adj
Low Medium High

High

Step 5

X1b Partial Homogeneous
Equivalent 
across age-

groups
Equivalent across age-groups Low

(60%)
Medium 
(30%)

High
(10%)

Equivalent across age-
groups

Figure 6

X2a Non-Homogeneous
Realistic 

Belgian age-
distribution

Exponential Low Medium High Low Medium High

Step 6

X1a Full Homogeneous
Equivalent 
across age-

groups
Equivalent across age-groups Equivalent across age-

groups
Equivalent across age-

groups
Figure 7

X2a Non-Homogeneous
Equivalent 
across age-

groups
Linear Exponential Extreme Low Medium High Low Medium High

Com
bination m

ultivariate

3-way 
sensitivity
analysis 1

X1a Full Homogeneous
Equivalent 
across age-

groups
Equivalent across age-groups Equivalent across age-

groups
Equivalent across age-

groups
Figures 
8,9

X2a Non-Homogeneous
Realistic 

Belgian age-
distribution

Exponential (Move) Low to high (Grade) Low Medium High

3-way 
sensitivity
analysis 2

X1a Full Homogeneous
Equivalent 
across age-

groups
Equivalent across age-groups Equivalent across age-

groups
Equivalent across age-

groups
Figures 
10,11

X2a Non-Homogeneous
Realistic 

Belgian age-
distribution

Exponential (Move) Low to high (Grade) Low to high (MF)

3-way 
sensitivity
analysis 3

X1a Full Homogeneous
Equivalent 
across age-

groups
Equivalent across age-groups Equivalent across age-

groups
Equivalent across age-

groups
Figures 
12,13

X2b Non-Homogeneous
Proportional 
demographic 

increase
Exponential (Move) Low to high (Grade) Low to high (MF)

MF: Multiplication Factor
Yellow Cells: New in multistep variation.
Light Green Cells: progressive change in X

2 in multistep variation.
Dark Green Cells: progressive change in X

2 in combination multivariate.
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•	 The cost of managing a disease episode (CT) depends on 
its severity level: severe disease episodes have a higher 
cost than medium severity episodes, and medium severity 
cases have a higher treatment cost than low severity 
cases.

The values used for disease incidence rates by age group and 
for the severity levels by age group in model X2 are presented 
with the cost for each severity level (CTm) in (Appendix 2).

Multistep Analysis

In the multistep analysis, extreme frontiers in variable spread 
for age and infection incidence rate distribution are explored. The 
relevance of their values related to the outcome result of overall 
costs is evaluated and tested at their minimally and maximally 
allowed levels. The multistep analysis plan at start comprises six 
steps, comparing the 2 models of X1a or X1b with X2a in separate 
changes of baseline values (see Table 2). In Step 1, condition X2a 
assesses the effect of applying the current age distribution of the 
aging population in Belgium [18] (see Appendix 2). Step 2 has 
only the variation changed in the numbers in each age group 
(An) and the disease incidence rate changes (In) by age group for 
X2. That distributional incidence change follows the exponential 
increase marked by boundaries of 7% in the lowest age group up 
to 59% in the oldest age group. Step 3 adds in the analysis the 3 
severity levels (Isn) proportionally equivalent by age, but Step 4 
includes variability in the severity level by age and a change in 
cost (CTm) by severity level for X2a.

In Step 5 the full homogeneity condition of X1 is challenged 
and instead uses a partial homogeneity condition as a reference 
situation (see the previous paragraph). Finally, Step 6 indicates 
what may happen with the overall cost if the age-demographic 
picture in X2a is equivalent to X1a, while the infection rate 
distribution as a function of age may follow 3 options: linear 
(around the age midpoint for the group, which is 82.5 years of 
age (= 65 + (100-65)/2)); exponential (In = 0.0496*e0.1783*An; An = 
age-group); extreme (In = 6.224E-08*A 5 – 2.8E-05*An 4 + 0.005*An 
3 - 0.4378*An 2 + 18.835*An - 319.58). This exercise explores the 
effect of a non- homogeneous distribution of disease spread 
(higher disease rates at higher ages) applied to a homogeneous 
age distribution, which represents the likely further evolution of 
the population structure at older ages as shown in (Figure 1) (see 
also age-demographic changes in the combination analysis) [19].

Combination Analysis

Subsequent evaluations combine different non-homogeneous 
variable distributions (disease incidence rate (I) with severity 
level (Is)) in an integrated sensitivity analysis to identify the 
amount of overall cost change when compared with X1a. In the 
3-way sensitivity analysis 1, the changes shift to a higher disease 
incidence rate (I), called Move, with an increased severity level (Is), 
called Grade, towards the older age groups. This is the direction 
expected to be observed in real life with the population getting 
older and living longer [20-22]. Appendix 3 provides the details 
of that process. Cost variables (CTm) are assessed in a separate 

sensitivity analysis (3-way sensitivity analysis 2) to demonstrate 
their specific effect on conditions X1a and X2a. Multiplication 
Factors (MF) are used for the disease management cost of each 
severity level of Medium and High separately with a different 
maximum MF range of 10 for Medium and 20 for High. However, 
it is assumed that unit costs do not individually change by disease 
severity level when the non-homogeneous distributions of the 
variables, disease incidence rates and severity levels, change by 
age.

The final 3-way sensitivity analysis 3 concerns the simulation 
of age-demographic changes. One analysis is a progressive change 
in the demographic age curve towards the more homogenous age 
structure (see Figure 1), as assumed in the full homogeneous data 
analysis of X1a. It is expected to observe a point in the change of 
the age-demographic curve where the overall costs are equivalent 
between the two models compared of full homogeneity with the 
heterogeneity construction in which all the other variables are 
maintained in their heterogeneous conditions of X2a. That point 
is interesting to know as it indicates by when it is expected that 
the overall costs will be underestimated when using the full 
homogeneous model. The other demographic analysis is the 
change of moving the demographic curve to the right expressed 
as model X2b, thereby increasing the number of people in older 
age groups living longer. The overall costs of that simulation are 
compared with X1a and X2a when no demographic change is made.

Summary Evaluation

The overall cost results of the different sensitivity analyses 
performed are presented in a summary table that compares the 
relative value differences with the reference case (X1a and X1b). 
This summary table helps to indicate the data that would be most 
valuable to collect in a formal analysis of the group that is solely 
composed of aging adults.

RESULTS

Multistep Results

The next graphical presentation of Steps 1 and 2 (Figure 2) 
visually demonstrates how changes from the reference full 
homogeneous case (left side, X1a) may occur when adding in two 
steps, the adjustment of the population demography to match the 
current age distribution in Belgium, and the increased disease 
incidence rate of infection with age, while keeping the disease 
severities across the ages and the cost per severity level constant 
(X2a). The overall number of people (n = 1000), disease events (n 
= 150), and the overall cost (3,000 €) are the same left and right. 
The average cost for the group (3000/1000 = 3€) is also the same, 
left and right, because the population group and the number of 
events are the same in each constellation. The net difference 
of the sum of the overall cost between X1a and X2a is zero (0% 
relative change). The shift of the cost curve in the heterogeneous 
group (X2a) into a bell shape distribution is the consequence of 
the demographic population movement decreasing the numbers 
from high to low with increasing age, combined with the number 
of events increasing with increasing age from low to high. If 

https://www.jscimedcentral.com/public/assets/supplementary/1716181729_0ad46ac04db3bb4d1ed9.docx
https://www.jscimedcentral.com/public/assets/supplementary/1716181744_947057377b7e80372831.docx
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Figure 1 The likely evolution to a more age-homogeneous demographic distribution (from current blue to predicted green).

Figure 2 Presentation of the population, infection, and cost spread as a function of age for a fully homogeneous group (left side) 
versus a heterogeneous group (right side).



Central
Standaert B, et al. (2024)

Ann Public Health Res 11(1): 1129 (2024) 6/16

there is no increase in the infection rate with increasing age, the 
shape of the cost results would be similar to the age distribution. 
These distribution shifts are important to note regarding the 
expectations about where the bulk of the disease burden is likely 
to be observed as a function of age in real life.

In Step 3, shifts in severity level distribution by age are added 
in X2a. Meanwhile, because the cost per severity level remains the 
same in this step, the overall cost will again be the same as in 
the reference fully homogeneous group. Figure 3 illustrates the 
process of adding disease severity levels. Calculating the overall 
cost difference between the homogeneous and heterogeneous 
conditions is obtained through the measurement of the areas 
between the summary curves, as shown in (Figure 4). The line-up 
of the accumulated cost area of the homogeneous condition (blue 
line) splits the figure into a negative side (area under the blue 
line) and a positive side (area above the blue line). Superimposed 
on the line of the overall homogeneous costs is the spread of the 
line figure of the heterogeneous costs (orange line) that has two 
parts at the extremes (left and right) in the negative area (green 
colour) and a middle part that is designed in the positive area of 
the figure (orange colour). The sum of the positive and negative 
areas between the two curves indicates whether there is a higher 
(sum is positive) or lower (sum is negative) overall cost for the 
heterogeneous versus the homogeneous cost spread as a function 
of age. The result of that exercise, as shown in (Figure 4) for the 

difference between the two cost graphs of (Figures 2,3), has a 
zero-sum cost result, as mentioned earlier.

In Step 4, an adjusted specific grade distribution of the severity 
level by age is added with the cost differentiation by severity 
level. However, the mean cost calculation of an event, whether 
it is a low (10€), medium (20€), or high severity (30€) level, is 
equivalent to the mean cost used in the homogeneous condition 
((10€+20€+30€)/3 = 20€). Figure 5 first reports the distribution 
of the severity levels by age, followed by the cost distribution, and 
finally the net cost calculation as the areas between the curves. 
A small cost difference is measured between the X1a and X2a full 
lines, with a -4.2% lower cost for the non-homogeneous spread 
(€2,875-€3,000 = -€125; -€125/€3,000 = -4.2%). The dotted line 
represents the cost line of X2a in (Figure 4).

Step 5, with the introduction of the partial homogeneity 
distributions in X1, is presented in (Figure 6). The blue dotted 
straight line shows the cost result for the partial homogeneous 
reference case (X1b) with a mean cost per age group that decreases 
from €300 (X1a) to €225 because of the change in the proportional 
distributions of the severity levels by age group. When the overall 
cost of X2a (orange line) is then compared with the overall cost of 
X1b, the relative cost difference suddenly jumps to an extra cost of 
+ 27.78% (€2,875 - €2,250 = €625). The negative area between 
the curves is now much smaller, while the positive area has much 
increased. This analysis indicates the importance of selecting the 

Figure 3 Presentation of the population, infection, and cost spread as a function of age for a fully homogeneous group (left side).
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Figure 4 Calculating the areas between the curves of homogeneous versus heterogeneous cost estimates.

Figure 5  Illustrating first the disease severity spread of low, medium, and high by age, followed by the cost spent, and making the comparison with the homogeneous 
cost estimate (X

1a
; blue line)) and with no cost differentiation by severity level (X

2a
; dotted line).
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homogeneous composition of the reference comparator in X1 (full 
or partial).

Figure 7 presents the results of Step 6, showing the overall 
cost distribution by age group with the homogeneous condition 
of the demographic age distribution retained of X1a in X2a, while all 
the changes in the other variables (disease, severity, cost) occur 
following the specific constraints of extreme and exponential 
disease distribution. The overall cost may increase to +11.73% 
for the extreme distribution because of the high number of 
severe cases in the oldest people (€3,352 - €3,000 = €352) 
(Figure 7 C). The exponential distribution ends at an overall cost 
increase of 9% (€3,258 - €3,000 = €258) (Figure 7B). The latter 
is the same type of change as observed in Step 2, but now, the 
number of ageing adults is equivalent to the younger age groups. 
The linear regression distribution has an overall cost difference 
of 0%, equivalent to the base-case analysis in Step 1. The latter 
is a forced analysis, as it is developed using the fixed population 
with the fixed number of infections with cost results that are in 
balance across the age groups around the mean age (82.5 years), 
which is equivalent to the median age of the group. This is not 
the case for the other distributions that have an unbalanced 
distribution of disease cases and their severity level across ages 
in relation to the age midpoint (Figure 7A), therefore causing a 
positive net cost difference.

Combination Analysis

Move and Grade: The next analysis combines changes 
in disease spread (Move) with changes in disease severity 
level (Grade), shifting more events to the more aged group in 
condition X2a while keeping the population number and disease 
events fixed as in the previous multistep analysis. The approach 

first looks at the results of the move shift of the disease spread 
using an increased exponential growth, as shown in (Figure 8) 
(left side, green line) (from 6% at the youngest age to 88% in 
the oldest age group) and presents the outcome as the overall 
cost spread as a function of age (€2875 for X2a versus €2934 for 
X2a+Move). With Move, more diseases shift towards the more 
aged group, causing an increase in overall cost (+€66). However, 
it still results in a negative net cost when compared with the full 
homogeneous condition ((€3000-€2934)/€3000= -2.2%). There 
is a concentration push of the overall cost in the in-between age 
group of 75 to 90 years old, as seen in (Figure 8) (right side, green 
line).

Figure 9 now adds to Figure 8 the Grade change that may 
occur in two different ways. One is an increase in the gradient of 
the linear function of the low severity level across the ages (gray 
line in the left graph of (Figure 9), called Grade 1). The other 
change, called Grade 2, induces a parallel decrease in the low 
severity level function (brown line in the left graph of (Figure 9)), 
while the high severity function is increased by the same amount. 
Again, the outcome result is presented as the overall cost spread 
as a function of age with a separate design for Grade 1 and Grade 
2. Both are designed in addition to the Move change presented in 
(Figure 8).

The results of Grade 1 and Grade 2 have a different profile 
resulting for Grade 1 in a negative net cost sum between X2a 
Move & Grade 1 and the full homogeneous cost result (X1a) that is 
worse than if Move only was considered (€ 2,922-€ 3000 = -€78; 
-2.6%). Grade 2, in contrast, causes a higher overall cost than X1a, 
which is caused by the difference in profile between low and high 
severity levels (€3,167-€3000 = €167; +5.6%).

Figure 6 The distribution of overall costs by age group of condition X
2a with the changes in severity level and unit cost for treatment under the 

full homogeneous condition (X
1a

) or the partial homogeneous condition (dotted line in X1b).
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Figure 7 The distribution of overall costs by age group and age condition for a homogeneous age distribution but non-homogeneous spread in 
disease (A), severity, and treatment costs for exponential increase (B) and extreme condition (C).

Figure 8 Showing the move overall cost results (right) by increasing the exponential growth of infection by age (left).

severity cost is at the maximum level of 20. As further shown in 
Figure 11, the relative overall cost difference between X1a and X2a 
under those circumstances is 1.29% or -€407 in absolute terms 
(€31,093-€31,500). The second row in (Figure 10) illustrates 
the result when the optimal combination is achieved in MFs 
for medium and high severity costs, resulting in the highest 
overall relative cost difference between X1a and X2a (11.19% or 
-€1,419; €11,261-12,630 for MF 6 in medium severity and 4 for 
high severity). One should be aware of the difference in overall 
costs by age group (Y-axis) between the first and second rows 
in (Figure 10). The result of moving to higher cost differences by 
disease severity level augments the overall negative relative cost 
difference between X1a and X2a (see Figure 11). The results of this 

Unit Cost per Severity Level: The unit cost changes are the 
next evaluation (3-way sensitivity level 2). They are implemented 
using Multiplication Factors (MF) of the baseline cost value by 
the two severity levels, Medium and High (maximum 10 times for 
Medium and 20 times for High severity). In the reference base-
case condition of X1a, a uniform cost for each disease severity level 
is applied, calculated as the average cost for the three severity 
levels. Consequently, the mean cost in the full homogeneous 
model of X1a is adjusted as soon as the unit cost is changed in the 
non-homogeneous constellation.

Figure 10 shows in the first row the cost difference obtained 
when the MF for medium severity cost is 1, while the MF for high 
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Figure 9 Impact of Grade 1 (right upper graph) and Grade 2 (right lower graph) on the overall cost results by age.

Figure 10 Changing the Multiplication Factor (MF) for cost of medium severity level in the numerator and high severity level in the denominator 
showing the cost spread by age group and the areas between the curves.
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analysis show the importance of investigating the dominance of 
high severity cost compared with the costs of the other severity 
levels of low and medium. With very high dominance of high 
severity cost (MF = 20), it is likely that the relative cost difference 
between homogeneous and heterogeneous overall cost estimates 
is marginal, as shown in (Figure 11). Some values in (Figure 11) 
are not reported because they do not comply with the constraint 
of having a higher cost for a higher severity level.

Demography

The last combined sensitivity analyses (3-way sensitivity 
analysis) for the disease burden are the demographic changes. 
It should be clear from previous evaluations that the current 
age-demographic composition of aging adults in Belgium 
induces an overestimation of the cost burden when using the full 
homogeneous analysis approach. It is therefore interesting to 
know by which level of age-demographic change the application of 
the full-homogeneous analysis may result in an underestimation 
of the cost burden. To make this analysis straightforward, 
an approximation is applied to the age-demographic change 
using linear regression lines that calculate the angle score in 
the age-demographic change to be increased for reaching the 
zero overall net sum cost (= €3000). The slope numbers of the 
2 linear regression lines in (Figure 12), left side, help indicate 
the negative angle increase of the demographic age component 
between the baseline Figure 5 with an overall cost of €2,875 and 
the cost neutral estimate at approximately €3,000. That angle 
increase (red arrow) is approximately 3.3° (110.7°-107.4°), which 
means that the population increase in the oldest age group of 98 

y old must increase from 0.4% to 1.91% or a 4-fold increase in 
absolute numbers to reach the overall cost-neutral point.

A final disease burden analysis applies a demographic 
augmentation of the population in X2, which is different from 
the previous exercise, matching the current demographic age 
distribution in Belgium. This enlargement is a likely evolution that 
is compared with X1 with no demographic change. The analysis 
shifts the overall cost to an increase of 2.26% for a 7% population 
increase (Figure 13). It could move to close a 15% cost increase 
if a 20% population increase in X2 is applied, which may happen 
over a period of 15 to 30 y from now (data not shown).

Summary Results

Table 3 summarizes the outcome data of all the different 
simulations conducted based on the ESAP of (Table 2). To obtain 
estimates that are comparable between the different evaluations, 
relative cost differences are reported for X2 compared with X1. A 
large driver in the relative cost difference is the reference case 
selected and compared with the homogeneous condition (Step 
5). The next one is the demographic change that may cause a 15% 
cost increase if the population augments by 20%. Other changes 
go into the direction between 2% and 12% cost changes.

DISCUSSION

When there is limited accurate and detailed healthcare data 
that moreover are not easily available, analyses often rely on 
more accessible calculations such as arithmetic average values for 

Figure 11 Multiplication factor for medium severity cost (1 to 10) on the X-axis for different multiplication factors of the cost of high severity 
level (colour index 1 to 20 in legend) expressed as a relative cost difference between X

1 and X
2 (Y-axis).
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Figure 12 Estimating and visualizing the demographic increase needed to arrive at a cost-neutral estimate between X1a and X2b.

Figure 13 Effect of demographic change on the overall cost result.

potential non-homogeneity in the group under study, such as 
demographic age distribution and infectious disease spread. 
These points have been mentioned in the literature, but few 
publications have evaluated the consequences of not assessing 
non-homogeneity in the data analysis. Non-homogeneity could 
be of little concern if the variable spread is well balanced in the 
group or when the numbers to evaluate are fixed, as illustrated 
in Step 1 and Step 6 (linear regression). However, if some or all 
the variables may have unequal or unbalanced distributions, the 
overall summary cost estimate may be heavily skewed, as a non-
homogeneous factor may become especially critical if it is linked 

a group under study. That approach assumes group homogeneity 
in the characteristics for which average values are applied. If this 
assumption is invalid, the summary results of cost could then 
be inaccurate with the reality. Other ways are needed to look 
for estimates of the uncertainty in the outcome results instead 
of using those averages. It is, however, often unknown whether 
non-homogeneity in the data causes substantial differences in 
the outcome results compared with the assumed homogeneity. 
To explore the potential size of the difference, this analysis here 
shows an approach using an extended sensitivity analysis tool, 
called the ESAP plan, that may help understand what is at stake. 
The variables selected and studied are known factors causing 
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to other unbalanced variables in the group, such as age linked to 
infection incidence rate, frailty level, disease severity, and cost.

The summary Table 3 illustrates some interesting features 
of the ESAP analysis regarding issues that should be further 
investigated in a real-life setting. First, it is important to be clear 
about the reference condition of homogeneity selected for the 
comparison. One should define upfront whether a full (X1a) or 
partial (X1b) homogeneity condition is chosen. This selection may 
heavily influence the over- or underestimation level of the overall 
outcome measured with a non-homogeneous spread, as indicated 
in Step 4 versus Step 5 in this exercise. Step 4 selects a full 
homogeneous condition of comparison in X1a, leading to a marginal 
negative net cost difference (-4%) for the non-homogeneous 
condition, whereas in Step 5, a partial homogeneous condition is 
selected for comparison, and suddenly, the net cost difference is 
largely positive (29%) for the same non-homogeneous condition. 
The second important influencing factor is to check the age-
specific demographic change in the study population linked to 
the incidence rate of infectious disease increase by age. That 
combination results in a bell-shaped frequency of the overall 

cost, as shown in (Figures 2,3). The bell shape will be more 
pronounced when the age-demographic and disease incidence 
data are more non-homogeneously spread by age. The third item 
to consider is the link between the distribution of disease severity 
levels by age and the cost per severity level. If there is not much 
of a difference in cost by disease severity level to be expected, 
then limited effort should be spent to obtain more precise overall 
costs than the homogeneous dataset.

When the full homogeneity situation has been selected, the 
results of this study indicate that the range of relative value 
changes in the overall cost estimates for disease management 
can reach a maximum of 15% in the context of extreme situations 
of demographic age distribution, disease incidence rate increase 
with increasing age, disease severity distribution by age group, 
and a high multiplication factor for the high cost in severity 
level (data not shown in the figures). When less pronounced 
distributions are considered, the relative cost difference 
between the fully homogeneous assumption of X1 and the non-
homogeneous condition of X2 is likely to be between 2.5% and 
6% overall. This indicates that the level of deviation in the cost 

Table 3: Absolute and relative change in overall cost by each analysis step of the ESAP.

Item sease cost burden

Homogeneous

Condition Step 1 Step 2 Step3 Step 4 Step 5 Specific Step 6 Specific 3-way 1 Specific 3-way 2 Specific 3-way 
3

X1a € 3,000 € 3,000 € 3,000 € 3,000 € 3,000 € 3,000
MFH20, 
MFM1 € 31,500

€ 3,000
MFH4, MFM6 € 12,680

X1b € 2,250

Non-
homogeneous

X2a € 3,000 € 3,000 € 3,000 € 2,875 € 2,875
linear € 3,000 Move € 2,934 MFH20, 

MFM1 € 31,093

exponential € 3,262 +Grade 1 € 2,922 MFH4, MFM6 € 11,261
extreme € 3,378 +Garde 2 € 3,167

X2b

1% € 2,896

7% € 3,068

20% € 3,441

Cost difference

X2a-X1a € 0 € 0 € 0 -€ 125
linear € 0 Move -€ 66 MFH20, 

MFM1 -€ 407

exponential € 258 +Grade1 -€ 78 MFH4, MFM6 -€ 1,419
extreme € 352 +Grade2 € 167

X2a-X1b € 625

X2b-X1a

1% -€ 104

7% € 68

20% € 441

Relative Cost 
Difference

(X2a-X1a)/
X1a

0.00% 0.00% 0.00% -4.17%
linear 0.00% Move -2.20% MFH20, 

MFM1 -1.29%

exponential 8.60% +Grade 1 -2.60% MFH4, MFM6 -11.19%
extreme 11.73% +Grade 2 5.57%

(X2a-X1b)/
X1b

27.78%

(X2b-X1a)/
X1a

1% -3.47%

7% 1.27%

20% 14.70%
Figures Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figures 8,9 Figures 10,11 Figure 13

MFH: Multiplication factor high severity
MFM: Multiplication factor medium severity
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summary results is not as large as often suspected. The difference 
change is limited because the constraints, defined upfront for this 
analysis, impose strict boundaries on the evaluation. For instance, 
non-homogeneity of the numbers by age groups is restricted and 
auto-correlated in the setting defined by the values in the prior 
age class and the post-age group using smooth curve design. This 
seems reasonable unless catastrophic events may temporarily 
disturb the age distribution, such as war or natural catastrophes, 
where suddenly many people of a specific age group are lost from 
the population. Other interesting features, identified through this 
ESAP, demonstrate the complexity of the problem. Demographic 
and disease spread alone do not create a cost difference unless 
linked to disease severity level spread and cost changes by 
disease severity levels.

An element of concern is the effect of non-homogeneous 
factors that are unbalanced in the opposite direction across the 
group, with strange consequences for the summary assessment. 
For example, with an ageing population, the decline in numbers of 
individuals in progressively older age groups, due to the increase 
in mortality with age, is not programmed as a gradual linear 
decrease with age but instead follows an accelerated course 
causing a highly unbalanced age distribution in the overall study 
group. Infection spread moves in the opposite direction, with 
higher prevalence rates in the older groups because of worsening 
health conditions with increasing age. There is a perception that 
aging induces an overall healthcare cost increase [22,23]. The 
example here, estimating overall healthcare costs of infectious 
disease management in ageing adults, indicates the opposite. 
This shows that the overall cost may be lower when adjusted 
for non-homogeneity compared with the overall cost of a study 
group when assumed to be fully homogeneous. This happens 
when the age structure is heavily unbalanced (fewer very old 
people), which imposes a lower absolute number of highly severe 
and costly treatments, despite having proportionally much more 
severe disease present in those older age classes. This lower 
overall cost estimation may seem counterintuitive, but (Figure 
5) shows that it is possible. If, however, the age imbalance 
gets marginal (Figure 7), which is likely to be the development 
over time as the whole population lives longer, the problem of 
infectious diseases with more severe cases in the older groups 
could increase the overall cost above the homogeneously 
assumed estimates. Managing infectious disease in ageing people 
could therefore become a serious threat to tackle to help control 
healthcare cost increases over time.

Another surprising finding is that higher costs for the 
treatment of more severe cases may not result in an obvious 
change in the cost difference between an assumed homogeneous 
evaluation and an adjusted non-homogeneity evaluation, as 
indicated in (Figures 10,11). The result could move in the 
opposite direction, with a higher negative cost difference with 
higher cost for the more severe cases, because the average cost 
in the homogeneous situation X1 also increases (Figure 11). 
Additionally, changes in demographic composition may take time 
before a substantially higher cost is observed when substantially 
more people are living longer, as (Figures 12,13) indicate [24]. 

Having highlighted the issues of non-homogeneity with a 
hypothetical example using the ESAP, the results indicate the 
information that would be needed for developing more accurate 
estimates. Detailed demographic data are usually collected 
by national institutes of statistics at country level. However, 
infectious diseases are often neglected and not monitored or 
registered precisely and systematically across age groups. 
The recent COVID-19 pandemic highlighted the importance of 
measuring details of infection spread among different groups in 
the population.

This analysis did not include all possible factors that could 
have an unbalanced spread across the population group, as it 
would have been too complex to model non-homogeneity if all 
known factors had been considered. However, the following 
additional elements could be considered that might influence 
the overall cost results with their unequal distributions across 
the group: sex; health condition expressed as the level of 
co-morbidities present in numbers and severity; frailty and 
disability; place of living (home, nursing homes, service flats); 
and hospitalisation. Regarding frailty, a recent review has shown 
the bidirectional movement of infection that influences the 
frailty condition of the individual and vice versa [13]. This may 
complicate the correct assessment of the total infectious disease 
cost burden and the impact estimate of new interventions on 
that health condition, such as vaccination [17]. It is known and 
reported that frailty increases exponentially with aging, which 
may justify the exploration here of exponential graphs for 
infectious diseases [25]. The better knowledge about frailty that 
increases with time allows for considering more appropriate and 
efficient prevention programs in aging adults [14].

Regarding hospitalisation, infectious disease costs for 
hospitalisation are considerable, and the cost differences by type 
of infection in hospital care could be large. This could potentially 
cause a high impact on the estimates of the overall infectious 
disease cost if these differences are not accounted for, and this was 
not evaluated in this analysis [26,27]. Finally, another point not 
considered in this analysis is disease seasonality of the infection. 
This is particularly relevant for respiratory diseases, the most 
important type of infection in aging adults [28]. The seasonal 
effect is an important non-homogeneous factor influencing good 
management of hospital beds across the year. It can severely 
impact the quality of care in hospital disease management, as 
reported for infectious diseases in children [29].

Non-homogeneous analysis of the data, such as that presented 
here, may indicate a different assessment of the importance of 
the cost and the need for good management of the healthcare 
problem of infectious disease in older adults. Infectious diseases 
may spread beyond the initial cases and may harm many others 
during a considerable period. They become a serious threat 
when they accumulate, particularly in costly environments such 
as hospital settings. It is there that they cause most damage to 
society through increased treatment resistance while many of 
those infections could have been avoided through prevention. 
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Non-homogeneous analysis may capture more accurate and more 
detailed evaluations that better help to understand the costs of 
infectious disease and, consequently, the potential benefits of 
preventive interventions applicable to the VITAL program as 
indicated earlier [11].

The analysis presented here has some obvious limitations, 
as the objective of using a simple hypothetical example was 
to illustrate the use of the ESAP method that may indicate the 
potential impact on the differences between homogeneous and 
non-homogeneous data analysis. However, economic evaluations 
often work with simple models to inform. A check against real-
world data may give a more nuanced picture at the end than what 
has been presented here by this simple evaluation. Future studies 
may go beyond this analysis form, using more sophisticated 
models that could also capture the effect of seasonality and other 
variables not considered in the current framework showing the 
indirect effects of new interventions such as vaccination [30].

Meanwhile, it is important to choose the most appropriate 
data analysis to obtain the most accurate estimates of the 
potential health and cost gains to be obtained from preventive 
interventions. Ultimately, the big challenge concerns the next 
steps after evaluating the costs of disease management, which 
include prevention strategies that support healthy ageing [31]. 
Understanding how non-homogeneity in variable categories may 
skew reported results, it could potentially help researchers to 
provide better modelling and evaluations of healthcare cost data 
closer to the real-world situation.
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