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Abstract

Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome 
(ARDS), have high mortality rates with few treatment options. A crucial factor in the 
pathology observed in ALI/ARDS is a disruption of the pulmonary endothelial barrier 
which causes leakage of fluid, protein and cells into lung airspaces. Degradation 
of the glycosaminoglycan hyaluronan (HA) by hyaluronidase enzymes and reactive 
oxygen species (ROS) is involved in reduction of the endothelial glycocalyx, disruption 
of endothelial cell-cell contacts and activation of HA binding proteins in ALI/ARDS 
resulting in a loss of pulmonary vascular integrity. In contrast, exogenous administration 
of high molecular weight HA has been shown to be protective in several models of ALI. 
This review focuses on the role of HA to both promote and inhibit ALI based on its size 
and the HA binding proteins present. Further, potential therapeutic applications of high 
molecular weight HA in treating ALI/ARDS are discussed.

INTRODUCTION
Acute Lung Injury (ALI) and the more severe Acute 

Respiratory Distress Syndrome (ARDS) together constitute the 
leading cause of death in critical care patients. Current figures 
estimate the number of cases annually in the US as 200,000 with 
a mortality rate of 40% [1]. ALI and ARDS are characterized by 
rapid onset respiratory failure following a variety of direct or 
indirect insults to the parenchymal or vasculature of the lungs 
that induces inflammation and damages the cells of the alveolar-
capillary membrane. This damage results in flooding of the 
alveolar air-spaces with protein-rich fluid leading to severe gas 
exchange abnormalities [2]. 

The American-European Consensus Conference (AECC) on 
ARDS in 1994 defined ALI as respiratory failure of acute onset 
with (a) PaO2/FiO2 ratio of less that 300mmHg, (b) bilateral 
infiltrates on frontal chest radiograph and (c) a pulmonary 
capillary wedge pressure of 18mmHg or less, or no evidence of 
left atrial hypertension. ARDS was defined identically except for 
a lower limiting value of less than 200mmHg for PaO2/FiO2. The 
arterial hypoxemia is caused by defective blood gas exchange 
due to accumulation of edema fluid in the distal airspaces of the 
lung. Carbon dioxide excretion is also abnormal which increases 
the respiratory rate, the minute ventilation rate and the work 
of breathing [3]. There are several clinical disorders associated 
with the development of ALI/ARDS including direct and indirect 
causes which are shown in Table 1. The most common causes 
of ALI are pneumonia and sepsis. Many patients with ALI/ARDS 

also develop non-pulmonary organ failure such as cardiovascular 
or renal failure, abnormal liver function and haematologic 
abnormalities [3].

PATHOGENESIS OF ALI/ARDS
During the initial phase of ALI, both the alveolar epithelium 

and capillary endothelium are damaged (either directly or 
indirectly). This disruption of the alveolar epithelial-endothelial 
barrier results in loss of barrier integrity and pulmonary edema, 
excessive neutrophil infiltration and release of pro-inflammatory 
cytokines and proteolytic enzymes. The increased neutrophil 
migration into the lung is an important feature, as ALI/ARDS is 
mostly an inflammatory disorder and neutrophils are believed 
to be the chief perpetrators of the inflammation [3]. Excessive 

Direct Indirect

Pneumonia

Aspiration of gastric contents

Breathing in smoke or toxic fumes

Ventilator-induced injury

Near drowning

Lung contusion

Ischemia/reperfusion injury (eg. lung 
transplantation)

Sepsis

Hemorrhagic shock/Transfusion-
Related Acute Lung Injury (TRALI)

Major trauma or burn injury

Acute pancreatitis

Adverse drug reaction

Fat embolism

Table 1: Causes of Acute Lung Injury. The major causes of acute lung injury are 
listed based on whether they cause direct or indirect injury to the lung [5].
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neutrophil recruitment (to the alveolar and interstitial spaces) 
and activation (degranulation leading to release of proteases, 
reactive oxygen and nitrogen species, pro-inflammatory 
cytokines) contributes to the degradation of the basement 
membrane, apoptosis of alveolar type I and type II epithelial cells 
and increased permeability of the alveolar epithelial-endothelial 
barrier [1]. In addition to the neutrophils there is also emigration 
of macrophages which can amplify the injury by releasing 
inflammatory cytokines and pro-apoptotic molecules. This initial 
stage of ALI is often referred to as the exudative phase (1-4 days). 
The fibro-proliferative phase follows (days 4-14). The denuded 
epithelium is replaced by the formation of a proteinous hyaline 
membrane and alveolar spaces become filled with proliferating 
mesenchymal cells. At this stage the edema may start to resolve 
as proliferative alveolar type II epithelial cells begin to repair the 
barrier [4]. In some patients the edema and ALI will continue 
to resolve without fibrosis, however others will experience 
ongoing fibrosis with increased collagen and ECM deposition. 
An extended fibrotic response is associated with prolonged 
mechanical ventilation and increased mortality [1,3,5].

HYALURONAN METABOLISM IN THE LUNG
Hyaluronan (HA) is composed of a linear repeat of disaccharide 

units consisting of D-glucuronic acid and N-acetylglucosamine and 
is the major non-sulfated glycosaminoglycan in the lung [6,7]. HA 
is a dynamic molecule that can differentially promote or inhibit 
lung pathology based on its molecular weight and accessibility 
to various hyaluronan binding proteins. In the lung HA is mainly 
located in the peri-bronchial and inter-alveolar/peri-alveolar 
tissue and the adult lung contains approximately 160mg of HA 
[8]. The prevalent form of HA in vivo, high molecular weight HA 
(HMW-HA), exists with a molecular weight >1 million Da [9,10]. 
Structurally, HMW-HA exhibits a random coil structure that can 
expand in aqueous solution [11]. Aqueous HMW-HA is highly 
viscous and elastic, properties which contribute to its space filling 
and filtering functions. The levels of HA are regulated, in part, 
by the opposing activities of HA synthases and hyaluronidases, 
although HA may also be degraded by reactive oxygen species. 
Proinflammatory cytokines including TNFa IL-1b and LPS induce 
HA production in vitro [12]. Increased HA and its degradation 
products are observed in animal models of chronic obstructive 
pulmonary disease (COPD), ventilator-induced lung injury and 
bleomycin-induced lung injury [13,14].  Further, increased HA 
levels are observed in bronchoalveolar lavage (BAL) fluid and/
or plasma from patients with lung disorders such as pulmonary 
fibrosis, COPD, allergic alveolitis, asthma, interstitial lung disease, 
sarcoidosis and idiopathic pulmonary arterial hypertension [15-
21]. Airway epithelial cells also have increased HA production in 
response to tunicamycin-induced endoplasmic reticulum (ER) 
stress [22]. 

HYALURONAN SYNTHESIS
HA is synthesized by at least three membrane bound 

hyaluronan synthases (HAS1, HAS2 and HAS3) which are well 
conserved evolutionally despite being located on separate 
chromosomes [23]. HA synthesis is unusual compared to other 
glycosaminoglycans, as it is made at the inner face of the plasma 
membrane and not inside the Golgi. The growing HA molecule 

is extended at the reducing rather than the non-reducing 
terminus and, as the polymer grows, it is extruded into the 
extracellular space via the membrane spanning domains of the 
HAS [24,25]. Although hyaluronan synthases catalyse the same 
reaction, the three enzymes differ in a number of ways including 
in the Km values for their substrates (D-glucuronic acid and 
N-acetylglucosamine) leading to differential rates of hyaluronan 
synthesis [26]. Secondly, HAS1 and HAS2 produce HA with 
a molecular weight > 500 kDa and HAS3 produces a lower 
molecular weight (LMW) ≤ 500 kDa HA [27]. These differences 
could account for the multiple types of HA matrix secreted by 
different cell types [9]. HAS expression is altered in a number 
of lung pathologies. Of particular relevance to acute lung injury 
is a study by Bai et al. which utilized a HAS knockout mouse to 
study the role of HAS3 and LMW-HA in ventilator-induced lung 
injury (VILI) [28]. While they observed an increase in LMW-HA 
and neutrophil infiltration in control animals at high ventilation 
tidal volumes, no increase in LMW-HA was detected in the HAS3 
knockout animals and neutrophil infiltration was decreased [29]. 
This study and others indicate that HA synthesis has a role to  
play in lung pathology. HAS levels are variable depending on the 
pulmonary cell type and particular disease state. Although HA 
synthesis and total HA concentration, are important in regulating 
lung function, we must also consider the fact that HA degradation 
by hyaluronidase enzymes and reactive oxygen species can alter 
downstream signaling pathways that directly affect lung function.

HYALURONAN DEGRADATION
HA is degraded by hyaluronidases to produce lower molecular 

weight fragments (<500 kDa) [29]. Six hyaluronidase genes 
encode HYAL-1,2,3,4, PHYAL1 (a pseudogene) and PH-20 [23].  
A recent study by Hofinger et al, revealed that HA degradation 
by hyaluronidase enzymes may be pH dependent [30]. HA 
fragments are implicated in the progression of numerous lung 
diseases.  HYAL-1 expression is increased in a rat model of 
monocrotaline-induced pulmonary hypertension leading to 
increased fragmentation of native HMW-HA and increased 
hyaluronidase activity in lung lysates [31]. In addition, HYAL-1 is 
increased in primary airway smooth muscle cells from asthmatic 
and COPD patients and these cells were found to degrade HMW-
HA into 250 kDa fragments compared to 700 kDa for control 
cells [32]. A study by Dentener and colleagues found that HYAL-2 
expression is also increased in the lungs of patients with COPD 
while HAS2 is decreased [16]. In contrast, HYAL-1 levels are 
decreased in the lungs of patients with idiopathic pulmonary 
arterial hypertension [20]. However, hyaluronidases are not 
the only HA-degrading moiety in the lung and other factors, 
including reactive oxygen species, can account for the presence 
and potential regulating activity of lower molecular weight 
HA [33,34]. Excess lung ROS can be generated from a variety 
of exogenous (particulate air pollution, cigarette smoke) and 
endogenous (activation of phagocytes, stimuli-induced NADPH 
oxidase, mitochondrial electron transport chain, xanthine 
oxidase, lipid peroxidation) sources [35-39]. Cigarette smoke 
generated ROS can degrade HA. Recently, it has been reported by 
Monzon at al., that ROS can regulate the expression of HYAL-2 in 
primary airway epithelial cells [33]. This combination of ROS and 
HYAL-2 expression stimulates the appearance of ~75 kDa HA 
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fragments in lung secretions. These authors speculate that ROS 
exposure leads to an initial direct effect on HA degradation by ROS 
followed by sustained effects through the up-regulation of HYAL 
enzymes [33].  Further, human airway epithelial cells exposed 
to xanthine/xanthine oxidase have HA fragment accumulation 
which is blocked by addition of superoxide dismutase (SOD) or 
catalase [40]. In addition, the extracellular SOD knockout mouse 
has increased LMW-HA in the lung compared to wildtype controls 
[41]. A recent study by Eldridge et al reported an increase in HA 
fragmentation (at 4hrs) following pulmonary ischemia [42]. 
However they could not detect any increase in hyaluronidase 
activity and the fragmentation was reduced in animals given NAC 
anti-oxidant pre-treatment prior to left pulmonary artery ligation 
(LPAL). Based on these findings and their previous reports of 
increased ROS production following LPAL they concluded that 
that ROS generation contributed to HA fragmentation in the lung 
[42].

HYALURONAN AND THE ENDOTHELIAL GLYCO-
CALYX

Hyaluronan is a major component of the endothelial 
glycocalyx, a negatively charged mesh of membrane 
glycoproteins, proteoglycans and glycosaminoglycans located 
on the luminal side of the endothelium in all vessels [43-45]. The 
glycocalyx is currently the focus of much research and is believed 
to have a number of important vasculoprotective functions in 
vivo, including a) regulation of vascular permeability (to water 
and proteins), b) modulation of leukocyte rolling and adhesion, 
c) transduction of shear stress leading to NO release and d) 
inhibition of coagulation [46-50]. The majority of the glycocalyx 
is located in the peripheral vasculature and most studies have 
focused on the glycocalyx in the microvasculature [51]. The 
glycocalyx acts as a molecular “sieve”, retaining proteins in the 
flowing blood which establishes an oncotic gradient across the 
glycocalyx itself, limiting the net outflow of filtrate from the blood 
to the interstitial space [52]. Degradation of the glycocalyx leads 
to mycocardial edema in perfused rat hearts [53]. Although the 
role of the glycocalyx in maintaining fluid balance in the lung has 
not been extensively studied, a number of reports indicate that 
it does have a key role to play in homeostasis. An early report 
by Schneeberger and Hamelin in the mid 80’s indicated that 
disruption of albumin binding by the glycocalyx (and perhaps 
disruption of the glycocalyx itself) increased lung endothelial 
permeability to ferritin [54]. A number of other ALI precipitating 
disorders have been shown to disrupt the endothelial glycocalyx 
and increase free HA in the plasma [13]. Glycocalyx disruption 
has been reported in sepsis, after major surgery, hemorrhagic 
shock, ischemia/reperfusion and following LPS administration in 
animal models [13,55-60]. Using an animal models, Kozar et al. 
have shown that the endothelial glycocalyx was virtually ablated 
by hemorrhagic shock, a known cause of acute lung injury [57]. 
Restoration of the glycocalyx by plasma resuscitation led to 
decreased lung injury as measured by alveolar wall thickness, 
capillary congestion and cellularity [57]. These results would 
suggest that the glycocalyx and HA has an important role to play in 
maintaining endothelial barrier function in the lung and shedding 
of the HA glycocalyx could be a major factor contributing to the 
pathogenesis of ALI/ARDS.

HYALURONAN SIGNALING
HA can directly influence cell behavior through binding 

cell surface receptors. In general terms HMW-HA is regarded 
as mediating the homeostatic functions of HA, including tissue 
hydration, lubrication and acting as a support matrix for cells. 
However HMW HA may also be actively involved in regulating 
cell proliferation and differentiation. It has long been shown 
that HA molecular weight is an important factor regulating its 
signaling activities. HMW-HA can mediate EMT during heart valve 
formation via ErbB2, [61] induce COX-2 expression in endothelial 
cells via CD44, and enhance endothelial barrier function in the 
lung via CD44, the S1P1 receptor and Akt and Rac signaling [62-
65]. Following its degradation, however the signaling properties 
of HA are altered. LMW-HA is generally considered to be more 
“biologically active” than the native HMW-HA. LMW-HA has 
been show to decrease endothelial barrier function, stimulate 
angiogenesis, cell migration and immune cell recruitment 
and induce expression of a host of inflammatory mediators in 
alveolar macrophages including MIP-1α, RANTES, Mig, IP-10 and 
PAI-1 via CD44, TLR2 and TLR4 [64,66-70]. Therefore, the effects 
of HA are wide ranging and complex and are dependent, not only 
on concentration and molecular weight but also on the specific 
receptors expressed and cell type involved. In this review we 
have undertaken to examine the role of HA, and HA interacting 
proteins, as they apply to the spectrum of acute lung injury 
pathologies.

HYALURONAN BINDING PROTEINS
Hyaluronan and its degradation products bind to a variety 

of hyaluronan binding proteins that exist in diverse locales 
including the blood, extracellular matrix, cell plasma membrane, 
cytosol and nucleus. The differential activities of HA are regulated 
in the lung, in part, through interactions with HA binding proteins 
including CD44, HABP2, TLR4/TLR2 and RHAMM. The role of 
these proteins in ALI/ARDS and is discussed below (also see 
Table 2). As ALI has many etiologies a number of different animal 

HA Binding 
Protein

Associated Lung Pathology Refs

CD44 LPS-induced lung injury 
Non-infectious lung injury
Pneumonia
Pulmonary Vascular Leakiness 
Hyperoxia

[65,85)

[81,83]

(89)

[65,86]

[91]
HABP2 LPS-induced lung injury

Ventilator-induced lung injury
ARDS
Pulmonary Vascular Leakiness

[101]

[101]

[102]

[101]
TLR4/TLR2 LPS-induced lung injury

Non-infectious lung injury
Ventilator-induced lung injury
Ozone-induced lung injury
Hyperoxia

[8]

[69,92]

[110]

[121,130]

[131]
RHAMM Non-infectious lung Injury [115]

Table 2: Hyaluronan binding proteins and their associated lung pathologies: 
Table summarizing the HA binding proteins discussed in this review, their 
association with various ALI-related lung pathologies and corresponding 
references.
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models exist based on the clinical disorders associated with 
ALI/ARDS. The most widely used models include mechanical 
ventilation, administration of LPS and live bacteria, hyperoxia 
and bleomycin administration. A more complete review of the 
different animal models of ALI can be found in the article by 
Matute-Bello et al. [71].

CD44

CD44 is a type 1 transmembrane glycoprotein expressed 
in a variety of lung cell types including pulmonary epithelial, 
fibroblast, endothelial and hematopoietic cells [72-75]. There 
are several CD44 isoforms, resulting from alternative exon 
splicing often occuring between exons 5 and 15 leading to a 
tandem insertion of one or more variant exons (v1-v10, or exons 
6 through exons 14) within the membrane proximal region of 
the extracellular domain. CD44 expression can be regulated 
in response to inflammatory stimuli such as LPS and cytokines 
including IL-1β and TNF-α and growth factors such as bFGF and 
VEGF [76-78]. The extracellular domain of CD44 contains clusters 
of conserved basic residues which are part of a HA-binding Link 
module common to HA binding proteins [75]. The cytoplasmic 
domain of CD44 functions to recruit regulatory proteins to the 
cell membrane and initiate HA-mediated intracellular signaling. 
Some examples of signaling pathways and molecules activated by 
HA binding of CD44 include Rac activation leading to lamellipodia 
formation, ERM and merlin proteins, Src  and ROCK [64,73,79,80]. 
The importance of CD44 in the lung has been demonstrated 
through the use of the CD44 knockout mouse in multiple models 
of lung disease including inflammation, vascular leak syndromes 
and non-infectious lung diseases which are discussed below.

CD44 and Non-Infectious Lung Injury: Intratracheal 
administration of bleomycin is an important model for non-
infectious lung injury and fibrosis [71]. Bleomycin causes 
an acute pulmonary epithelial cell injury and inflammatory 
response which later subsides and develops into lung fibrosis 
[71]. Lung CD44 expression is increased in the initial acute 
inflammatory response along with a transient increase in HA 
concentration in the lung interstitium [81]. In the CD44 knockout 
mouse, the bleomycin-induced acute inflammatory response 
persists leading to excess immune cell recruitment to the lungs, 
excess inflammatory cytokine production, decreased TGF-α 
activation, progressive HA fragment (< 500 kDa) accumulation 
and ultimately death [82]. In humans, CD44 is up-regulated in the 
lungs of patients with acute alveolar fibrosis. Treatment of lung 
mesenchymal cells isolated from these patients with anti-CD44 
antibody attenuated migration and invasion into a fibrin matrix 
[83]. This study did not examine HA localization, concentration or 
molecular weight in the lungs of these patients. As the principal 
ligand for CD44, any alterations in HA size or concentration could 
greatly influence CD44 signaling.

CD44 and Lipopolysaccharide (LPS)-induced Lung 
Injury: LPS is an potent endotoxin from Gram-negative 
bacteria that, when administered intratracheally, produces an 
inflammatory reaction characterized by disruption of epithelial/
endothelial barriers and leakage of fluid, protein and immune 
cells into lung airspaces [84]. Recently, it has been demonstrated 
by our laboratory and others that CD44 knockout mice have 
increased bronchoalveolar lavage (BAL) protein and HA 

concentration and exaggerated inflammatory cell recruitment 
of both macrophages and neutrophils with LPS-induced lung 
injury [85,86]. CD44 knockout mice also have increased NF-κB 
nuclear translocation and cytokine production. In this model of 
intratracheal administration of LPS, it appears that CD44 acts 
as a negative regulator to limit the in vivo response to LPS and 
prevent excessive tissue damage [86]. However, a report from 
Hollingsworth et al. appears to challenge this, as they observed 
decreased macrophage infiltration and chemokine secretion 
in their model of aerosolized LPS-induced inflammation. These 
differences are likely accounted for by the different modes 
of delivery (intratracheal versus aerosolized) and lower LPS 
concentration leading to a milder inflammatory response and 
faster resolution. One common finding in all of these studies 
is the increased concentrations of HA in the BAL fluid of CD44 
knockout mice.  

CD44 and Pneumonia: Pneumonia is a disease characterized 
by inflammation of the parenchyma of the lung and alveolar 
edema and is the sixth leading cause of death in America [87,88]. 
In animal models of pneumonia using live Escherichia coli and 
Streptococcus pneumoniae bacteria, CD44-deficient mice had 
increased expression of the neutrophil chemoattractant proteins, 
KC and MIP-2 [9,82]. However, it was only in the E. coli model 
of pneumonia where CD44-deficient mice exhibited increased 
neutrophil migration and edema formation [82]. Patients with 
eosinophilic pneumonia have increased levels of HA and soluble 
CD44 in BAL fluid and increased numbers of CD44 expressing 
eosinophils in BAl. [89]. The increase in CD44 is reported to 
be due to a local increase in IL-5 production in the lung [89].  
Unfortunately, the authors in this study did not examine the 
size of HA in the BAL or its effect on other cell types such as 
neutrophils or macrophages.

CD44 and Hyperoxia: Hyperoxia is often used as a treatment 
to increase tissue oxygenation during ALI but can also lead to 
further lung damage, even in healthy tissue [90]. A recent study 
by Van der Windt et al. reports that CD44 has a protective role 
in hyperoxia induced lung injury [91]. The report indicates that 
CD44 knockout mice have increased mortalilty compared to 
WT animals and exhibit higher levels of necrosis in their lungs, 
particularly the bronchiolar tissue. Although both groups of 
mice have increased numbers of neutrophils in BALF after 24hrs 
of hyperoxia, CD44 knockout mice have significantly higher 
numbers of neutrophils compared to control mice [91].  CD44 
knockout mice also have increased levels of HA in BAL fluid 
but unfortunately the size of this HA was not determined. No 
changes were observed in the levels of osteopontin, another 
CD44 ligand [91]. This data suggests that CD44 is protective for 
the lung epithelium during hyperoxia by limiting the neutrophil 
response and preventing HA buildup in the lung. The role of other 
HA binding receptors, such as TLR4 which may modulate the 
functions of CD44 in the lung, should also be considered in this 
context considering TLR4 knockout mice are more susceptiable 
to hyperoxia injury [92].

CD44 and Pulmonary Vascular Leakiness: Endothelial 
cells (EC) make up ~30% of lung tissue and disruption of the EC 
barrier is a critical feature of inflammation as well as an important 
contributing factor to ALI [21,93]. We have demonstrated 
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that human pulmonary EC express the CD44 isoforms, CD44s 
(standard form) and CD44v10 [64]. In vitro models of pulmonary 
EC barrier function indicate that HMW-HA (~1 million Da) 
activates CD44s signaling and promotes barrier enhancement 
through its interaction with the S1P1 receptor and activation of 
Rac1 signaling leading to cytoskeletal reorganization while HA 
fragments (~2.5 KDa) activate CD44v10 signaling and induce 
barrier disruption via S1P3 and Rho signaling [64]. In animal 
models, pulmonary vascular leak caused by intraperitoneal 
administration of IL-2 is attenuated in CD44 knockout mice and 
by CD44 antibody blockage [94,95].

HABP2

Hyaluronic acid binding protein 2 (HABP2), also called FSAP 
(factor VII activating protease), is a HA binding extracellular 
serine protease involved in the extrinsic pathway of blood 
coagulation via activation of factor VII and fibrinolysis via 
activation of pro-urokinase type plasminogen activator (pro-
uPA) [96-99]. It is expressed as a single amino acid chain 
proenzyme that undergoes autocatalytic cleavage upon binding 
of a ligand [100]. The mature enzyme consists of trypsin-like 
catalytic domain, linked via disulfide bond to the kringle domain 
and three epidermal growth factor (EGF)-like domains. The 
second and third EGF-like domains form the polyanion binding 
domain (PABD) [99]. 

HABP2 and Lung Injury with Pulmonary Vascular 
Leakiness: Intratracheal LPS administration produces an 
inflammatory reaction characterized by disruption of epithelial 
and endothelial cellular barriers with leakage of fluid, protein 
and immune cells into lung airspaces [84]. Although mainly 
produced in the liver, we and others have demonstrated 
that the pulmonary endothelium expresses HABP2 which is 
upregulated with lung injury [101,102]. HABP2 promotes LPS- 
and HA fragment (~2,500 Da)-mediated human pulmonary 
endothelial cell barrier disruption through a mechanism that 
involves protease-activated receptors (PAR) and inhibits HMW-
HA-mediated endothelial barrier protection in vitro [101]. We 
determined the contribution of vascular HABP2 to lung injury in 
mice by inhibiting HABP2 through intravenous administration 
of HABP2 siRNA and observed attenuation of LPS-induced ALI. 
In addition, vascular inhibition of HABP2 expression attenuates 
pulmonary vascular hyper-permeability, in a mouse model of 
ventilator-induced lung injury, demonstrating an important role 
of HABP2 in the development of ALI [101].

HABP2 and Acute Respiratory Distress Syndrome (ARDS): 
HABP2 levels and activity are increased in the BAL fluid of 
mechanically ventilated patients with early ARDS compared with 
patients with cardiogenic pulmonary edema or healthy controls 
[102]. In patients who died from ARDS, immunohistochemical 
analysis of excised lungs revealed HABP2 levels are increased 
in alvealor macrophages, bronchial epithelial and pulmonary 
endothelial cells [102]. This suggests a role for HABP2 in the 
pathogenesis of ARDS.

TLR4/TLR2

Toll-like receptors (TLR) sense exogenous and endogenous 
danger-associated molecular motifs and produce inflammatory 

responses [103]. Structurally, TLR contain an extracellular 
leucine-rich repeat domain (LRR) and a cytosolic Toll/IL-1 
receptor homology domain (TIR) [103]. TLR4 and TLR2 are the 
principal receptors for bacterial cell wall components. TLR4 is the 
major receptor for LPS and can also bind HA, HMGB1, oxidized 
lipoproteins and oxidized phospholipids since these molecules 
contain features of “pathogen-associated molecular patterns 
(PAMPs)” [104]. TLR2 mediates cell responses to lipoproteins and 
lipoteichoic acid from Gram-positive bacteria and mycobacteria 
[105]. Following ligand binding the TLR adaptor molecule MyD88 
is recruited to the signaling complex. This adaptor then promotes 
association with other downstream signaling molecules including 
IRAK, TRAF and TAK-1 which ultimately results in activation and 
nuclear translocation of NF-κB. TLRs are also reported to have a 
role in regulating non-infectious lung injury [106]. Interestingly, 
CD44 and TLR4 are shown to be physically associated in a 
signaling complex following exposure to HA [107].

TLR4 and Lipopolysaccharide (LPS)-induced Lung Injury: 
Intratracheal administration of LPS induces a lung inflammatory 
reaction. Inhibition of TLR4 in animal models protects against 
LPS-induced lung injury [108-110]. TLR4 knockout animals 
have decreased neutrophil infiltration and decreased levels 
of TNF-α, IL-1β, and IL-6 [111].  A TLR4 blocking antibody is 
reported to decrease lung inflammation in a rabbit model of 
LPS-induced injury in mechanically ventilated animals [110]. 
In humans, TLR4 loss-of-function mutations attenuate inhaled 
LPS-induced lung injury [112]. Interestingly, CD44 deficient 
mice have decreased expression of negative regulators of TLR 
including IL-1R-associated kinase M (IRAK-M), Toll-interacting 
protein (Tollip) and TNFa-induced protein 3 (A20) [8].  Muto et 
al., go one step further in their model of the septic response to 
LPS by showing that pretreatment with HMW-HA (with a range 
of molecular weights up to 500 kDa) is protective against LPS 
induced shock [113]. CD44 knockout mice are not protected in 
this model [113]. This indicates that CD44 and HA play an active 
role in regulating TLR4 signaling events. Alveolar macrophages 
isolated from both control treated and CD44 knockout mice have 
differences in TNF-α and IL-6 expression, with HA pretreated 
control macrophages showing decreased expression following 
LPS exposure. HA treated macrophages also have increased 
expression of the TLR4 negative regulator TNF-α-induced 
protein 3/A20 [113].

TLR4/TLR2 and Non-infectious Lung Injury: Intratracheal 
bleomycin treatment causes enhanced pulmonary epithelial cell 
apoptosis, exaggerated lung injury and impaired inflammatory 
cell migration in the double TLR2/TLR4 knockout mouse, results 
similar to blocking HA with the Pep-1 peptide in bleomycin-
treated wildtype mice [69]. In addition, induction of inflammatory 
cytokine expression by HA fragments (~135 kDa) is completely 
blocked in double TLR2/TLR4 knockout mouse peritoneal 
macrophages and reduced in TLR4 knockouts [69]. Using a 
model of lung inflammation induced by LMW-HA (200 kDa) 
administered directly to the trachea, Zhao et al. report that TLR4 
acts as a negative regulator [92]. The authors found an increase 
in neutrophilic infiltration and red blood cells in BAL fluid of 
TLR4 knockout animals. They report TLR deficiency essentially 
increases LMW-HA induced lung injury due to an imbalance in 
the ratio of pro- and anti-inflammatory mediators in the lungs 
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of TLR4 knockout animals. TLR4 knockouts had increased IL-1β, 
MIP-2, TNF-α, and IL-6 levels in BAL fluid following LMW-HA 
administration, and can be rescued by pre-treatment with IL-1RA 
[92]. These results are somewhat at odds with those reported by 
Jiang et al. where TLR4 knockout reduced MIP-2 expression by 
peritoneal macrophages [69]. This difference may be accounted 
for by the cell specific effects of TLR4 and HA. Scheibner et al. 
report that TLR2 but not TLR3 or TLR5 (TLR4 was not examined) 
is required for peritoneal macrophage activation and MIP-1α 
expression by LMW-HA (200 kDa), which can be blocked by 
HMW-HA (6,000 kDa) [ 114].

RHAMM

The receptor for HA-mediated motility (RHAMM) is found 
in diverse cellular locales including the cell surface, cytosol, 
mitochondria and nucleus [75]. RHAMM activates ERK1/2 and 
regulates mitotic-spindle integrity. RHAMM is alternatively 
spliced like CD44 and these two HA binding proteins are often co-
expressed in pulmonary cells [72]. In some cases, RHAMM may 
compensate for CD44 function [72].

RHAMM and Non-infectious Lung Injury: As stated 
previously, one common animal model for non-infectious lung 
injury is intratracheal administration of bleomycin. RHAMM 
expression is increased in lung macrophages with bleomycin 
treatment. Intraperitoneal injection of anti-RHAMM antibody 
attenuates bleomycin-induced lung macrophage recruitment and 
reduction of alveolar septae thickening and early indications of 
lung fibrosis [115].

Therapeutic Potential of Hyaluronan: Although HMW-
HA (≥1 million Da) is produced endogenously and is an 
integral component of the extracellular matrix, synovial fluid 
and vitreous humor, recent attention has been focused on 
the use of exogenously administered HMW-HA in a variety of 
diseases including lung disease [116,117]. In vitro, exogenous 
administration of HMW-HA inhibits ROS, nitrotyrosine and 
inflammatory cytokine production as well as promotes 
immune tolerance [118-120]. In addition, excess production of 
endogenous HMW-HA in mice overexpressing HAS2 in airway 
epithelia protects against bleomycin-induced lung injury and 
ozone-induced airway hyperresponsiveness [69,121]. 

As discussed earlier HA forms a major part of the vascular 
glycocalyx [43]. Loss or disruption of the glycocalyx leading 
to increased vascular permeability and edema and may be 
a contributing factor in ALI. Repair of the glycocalyx and 
restoration of vascular barrier function could potentially be 
beneficial in the treatment of ALI. Previous studies have shown 
restoration of the glycocalyx by plasma resuscitation in animal 
models of hemorrhagic shock [57]. Other studies have shown that 
perfusion of HA can restore the glycocalyx following degradation 
with by hyaluronidase or in response to ischemia/reperfusion 
injury [122,123].

EXOGENOUS HMW-HA AND LIPOPOLYSACCHA-
RIDE (LPS)-INDUCED LUNG INJURY

We have recently demonstrated that intravenous 
administration of HMW-HA (~1 million Da) four hours after 
intratracheal administration of LPS provides protection against 

lung injury in mice [86]. This is in agreement with Nadkarni et al. 
who demonstrated pre-treatment of hamsters with aerosolized 
HMW-HA protects against endotoxin-induced lung injury [124]. 
Interestingly, these authors noted that treatment with aerosolized 
HMW-HA after endotoxin treatment actually enhanced lung 
inflammation indicating the timing and route of administration 
are important determinants of HMW-HA’s effectiveness.

EXOGENOUS HMW-HA AND SEPSIS/VENTILATOR-
INDUCED LUNG INJURY

Intraperitoneal administration of HMW-HA (1.6 million 
Da) 18 hours prior mechanically ventilation with a low tidal 
volume (7 ml/kg) and carotid artery administration of LPS (to 
induce sepsis) protects rats from lung injury [125]. In these same 
studies, intravenous administration of HMW-HA at the same time 
as initiation of ventilation also protected from lung injury [125]. 
Interestingly, the use of 35 kDa HA showed partial protection in 
these models, but to a lesser extent that HMW-HA. Our laboratory 
has also demonstrated intravenous administration of HMW-HA 
protects from ventilator-induced lung injury in mice [21].

EXOGENEOUS LMW-HA AND CIGARETTE SMOKE-
INDUCED LUNG INJURY

Smoking is a well known cause of lung injury which can 
lead to the development of emphysema and chronic pulmonary 
obstructive disease (COPD). Cigarette-smoke is believed to 
induce an imbalance in the protease-antiprotease levels in the 
lung [126]. This imbalance, which develops due to increased 
inflammatory cell recruitment, activation and release of protease 
enzymes (including elastase), leads to proteolytic breakdown 
of the extracellular matrix and the elastin fibers. Breakdown of 
the elastin fibers can lead to alveolar distention and rupture a 
prominent feature of emphysema and COPD [127]. Although 
HA itself does not inhibit protease activity, studies by Cantor 
and Turino have shown that it may be protective against elastin 
fiber breakdown. They have shown that aerosolized LMW HA 
(150kDa) binds or closely associates with the elastin fibers and 
may physically protect them from degradation by proteases 
[127,128]. A clinical trial is currently underway to determine the 
use of hyaluronan as a treatment in COPD.

CONCLUDING REMARKS
ALI and ARDS affects approximately 200,000 people annually 

in the US alone with a mortality rate of up to 40%. Although there 
are numerous clinical disorders associated with the development 
of ALI/ARDS it is regarded as an inflammatory condition which 
damages the lung epithelium and endothelium leading to an 
increase in permeability and pulmonary edema. Despite what 
is currently known about the causes and pathogenesis of ALI/
ARDS there are no specific therapies available. Current treatment 
strategies are focused on mechanical ventilation and fluid 
management [129]. New therapies and treatment strategies are 
therefore urgently needed. The role of HA and its degradation 
products in the lung is complex. HA and HA binding proteins 
are involved in a number of processes including inflammation 
and barrier function. The expression of HA binding proteins 
is upregulated in many ALI models along with increased HA 
turnover by hyaluronidase enzymes and reactive oxygen species. 
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The HA metabolic pathway is therefore an attractive and novel 
therapeutic target. Preliminary results have already indicated that 
HMW HA can be used to repair the damaged vascular glycocalyx 
and also to protect against LPS and ventilator induced lung 
injury, while LMW HA may protect against proteolytic damage 
in emphysema. More research is needed to fully understand 
the complexities of HA in acute lung injury and how signaling 
by multiple HA binding proteins integrate together in the lung 
and are altered in response to injury. However from the reports 
published thus far hyaluronan may offer a therapeutic benefit as 
a treatment in acute lung injury.
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