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Abstract

Quantitative network analysis of brain networks has been an important tool for characterizing brain function. Cognitive abilities emerge from coordinated 
activity of distributed brain regions that may participate in multiple networks at different times. However, neuroimaging has few available tools to model and 
quantify networks with spatially overlapping nodes that are active at different times. The dynamics of network reconfiguration may yield important insight 
into networks that are damaged with neurodegenerative disease. We describe here an approach that uses a graph analytic technique called link clustering, 
which identifies communities that have overlapping functional nodes, demonstrating its ability to highlight differences in the dynamic reorganization of networks 
between subjects with Alzheimer’s dementia and normal controls.
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INTRODUCTION
Higher cognitive abilities (e.g., memory, executive function) 

emerge from coordinated activity of distributed cortical regions, 
each relatively specialized for one or more aspects of the function. 
The composition of such systems is enabled by patterns of 
anatomical connectivity, but shifts dynamically. A single cortical 
field may be involved in multiple distributed systems [1-3].  Thus, 
a functional magnetic resonance imaging (fMRI) scan of a subject 
at rest (resting fMRI), normally 6-10 minutes in length, may allow 
us to study the dynamics of these cortical systems. Convergent 
evidence supports the hypothesis that strength of correlation 
between brain regions (aka functional connectivity) is related 
to efficiency of communication: patterns of correlations recreate 
spatial maps of known large-scale intrinsic brain networks [4], 
and a disruption of “normal” patterns of mean correlations 
obtained during resting state scans (mean connectivity) has 
been related to aging [5,6] Alzheimer’s [7-9], and a variety of 
neuropsychiatric disorders. Functional connectivity provides 
unique information about systems-level brain function not 
obtainable through structural connectivity, metabolic imaging, 
or conventional task-based fMRI.

There is a growing evidence that the fluctuations in the 
strength of correlations between regions varies throughout the 
time of a single scan and is likely an aggregate representation 

of the faster neuronal network reconfiguration. Results from 
computational modeling suggest that these fluctuations reflect 
the brain’s exploration of the space of potential network 
configuration [10]. Like traditional connectivity analyses, the 
characterization of these fluctuations should reflect changes 
that occur with aging and neuropsychiatric disorders, yet offers 
a richer description of the dynamic systems-level behavior of 
the brain [2].  Our approach is to characterize these fluctuations 
from aggregate fMRI activity using link clustering [11], which 
allows nodes to belong to multiple communities, in contrast to 
traditional community detection algorithms. 

METHODS
Data were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). 
The primary goal of ADNI has been to test whether serial magnetic 
resonance imaging (MRI), positron emission tomography (PET), 
other biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression of mild 
cognitive impairment (MCI) and early Alzheimer’s disease (AD). 
For up-to-date information, see www.adni-info.org. The sample 
included 42 subjects (21 AD and 21 controls, matched by age and 
gender), mean age = 74 (56-86). This sample includes the first 
MRI occasion of all AD subjects who have usable 3T resting state 
fMRI scans and a matched group of controls. 

http://www.adni-info.org
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Scans were processed using software from FSL[12], 
FreeSurfer [13] and AFNI [14]. Data were corrected for motion 
using FSL MCFLIRT [15]. Despiking, regression of time series 
motion parameters and the mean signal for CSF and white matter, 
and three dimensional spatial smoothing with a 3mm sigma was 
performed. We used the mean timecourses from 10mm spheres 
centered at Montreal Neurological Institute (MNI) coordinates 
from a previous partitioning of fMRI data into functional nodes 
[16]  to create connectivity graphs (using the Pearson correlation 
of the timecourses, subtracted from 1.0, as a distance metric). 

We used a link clustering algorithm [17], implemented using 
the linkcomm library [17] to cluster graph edges (links) based on 
their similarity, a method that allows nodes to belong to multiple 
communities, reflecting their changing dynamic function. We 
use a bootstrap resampling approach to determine statistical 
significance of outcome statistics from the link clustering by 
drawing 500 random samples of 10 subjects from each group, 
creating mean connectivity graphs for each group, computing the 
link clustering and outcome statistics of group differences. We 
then compared these outcome statistics using a t-test.

RESULTS
Several outcome statistics of interest from link clustering 

were significantly different between groups (Table 1), revealing 
differences in the overlapping community structure of the brain 
that cannot be quantified with traditional graph metrics. AD 
subjects have fewer communities with less differentiation, and 
their nodes belong to less highly connected communities. The left 
anterior paracingulate cortex (medial frontal wall), an important 
region in the default mode network, appears disproportionally 
frequently in communities in subjects with AD compared to 
normal subjects (Figure 1a). In normal subjects, other nodes 
are also involved in multiple communities with frequencies that 
recapitulate the default mode network (Figure 1b). 

DISCUSSION
Alzheimer dementia has been analyzed by some authors 

as a disconnection syndrome [19], reflecting a disturbance of 
interactions between multiple neuronal systems as a result of 
AD pathology.  Network analysis techniques have been useful in 
characterizing salient features of this disturbance; for example, 
networks appear more randomized, reflecting a global reduction 
of long distance links between regions [20].  This may be 
interpreted as a loss of complexity [21]. 

Our findings are consistent with the literature; specifically 
we find a significant reduction in the mean distance within all 
communities and within the largest community. We observe that 
the mean number of communities is lower in AD and the number 
of nodes in the largest community is greater, reflecting a less 
complex pattern of reorganization. The left medial frontal wall, 
an area that is left relatively intact in AD disease progression [22], 
is overrepresented in communities in AD, perhaps compensating 
for other regions in the default mode network that are no longer 
communicating effectively. These results show that the link 
clustering approach holds promise for highlighting differences in 
the dynamic reorganization of networks.
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(a) AD                 (b) Normal

Figure 1 Differences in the frequencies of nodes that occur in the most 
communities (dorsal view). The ball sizes are scaled by frequency and the colors 
represent heteromodal (blue), unimodal (red) and primary (green) cortical 
association regions. Distribution of the most frequently occurring nodes in 
normal subjects recapitulates default mode network. 

(a) AD subjects show a breakdown of default mode network and disproportionate 
community participation of the left anterior paracingulate cortex (red arrow). 

(b) The distribution of nodes that occur in the largest number of communities 
reflects the default mode network, without as much reliance on the anterior 
cingulate cortex. These data were visualized using BrainNet Viewer [18].

AD Normal

M SD M SD t() p

Number of communities 16.482 16.674 21.114 18.398 -4.172 < .001

Number of nodes in the 
largest community

243.498 12.284 240.794 14.921 3.128 0.002

Community centrality 3.104 1.358 3.510 1.496 -4.490 < .001

Number of communities 
that include the most 
frequently occurring node 

7.348 3.989 8.200 4.460 -3.184 0.002

Mean distance within all of 
the communities (mm)

66.738 3.541 68.183 2.880 -7.079 < .001

Mean distance for largest 
community (mm)

70.872 0.641 71.534 0.891 -13.499 < .001

Table 1: Significant differences between AD and normal subjects on link clustering 
outcome statistics (500 bootstrap samples in each group).
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