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Abstract

Monitoring of patient safety is an indispensable part of clinical trial planning and 
conduct. Proactive safety signal monitoring using blinded data in on-going clinical trials 
enables pharmaceutical sponsors to monitor patient safety closely while maintaining 
the study blind. Bayesian methods, by their nature of updating knowledge based on 
accumulating data and synthesis of prior knowledge, provide an excellent framework 
for carrying out such monitoring of safety. This short communication summarizes 
a straightforward Bayesian framework which can be applied to safety monitoring 
for one or more adverse events of special interest in real clinical trial settings. This 
framework is general enough to allow adaptation to a number of different Bayesian 
models appropriate for application to different clinical settings and types of data (such 
as rare events, exposure-dependent events or continuous laboratory parameters). An 
instructive case study is presented to demonstrate the utility of the proposed method.

ABBREVIATIONS
DMC:  Data Monitoring Committee; AESI:  Adverse Event of 

Special Interest

INTRODUCTION
In randomized clinical trials, interim reviews of safety data 

are usually planned during the design stage and conducted 
periodically by a data monitoring committee (DMC). For these 
planned interim analyses, unblinded safety data are used to 
compare the safety profile of the experimental treatment to 
that of the control group. In order to minimize any operational 
bias on the part of the sponsor, the DMC would typically be 
independent and have minimal contact with the study team. 
Since safety signals may emerge at any time during a trial, it is 
also imperative for pharmaceutical sponsors to monitor patient 
safety in a  real-time  fashion during an  on-going  trial while 
maintaining the study blind, and engage the DMC as appropriate. 
However, formal statistical methods for such monitoring are not 
commonly available or in use. While clearly less informative than 
an unblinded review, blinded analysis of safety data, where the 
treatment group assignment is not revealed, can meaningfully 
augment and is logistically simpler than the DMC review process 
[1]. It can help identify potential safety issues ahead of scheduled 
DMC meetings and can help prevent such issues from becoming 
serious concerns. Moreover, for studies without a DMC, blinded 
safety monitoring could be used to assess the need for performing 
an unblinded safety analysis and/or establishing a DMC.

By virtue of incorporating prior knowledge about the safety 
profile of the control group and updating knowledge based 
on accumulating data, Bayesian methods provide an excellent 
framework for carrying out efficient and effective monitoring 
of blinded safety data. This short communication summarizes 
a simple Bayesian framework which can be applied to safety 
monitoring for one or more adverse events of special interest 
(AESI) in a real clinical trial setting. A simulation study is used to 
demonstrate the value for this method [2].

MATERIALS AND METHODS
The Bayesian framework proposed in this paper is based on 

evaluating the probability that a clinical parameter of interest 
exceeds a  pre-specified  critical value, given the observed 
blinded data. The critical value will typically be selected based 
on historical data about the control group or medical judgment. 
If this probability were to ever get big enough, it would signal 
a potential safety concern, leading to further investigation to 
confirm whether there is truly a safety problem related to the 
experimental treatment or not. Mathematically, this is formulated 
as checking the following inequality involving a Bayesian 
posterior probability (1):

Pr(θ > θc | blinded data) > P cut-off …... 		               (1),

where θ is a particular clinical parameter or metric of interest 
(such as pooled proportion, risk difference or  odds-ratio),  θ 
c represents the critical value for comparison, and P cut-off is a 
probability threshold (such as 90% or 99%) representing the 
desired confidence needed to identify a potential safety signal.
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In a blinded data setting, a common choice for θ is the pooled 
incidence rate (overall proportion) of an adverse event of special 
interest (AESI) among all subjects, since this is the rate that is 
directly estimable. In this case, a conjugate beta-binomial model 
would be a natural choice for Bayesian probability calculations. 
As noted above, other models within the general framework can 
be chosen depending on the inferential setting and data type, 
such as a  gamma-Poisson  model for incidence of rare events 
or to account for drug exposure at the time of analysis, or a 
conjugate  normal-normal  model when θ  is continuous, such as 
the mean of a particular lab parameter.

A typical process for blinded safety monitoring of a particular 
AESI in a clinical trial setting can be described in the following 
steps.

 1. The choice of the probability model, prior parameters and 
probability threshold should be pre-specified before the analysis 
begins. Usually several rounds of trial simulations are run to fine 
tune the decision parameters and fully understand the operating 
characteristics (OC) of the decision criterion prior to finalizing.

2. Assuming subjects are continuously enrolled into the 
study, after a certain number of subjects have been enrolled, start 
evaluating the posterior probability as described in inequality (1) 
based on the pre-defined decision criterion.

3. Apply the signal identification criterion at the desired pre-
determined frequency until the end of the trial or until the pre-
specified threshold is crossed. If the threshold is crossed, carry 
out additional investigations and/or consider an unblinded 
safety review, as appropriate.

We provide an illustrative example based on a real clinical 
trial setting to demonstrate the utility of the safety signal 
detection criterion and the blinded monitoring process. Consider 
a double blind, parallel group, randomized clinical trial of an 
experimental treatment versus placebo to prevent complications 
in patients undergoing major cardiovascular surgery. A total of 
240 subjects were randomized to receive active drug or placebo 
in a 3:1 ratio. All randomized subjects were supposed to receive 
one dose of experimental study drug or placebo on day 1. The 
AESI under consideration was an early-onset event with a 4 week 
observation period and majority of events expected to occur 
within 10 days of dosing. The proposed safety monitoring process 
was to begin when 50 subjects overall had received study drug. 
Based on historical data, the background rate of the AESI was 
expected to be around 0.4% and therefore, the decision criterion 
was set as Pr (θ > 0.004 | the blinded data) > 0.99. Thus, a safety 

alert would be triggered if the posterior probability suggested 
that the overall incidence rate exceeding 0.4% was almost 
certain (exceeded 99%). A  beta-binomial  model was chosen as 
the primary probabilistic model and clinical trial simulations 
were conducted to understand the operating characteristics – 
essentially the power curve – of this decision criterion. Table 1 
describes how parameter choices were matched with the clinical 
information for simulations to mimic the trial setting as closely 
as possible.

  Since an incidence rate more than 2% was determined to 
be of serious clinical concern, sensitivity was mainly assessed 
under this assumption. To understand the robustness of findings, 
simulations were also performed for different prior settings and 
probability models as described in the next section. For each 
choice of model and decision criterion, a graphical monitoring 
chart can be created (as in Figure 1), showing the decision 
boundary in terms of the number of events observed by subjects 
treated which simplifies real-time application of the process. This 
chart is particularly helpful for study physicians.

RESULTS
Figure 1 shows the decision boundary for the primary model 

with a “flat” Uniform (0,1), i.e. Beta (1, 1), prior used to reflect the 
high uncertainty about the overall incidence rate on the trial. In 
particular, all incidence rates from 0% to 100% are equally likely 
under this prior, and there is a very high (98%) prior probability 
of the overall incidence rate exceeding 2%. With this prior, if 3 or 
more AESIs were to be observed out of 100 treated subjects, then 
an alert would be warranted (Figure 1).

Figure 2 shows the OC of the decision criterion in terms of 
statistical power (percentage of trials with at least one safety alert 
per the criterion) as a function of the fixed true overall incidence 
rate based on trial simulations under different choices of priors. 
Figure 2(a) shows that under the Beta (1, 1) prior, probability of 
seeing a signal would be high (>80%) when the true rate was 2% 
or more, and fairly low (<7%) when the true rate was 0.4% or 
less. Thus the procedure is seen to have at least 93% specificity 
and more than 80% sensitivity.

Figure 2(b) shows the OC with a slightly more informative 
prior, Beta (0.1, 5), which has a mean event rate of 0.02 and 
approximately 18% probability that the overall rate exceeds 
0.02. As may be expected, the specificity under this prior would 
increase to close to 98% but the sensitivity would decrease to 
less than 70%. Figure 2(c) shows the OC when slight uncertainty 
about the background rate was incorporated into the model 

Table 1: Choice of simulation parameters to match the corresponding clinical trial information.

Clinical Information Simulation Setting for OC

• Double-blind, parallel group RCT with treatment to placebo allocation 
ratio of 3:1

• Binary incidence data (AE or not) simulated using a Bernoulli distribution 
with parameter p (representing the true pooled rate) which ranged from 
0.1% to 8% for generating OCs under different true rates.

• Background rate was projected to be 0.4% or less, with cause concern 
if the pooled rate exceeded 2% 

• Safety monitoring was to begin after 50
subjects were enrolled, and repeated every 2 weeks until end of trial

• Enrollment ramp-up with a peak
accrual rate of 8 subjects per week 

• 2 subj./wk 3 wks, then 5 subj./wk 2
wks, and 8 subj./wk after that 

• An early-onset AE occurring within 4 weeks after dosing, with 
majority of events within 10 days. 

• The time to onset of AE followed an exponential distribution with mean of 
1 week for subjects with the AESI (76% Probability of incidence within 10 
days).
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Figure 1 Safety signal monitoring chart based on the pre-specified criterion: Pr (overall rate > 0.4%) > 0.99 with a Beta (1, 1), i.e. Uniform (0,1), 
prior. The “x” indicates that 2 events were observed when 180 subjects were evaluated and hence a safety concern was not warranted since it fell 
below the blue boundary.

Figure 2 Operating Characteristics (OC), or Power Curves, as a function of the true overall (pooled) incidence rate with: (a) a Beta(1,1), i.e. 
Uniform(0,1), prior; (b) a Beta(0.1,5) prior; (c) a Beta(1,1) prior and θc distributed as Beta(1,249); (d) a gamma- Poisson model.
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by setting  θc  to be distributed as Beta (1,249) with the mean 
at 0.004. The sensitivity would decrease further, but only 
slightly. Figure 2(d) shows the OC for the safety signal decision 
criterion using a gamma-Poisson model with a less informative 
prior distribution of Gamma (0.001, 0.001). The purpose of 
this less informative prior is just to let the data dominate the 
posterior distribution. When incidence rates are low, the Poisson 
distribution provides a good approximation to the binomial. The 
performance of the procedure under this model is seen to be very 
similar to that in Figure 2(b).

DISCUSSION AND CONCLUSION
These results show that it is feasible to meaningfully 

implement a formal process of continuously monitoring blinded 
data to augment the current practice of periodic unblinded safety 
reviews, as by a DMC. The performance of such blinded signal 
monitoring depends heavily on reliability of prior knowledge 
about the background incidence rate of the outcome of interest 
in the study population. If prior information can be appropriately 
incorporated, potential safety issues can be detected quicker and 
with more certainty. This is especially valuable for blinded studies 
without a formal DMC, to determine if and when a DMC may be 
needed. The proposed Bayesian approach can be easily adapted 
to different data types and decision criterion, and can provide 
useful information in a straightforward way for monitoring one 

or a few  well-defined  adverse events of special interest. Also, 
instead of posterior probabilities, as illustrated in this short 
communication, one may consider predictive probabilities for 
decision making, such as, how likely it would be for two more 
AESI to occur when an additional 20 subjects were enrolled. 
Although the mathematical evaluation of these probabilities 
could be different, the safety signal monitoring process and the 
decision framework would be the same.
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