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ABBREVIATIONS
CFTR: Cystic Fibrosis Transmembrane Conductance 

Regulator; CF: Cystic Fibrosis; WT: Wild Type; ATP: Adenosine 
Tri Phosphate; NBD: Nucleotide-Binding Domain; TMD: 
Transmembrane Domain; mM: Millimoles; FEV1: Forced 
Expiratory Volume in One Second; FVC: Forced Vital Capacity; 
FEF25–75%: Forced Expiratory Flow 25-75%; VO2max: Maximal 
Oxygen Uptake; SVmax: Maximal Stroke Volume; Qmax: Maximal 
Cardiac Output; BMI: Body Mass Index; IV: Intravenous; CFQ-R: 
Cystic Fibrosis Questionnaire-Revised

INTRODUCTION
Cystic Fibrosis (CF) is one of the most common genetic 

diseases among the Caucasian population. It affects about 1 
in 2500 Caucasian newborns [1]. This disease is a multi-organ 
recessive disorder and limits the lives of 70,000 people worldwide 
[2,3]. In 1938, Dorothy Hansine Andersen was the first person 
to describe and document CF [4]. More than 900 CF mutations 
are currently known [5]. In 1989, a recessive mutation on the 

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) 
gene on Chromosome 7, F508∆, was linked to the pathogenesis 
of CF [3,6]. Later in 1997, the second most common mutant allele 
of CF, G542X, was discovered [7]. A replacement of glycine with 
aspartic acid at the 551st position (G551D-CFTR) is the third 
most common genetic defect associated with Cystic Fibrosis 
[8]. This missense mutation results in a gating dysfunction of 
the CFTR protein and causes a reduction in the transference of 
chloride anions across the cell membrane [9].

The CFTR protein is located in the apical membrane of cells 
that line the airways, sweat glands, intestinal, reproductive, 
hepatic, and renal epithelia [10]. CFTR is a chloride anion channel 
that is responsible for facilitating the transport of chloride anions 
in and out of many epithelial tissues [11]. CFTR is a complex 
glycoprotein that is composed of 1,480 amino acids [12]. This 
protein has two nucleotide binding domains, NBD1 (cyan) and 
NBD2 (grey), that use Adenosine Triphosphate (ATP) as an 
energy source and two transmembrane domains, TMD1 (red) 
and TMD2 (blue), that are folded in such a way to allow a chloride 

Abstract

Much research has been done to explain the mechanism behind the third most 
common cause of Cystic Fibrosis (CF), a missense mutation in the Cystic Fibrosis 
Transmembrane Conductance Regulator (CFTR) protein. The G551D mutation is caused 
by a glycine to aspartic acid substitution at the 551st position of the CFTR protein. 
This causes a malfunctioning in the diffusion of chloride anions across specific cell 
membranes. A missense mutation involving an amino acid other than Glycine will result 
a 100x lower probability in the opening of the chloride channel. This is because the 
mechanism behind G551D-CFTR is multi-faceted and requires that the amino acid filling 
this position not possess a side chain and/or be negatively charged. The presence of a 
mutation at Position 511 impairs ATP’s ability to effectively bind at the NBD. Once ATP 
is able to bind, it is often prohibited from releasing and allowing another ATP molecule 
to bind in its place. This causes an ineffective conductance of current that prevents the 
channel from fully opening. Ivacaftor is a drug formulated to increase the potentiation 
of the CFTR to increase the transference of chloride anions across the cell membrane. 
It has the ability to provide relief to this subset of CF patients. While we know much 
about the effects of the drug, research is still being conducted to enhance its efficacy. 
The use of Ivacaftor has a promising future. However, there are still areas of its use 
that we still don’t know and, as lung function declines and infections go uncontrolled, its 
ability to provide relief to patients with the G551D mutation begins to diminish. This 
paper will elaborate of the mechanism behind the G551D missense mutation and how 
Ivacaftor can be used to improve the lung function and quality of life of patients with 
this fatal disease.
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to pass through to the outside of the cell (Figure 1) [13,14]. The 
natural CFTR protein is typically called wild-type CFTR (WT-
CFTR) [9,15] and has the ability to directly down-regulate Na+ 
channels. This explains the observed differences in Na+ transport 
of the airway epithelia between WT-CFTR and G551D-CFTR [16]. 
This paper discusses G551D-CFTR, reviews the current literature 
on the mechanism behind this protein, and elaborates on the 
effect of Ivacaftor as a treatment.

Glycine to aspartic acid substitution at position 551

In some patients with CF, there is a mutation of the CFTR 
protein. Glycine (Gly or G) is present in position 551 on the 
native protein (Figure 2). In some patients with CF, a missense 
mutation has occurred causing Aspartic Acid (Asp or D) to replace 
Glycine (G551D-CFTR) (Figure 3) [17]. This Glycine/Aspartic 
Acid mutation results in the decreased probability of an open 
chloride channel, about around 100 times less than the WT-CFTR 
protein [9]. For this reason, researchers are attempting to find 
reagents that will possibly increase the conduction of current in 
this protein resulting in the increased probability of an opened 
channel [17].

Mechanism behind G551D: Currently, to our knowledge, 
there is only one drug available that targets G551D-CFTR. 
Ivacaftor (VX770), also known by its trade name - Kalydeco, has 
been shown to increase the potentiation of G551D-CFTR by about 
8 times [18]. While this is an improvement in protein function, 
its effect is still less than a tenth of the WT-CFTR protein [19]. 
There have been prior studies that have shown that ATP’s ability 
to open the channel is obliterated by the G551D mutation despite 

the fact that the CFTR proteins appear on the apical surface of 
epithelial cells [9,20]. There is a presumption that this mutation 
impedes ATP-induced dimerization because of where the 
mutation occurs on the protein [21]. This mutation hasn’t been 
fully investigated due to low activity in the G551D channel [9]. 
Furthermore, since Glycine doesn’t contain a side-chain, its small 
size exposes the peptide backbone so ATP can form a hydrogen 
bond at the Nucleotide-Binding Domain (NBD). G551D results in a 
longer side chain creating a complication in the phosphorylation-
induced dimerization of the NBD [22]. 

Lin et al (2014) reported that Ivacaftor sensitizes G551D-
CFTR to ATP resulting in a biphasic response in current. Despite 
the absence of ATP, there was an initial spike in current followed 
by a slow decay [17]. In contrast, WT-CFTR’s current shows an 
immediate increase in the presence of ATP and abruptly falls 
in the absence of ATP. When ATP’s binding affinity with either 
NBD (NBD1 or NBD2) is manipulated, the G551D mutation forces 
one of the two ATP-binding sites to become inhibitory [23]. The 

Figure 1 A PyMol rendering of the Cystic Fibrosis Transmembrane 
Conductance Regulator. The two transmembrane domains, TMD1 & 
TMD2, are colored in red & blue, respectively. The two nucleotide 
binding domains, NBD1 & NBD2, are colored in cyan & grey, 
respectively [61].

Figure 2 A peptide structure showing Glycine at Position 551 (red) of 
WT-CFTR. Figure was created using BIOVIA Draw [62].

Figure 3 A peptide structure showing Aspartic Acid at Position 551 
(red) of G551D-CFTR. Figure was created using BIOVIA Draw [62].
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second ATP-binding site is formed by the head of NBD2 and the 
tail of NBD1 (Figure 4) [24]

There are two explanations for this effect. Primarily, a lowered 
probability of occupancy explains an increase in current despite 
a decrease in ATP. This is because the various conformations 
increase the Gibbs free energy of the protein and the instability 
of the protein results in a lower probability of occupancy [9]. If 
the molar concentration of ATP is lowered, current will decrease 
because ATP binding to the NBD is jeopardized. In addition, 
mutations that alter the affinity for ATP-binding may also alter 
the stimulatory action of ATP [8,17].

Two millimoles (mM) of ATP is likely to saturate NBD1 and 
NBD2, 20 micromoles (μM) would allow full occupancy of site 1 
[25] (Figure 4); however, a suboptimal probability of binding at 
site 2, and 1 μM would ensure minimal binding of ATP at both 
sites. When ATP is decreased from 2 mM to 20 μM, the measured 
current will increase despite the decrease in ATP. Decreasing the 
ATP further from 20 μM to 1 μM will result in a lower current 
than 2mM. This finding indicates that 20 μM of ATP would likely 
bind to both NBDs and 1 μM is the minimum to bind with one 
NBD. Because the current increases when lowering the molar 
concentration of ATP in the absence of Ivacaftor, this inhibitory 
action must be an intrinsic property of G551D [17].

The second explanation is likely to be explained by altering 
the ATP-binding affinity at the second NBD site. Evidence of this is 
found by manipulating the aromatic amino acid at position 1219, 
Tyrosine (Tyr or Y) [26]. Tyrosine at position 1219 is important 
because it has an important role in the binding of ATP in the 
head of NBD2. Three amino acids, two with a side chain and one 
without, were chosen to demonstrate that a mutation containing 
a side chain will alter ATP-binding affinity: Phenylalanine 
(Y1219F), Isoleucine (Y1219I), and Glycine (Y1219G). Y1219F 
and Y1219I showed a biphasic response in the absence of ATP. 
However, when Y1219G fills this position, the current falls to 
baseline as expected. Removing the entire side chain stops the 
spike in current and the subsequent decay [17]. This means the 
presence of a side chain causes the biphasic response.

WT-CFTR requires Glycine to be stimulatory and it becomes 
inhibitory in G551D. However, because Aspartic Acid is anionic, 
it also implies that a negatively charged molecule at the 551st 
position would prevent the dimerization of NBD2 due to 
electrostatic repulsion [17]. It is important to replace the 551st 
position with a neutral amino acid, a cationic amino acid, and an 
anionic amino acid to determine if a negatively charged molecule 
can be implicated as well. Serine (G551S), a neutrally charged 
amino acid, and Lysine, a cationic amino acid, both show that ATP 
serves as a pure stimulatory ligand because the current drops to 
the baseline after the ATP washout. However, when observing 
the current of Glutamate (G551E), an anionic amino acid, a 
biphasic response is observed. Since Glutamate and Aspartic Acid 
are negatively charge amino acids, the inhibition at site 2 must 
also be caused by the anionic side chain of Aspartic Acid [19].

Ivacaftor (VX770), (Kalydeco)

Ivacaftor (Figure 5) increases potentiation of the mutate 
CFTR protein to allow the facilitated diffusion of chloride across 
cell membranes with a projected improvement of 8-fold [18]. 

This drug, Ivacaftor, treats around 4–5% of the cases of CF [27]. 
It has been reported that Ivacaftor can cost around $300,000 per 
year [28]. However, Vertex Pharmaceuticals has made the drug 
free of charge to patients in the US if they meet certain insurance 
and income requirements [3,29]. Ivacaftor also been reported to 
treat other mutations such as, G1244E, G1349D, G178R, G551S, 
S1251N, S1255P, S549N, S549R, and R117H [30].

There are some adverse effects of Ivacaftor. The most common 
are headache, oropharyngeal pain, upper respiratory tract 
infection, nasal congestion, abdominal pain, nasopharyngitis, 
diarrhea, rash, nausea, and dizziness [31,32]. However, most 
patients that experience these kinds of symptoms find they are 
of mild to moderate severity and none are serious enough to 
discontinue treatment [33]. Ivacaftor is transported around 
the body while chemically bound to albumin and alpha 1-acid 
glycoprotein. Also, it has been reported that this drug does not 
have the ability to bind to red blood cells [34]. It has a half-life of 
12 hours [35] and most is eliminated in the feces with negligible 
urinary excretion [36].

Pulmonary function testing / cardiopulmonary 
exercise testing

Studies show that the administration of Ivacaftor results in an 
increase in the Forced Expiratory Volume in One Second (FEV1), 

Figure 4 A graphic representation depicting how each site consists of 
the head of one NBD and the tail of the other NBD.

Figure 5 A skeletal structure of Ivacaftor (VX-770). Figure was created 
using BIOVIA Draw [62].
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an increase in FEV1 % Predicted, and an increase in Forced Vital 
Capacity (FVC) [37-40]. A nominal increase of 0.09 L/s in the 
Forced Expiratory Flow (FEF25–75%) been reported as well [41]. 
Some patients reported an increase in maximal oxygen uptake 
(VO2max). A study published by Saynor et al., (2014) reported 
an improvement around 30%. However, this improvement was 
found to be out of proportion with changes in lung function, but 
it is considered clinically meaningful because this improvement 
is 20% greater than their expected error. Varied responses in 
VO2max can be explained by the patient’s present lung function. 
Severely decreased lung function, especially with underlying 
infections and parenchymal inflammatory changes, explains poor 
improvement in VO2max [42]. One study showed 292% increase in 
the 6-minute walk test and a 310 meter increase in the shuttle 
walk test from their respective baselines [43]. In addition, an 
increase in maximal stroke volume (SVmax) and maximal cardiac 
output (Qmax) were found [41] as well as an increase of 4.5% in 
overall weight and about 5.8% in BMI (19.1 to 20.2 kg/m2) after 
the use of Ivacaftor [37]. This can be explained by the decrease 
in viscosity of mucus in the respiratory tract mucus leading to a 
decrease in mucus in the sinuses [44] which improves patient’s 
sense of smell and may result in an improved appetite. In 
addition, a decrease in airway mucus lowers the level of airway 
obstruction resulting in few exacerbations. This decreased work 
of breathing leads to a decrease in energy expenditure and can 
improve the appetite [45]. One notable change was a decrease in 
the amount of days on IV antibiotics, even when the patient was 
infected with Pseudomonas aeruginosa [46]. However, changes 
in the microbiota of a patient’s lungs do not occur [37] but 
Ivacaftor seems to enhance bacterial variety [47]. Analysis of the 
microbiota in CF patients may lead to learning the evolution of 
the bacteria and using them as biomarkers as a means to evaluate 
lung function [47].

The Effect of Ivacaftor on Pregnant Patients

Studies regarding the use of Ivacaftor on pregnant patients 
are limited. However, one norm weighted patient was reported to 
have had a normal, uncomplicated, spontaneous vaginal delivery 
while using the drug. Her predicted FEV1 was 85% before 
receiving Ivacaftor. After learning she was pregnant, her FEV1 
was 94% while using Ivacaftor (85% without). It’s important to 
note that it is probable that Ivacaftor and/or its metabolites can 
excrete into human milk. However, to our knowledge, there is no 
research on the effects of Ivacaftor on infants that are breast-fed 
[48].

Wellness and quality of life

Studies that perform the Cystic Fibrosis Questionnaire-
Revised (CFQ-R), a health-related qualify of life measurement 
for patients with CF, show improvements in the respiratory 
domain as well as physical functioning, social functioning, 
eating disturbances, health perceptions, treatment burden, 
and [40,49]. However, there are no significant differences in 
emotional functioning, body image, or digestive scale scores [33]. 
Ivacaftor appears to increase the perceived amount of bronchial 
secretions, possibly due to improved function. This may result 
in an increase in the intensity of percussive physiotherapy and 
frequency of IV antibiotics after initiating Ivacaftor [50]. Patients 

receiving Ivacaftor appear to have improved mobility and quality 
of life. However, the administration of Ivacaftor doesn’t appear 
to eliminate other medications (i.e bronchodilators, steroids, 
mucolytics) and modalities (i.e chest physiotherapy) that are 
intended to improve pulmonary function.

DISCUSSION & CONCLUSION

Discussion

Researchers have begun designing a second generation of 
more effective CFTR potentiators and correctors [51]. In addition, 
these findings may ultimately lead to a cure for at least a subgroup 
of patients with the G551D missense mutation. However, there 
are some limits in our current knowledge of the CFTR protein. Not 
much research has been done on the role of site 1 (Figure 4). This 
is partly because it is bound to the tail portion of site 2 and less 
accessible [52,53]. Studies have shown that site 1 is hydrolysis 
incompetent and early biochemical studies show that ATP can be 
trapped in site 1 for minutes implicating a higher binding affinity 
for ATP [54,55]. To our knowledge, most reported studies aren’t 
able to come to a solid conclusion on the importance of the role 
of site 1, but most believe the role of site 1 is of less significance 
when compared to site 2 [25].

Overall, based on this review, we believe there are some 
drawbacks / limitations with regards to the administration of 
Ivacaftor to CF patients. In addition, it is reasonable to assume 
that an improved diffusion of chloride anions resulting from the 
administration of Ivacaftor can improve mucociliary clearance. 
However, there isn’t enough data that measures that improvement 
in relation to the types of microbes in the airway. The reduction in 
the days on IV antibiotics may be explained by Ivacaftor’s ability 
to stimulate the immune system and reduce bacterial survival 
[56]. By normalizing the function of G551D-CFTR, Ivacaftor is 
able to correct the degranulation of neutrophils resulting in 
the controlled destruction of bacteria. The data in some of the 
reported studies were collected retrospectively. This has the 
potential to increase the possibility of error due to confounding 
variables and bias. Ivacaftor has a limitation of ineffectiveness for 
CF patients suffering from the more common mutation, F508∆ 
[57]. This is because F508Δ is not found at the apical membrane 
of cells. F508Δ has a defect in its folding and is unable to leave the 
endoplasmic reticulum [58]. However, this mutation is currently 
being treated by another drug called Orkambi, a combination 
drug that contains Ivacaftor [59]. Another limitation is that 
medications used in practice are often different and more variable 
than the medications allowed in clinical trials. It is important to 
determine how the pharmacology changes in different conditions 
such as fever, sepsis, and interactions with other medications. 
Also, to our knowledge, it is currently unknown if Ivacaftor has 
the ability to overpotentiate other proteins and how the result 
of that potential overpotentiation will affect the use of Ivacaftor. 
In addition, to our knowledge, current literature doesn’t state 
whether a reduction in the days on IV antibiotics is reflecting 
an improvement in the lungs ability to reduce inflammation 
and clear infection or if the reduced symptoms will result in a 
patient feeling a lower need to use rescue therapies. For the short 
term management of CF, current literature doesn’t reveal how 
spirometric changes will impact long-term disease progression. 
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For the long term management of CF, it is unknown at this time 
if lung function can be improved [40] Because Ivacaftor appears 
to provide a short-term improvement of spirometry-assessed 
lung function and appears to be a viable therapeutic approach 
in Cystic Fibrosis, [40] more research needs to be done to 
determine if Ivacaftor is inadvertently targeting and increasing 
the potentiation of other proteins in the human body [60]
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