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EDITORIAL
Malignant transformation of prostate epithelial cells is 

associated with metabolic changes, including alteration of copper 
metabolism. Preclinical studies demonstrated that human 
prostate cancer xenografts with increased 64Cu radioactivity 
could be visualized in vivo by positron emission tomography 
after intravenous injection of copper-64 chloride (64CuCl2) as a 
radiotracer. Altered copper metabolism holds potential as an 
imaging biomarker for metabolic imaging and personalized anti-
copper therapy of prostate cancer. 

Prostate cancer is the second most common cause of cancer 
death, after lung cancer, for men in the United States [1]. Malignant 
transformation of prostate epithelial cells is associated with 
change of metabolism, leading to the development of multiple 
radiotracers for positron emission tomography (PET) of prostate 
cancer targeting the altered metabolism [2,3]. These include 
F-18 FDG [4] for PET of glucose metabolism, C-11 choline [5] and 
F-18 choline [6], F-18 Fluoroethylcholine [7] for phospholipids 
synthesis, C-11 acetate [8] for lipid synthesis, F-18 FMAU [9] for 
DNA synthesis, and C-11 methionine [10] for protein synthesis. 
Prostate cancer is a complex, heterogeneous disease [11,12], 
there are continuous efforts to develop new radiotracers for PET 
of other various metabolic changes in prostate cancer. 

Copper is an essential nutrient required for cell proliferation, 
and higher quantities of copper ions were detected in prostate 
cancer tissue compared with those present in normal tissues 
[13,14]. Human prostate cancer xenografts with increased 64Cu 
radioactivity in mice were visualized by PET at 24 hours post 
injection of copper-64 chloride (64CuCl2) as a radiotracer [15]. The 
molecular mechanism of increased copper uptake by PC-3 human 
prostate cancer xenografts remains to be elucidated, which may 
be mediated by influx copper transporter activity of human 
copper transporter 1 (hCtr1) detected by immunohistochemistry 

analysis [15]. Copper is required for normal function of many 
molecules in signal transduction pathway regulating cell 
proliferation, but excess copper is cytotoxic. Increased copper 
uptake by prostate cancer cells may reflex increased demand for 
more copper ions due to oxidative stress related to uncontrolled 
growth of cancer cells. In addition to hCtr1, analysis of changes 
of other copper transporters, chaperons, and other molecules 
related to maintenance of copper homeostasis may provide 
useful information for further investigation of the role of altered 
copper metabolism in oncogenesis of prostate cancer. 

Positron emitting 64Cu radionuclide has a half-life of 12.7 
hours, making it desirable for PET of copper metabolism in vivo. 
Copper-64 chloride (64CuCl2) was used as a tracer for assessment 
of copper metabolism disorders in normal human subjects and 
patients with Wilson’s disease by ex vivo radioactivity assay of 
body fluids or scintiscans [16,17]. Recently, preclinical radiation 
dosimetry of 64CuCl2 using Atp7b -/- knockout mouse model of 
Wilson’s disease provided additional evidence to support use 
of 64CuCl2 as a radiotracer for PET of altered copper metabolism 
in humans [18,19]. It remains to be determined whether PET/
CT using 64CuCl2 as a radiotracer (64CuCl2 –PET/CT) can be used 
for early diagnosis of prostate cancer. It is likely that 64CuCl2 
–PET/CT may be useful for detection of local recurrence and/
or metastasis of prostate cancer if it is found, in future studies, 
that most of recurrent or metastatic prostate cancer are copper 
hypermetabolic and has increased uptake of 64Cu in vivo. Based 
on recent findings that copper may promote invasion of prostate 
cancer cells [20], copper hypermetabolism holds potential as a 
prognostic imaging biomarker for prediction of metastasis in 
the patients diagnosed with prostate cancer. Copper chelators 
were tested for anti-copper therapy of prostate cancer with 
variable response [21,22]. Selection of patients with copper 
hypermetabolic prostate cancer by 64CuCl2-PET/CT may be 
helpful to improve efficacy of anti-copper cancer therapy and 
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realize personalized prostate cancer therapy targeting copper 
metabolism. 

CONCLUSION
Altered copper metabolism holds potential as a metabolic 

imaging biomarker in prostate cancer. 64CuCl2-PET/CT may 
be used for detection of recurrent and/or metastatic prostate 
cancer with increased copper uptake, and selection of patients 
with copper hypermetabolic tumors for personalized anti-copper 
therapy of prostate cancer. 
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