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Abstract 

Breast density has been proven as an independent risk factor of breast cancer. 
Due to the limitation of two dimensional mammographic density, various alternative 
imaging modalities have been investigated to provide more quantitative measurement 
of breast density. Among these potential imaging tools, three dimensional (3D) magnetic 
resonance imaging (MRI) based density method is mostly studied. Our research group 
has been focusing on this topic for years. Here we present our experience of developing 
3D MRI density method and briefly review several studies we have published related 
to the consistency of the 3D MR method. The results have suggested that 3D MRI can be 
a reliable tool for the measurement of breast density.
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ABBREVIATIONS
MD: Mammographic Density; LVI: Lympho-Vascular Invasion; 

SMF: Standard Mammogram Form; 2D: Two Dimensional; 3D: 
Three Dimensional; MRI: Magnetic Resonance Imaging; FCM: 
Fuzzy C-Means; N3: Nonparametric Nonuniform Intensity 
Normalization; CV:  Coefficient of Variation; BV: Breast Volume; 
FV: Fibroglandular Tissue Volume; PD: Percent Breast Density; 
T: Tesla

INTRODUCTION

Association of mammographic density with breast 
cancer risk 

The breast mainly consists of two tissue components: 
fibroglandular tissue and fat. Fibroglandular tissue is a mixture of 
fibrous stroma and epithelial cells that line the ducts of the breast. 
Breast density, most commonly measured as mammographic 
density (MD), is associated with the amount of fibroglandular 
tissue. Evidence from many large screening mammography 
studies has established the role of mammographic density as 
an independent risk factor for breast cancer [1-9]. Most of these 
studies used the typical case-control study design based on 
large cohorts of women enrolled into screening mammography 
studies. The women were followed longitudinally to find out who 
developed cancer as “cases” and the matching “controls” selected 
from women who did not develop cancer. It was consistently 
found that the cases had, on average, 20% higher mammographic 
density compared to controls [10-12]. Mammographic density 
was reported to be associated with age and race [13-15], higher 
in pre-menopausal than in post-menopausal women [4,8], and 

higher in Asians than Caucasians [14]. Women with dense tissue 
visible on a mammogram have a cancer risk 1.8 to 6.0 times that 
of women with little density [8]. Studies have also shown that BC 
arising within areas of high MD is more commonly associated 
with factors indicative of a poor prognosis, including large 
tumour size, high histological grade, lympho-vascular invasion 
(LVI) and advanced stage, compared to those arising within 
low MD tissue [16-18].  Increasing evidence has also suggested 
the role of peritumoral adipose tissue and secreted steroids 
and adipokine in breast cancer [19-22]. Several studies have 
analyzed the morphological distribution pattern of the projected 
dense tissue (texture) on mammograms [23-25], and shown 
differences between women with invasive cancer and women 
without cancer [25]. There were also differences between high-
risk women carrying the BRCA-1 and BRCA-2 gene and low-risk 
women [23,24].

Measurement of breast density with mammography 
and its drawbacks

Quantitative mammographic density uses computer-aided 
calculation of percent dense tissue area on mammograms, 
and most of early studies were performed using a Cumulus 
thresholding segmentation method [3,12,13,26,27]. Although 
Cumulus and similar mammographic density estimator programs 
were widely applied in earlier studies, they are based on a user-
defined thresholding method. This method is subjective and 
the measured density is known to be highly dependent on the 
observer, with substantial inter- and intra-observer variability. 
Other quantitative measurement approaches, including the use 
of a lateral phantom [28], the standard mammogram form (SMF) 
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analysis program [29, 30], volumetric assessment methods 
[31-33], and automated volumetric density quantification tool 
using Quantra™ (http://www.hologic.com/wh/news-101107.
htm) and Volpara™ (http://www.volparadensity.com) were 
developed. Overall, two dimensional (2D) mammography suffers 
from tissue-overlapping problem, not revealing genuine three 
dimensional (3D) morphological information, thus is unable to 
accurately differentiate between fatty and fibroglandular tissues.  
Nonetheless, since the cohorts of screening mammography studies 
are very large, thus statistically, many studies have sufficient 
power to demonstrate that there is a strong association between 
the mammographic density and the cancer risk, and provide 
strong evidence supporting the role of mammographic density as 
a strong independent risk factor. The accuracy of breast density 
determined by mammography has been seriously questioned. It 
was concluded that studies showing small percentage differences 
between groups are likely to be inaccurate [34].

Measurements of breast density and breast 
morphology using 3D MRI

Because of the limitations of mammographic density, in the 
breast densitometry community, there is a strong urgency to 
develop quantitative density measurement methods that are 
reliable, thus can be used to predict each individual patient’s 
risk. Among the various emerging 3D imaging modalities, such 
as 3D ultrasonography [35], computed tomography [36], and 
magnetic resonance imaging (MRI), 3D MRI-based analysis has 
received a great attention. MRI provides detailed 3D distribution 
of fibroglandular tissue, not subject to the tissue-overlapping 
problem as in mammography. Also, it allows the slice-by-slice 
segmentation of fibroglandular and fatty tissues for analysis 
of morphological pattern. The American Cancer Society 
recommended screening breast MRI for high-risk women (with 
lifetime risk greater than 20%) in March 2007; to date there is 
still no large screening MRI cohort with a high number of cases 
available in the United States for a traditional case-control study. 
With the maturity and increasing popularity of this imaging 
modality and its high sensitivity for breast cancer detection, it is 
anticipated that the number of women receiving diagnostic and 
screening breast MRI study will be increased. When large MRI 
datasets from multiple sites are available, the role and value of 
3D MRI-based breast density for improving the prediction of 
cancer risk and/or aiding in clinical management will be further 
studied and clarified.

Our group has been working on MRI-based density analysis 
for more than 10  years, starting from the development of a novel 
computer-aided segmentation method for quantitative analysis 
of whole breast volume and breast density on 3D MRI [37,38], 
then based on that to develop further refined methods for 
evaluating the density morphological distribution pattern [39]. 
The method has been applied to study the age- and race-related 
differences [40], as well as the change in patients receiving 
chemotherapy [41] and tamoxifen [42]. Although several groups 
also have publications on MRI-based density [43-51], we are the 
only group that has the method to characterize the morphological 
distribution pattern of the fibroglandular tissues for exploring 
the additional value that the 3D information can provide [39]. 

To become an accurate and reliable modality for the 
quantitative measurement of breast density, and further can be 
used as an imaging biomarker, 3D MRI has to go through several 
steps of test to prove its robustness. These challenges include 
the robustness of the methodology itself and its high consistency 
in different situations, including MR scanner, pulse sequences, 
physiology, and operator factor. In the past years we have spent 
tremendous effort focusing on these issues [37,38,40,52-55] 
and proved the value of 3D MRI for the quantification of breast 
density.

To use 3D MRI for quantitative analysis of breast density, 
since there is no clear boundary between the body and the breast, 
the first step is to define a reliable anatomic landmark to segment 
the breast tissue. Because of no ground truth to be compared 
with, this is more an issue of consistency than accuracy. Among 
all the published studies, two landmarks are commonly used, 
a V-shaped landmark of each individual woman [37], or a 
horizontal line drawn manually along the ventral surface of the 
pectoralis major muscle [44,51] or immediately posterior and 
parallel to the sternum [53]. Whatever the landmark is used, it 
should be made sure that no fibroglandular tissue is chopped off. 
The next step is to segment the fibroglandular tissue. In our early 
methodology development paper [37], we used fuzzy C-means 
(FCM) algorithm, which worked well for most cases but could 
not handle women with obvious imaging in homogeneity due 
to bias field issue. We thus further improved the segmentation 
algorithm using FCM plus nonparametric nonuniform intensity 
normalization (N3) [52]. The new algorithm works very well 
for women with different breast morphology and can deal with 
imaging inhomogeneity issue much better than using FCM alone 
(Figure 1).

Our developed MR method has shown high intra- and inter-
operator consistency, and high consistency due to positional 
change [37]. The average standard deviation for breast volume 
and percent density measurements was in the range of 3%-4% 
among three trials of one operator or among three different 
operators. The body position dependence was also investigated 
by performing scans of two healthy volunteers, each at five 
different positions, and found the variation in the range of 3%-
4%. We further tested the impact of pulse sequences and imaging 
resolution on the segmentation results [53]. It was noted that 
breast volume, fibroglandular volume, and percent density 
between fat-suppressed and nonfat-suppressed sequences were 
highly correlated. The fibroglandular tissue volume measured 
on down sampled images only showed a small (<5%) difference. 
Breast density may fluctuate in a menstrual cycle due to the 
effect of endogenous hormone on the breast tissue. To clarify 
the impact of menstrual cycle on measuring breast density, 
we studied thirty healthy female subjects, 24 premenopausal 
and six postmenopausal [54]. All subjects underwent MR 
imaging examination each week for 4 consecutive weeks. The 
fluctuation of each parameter measured over the course of the 
four examinations was evaluated on the basis of the coefficient 
of variation (CV). The mean CV was 5.0% and 5.6% for breast 
volume (BV), 7.6% and 4.2% for fibroglandular tissue volume 
(FV), and 7.1% and 6.0% for percent breast density (PD), in the 
respective premenopausal and postmenopausal groups. The 
difference between premenopausal and postmenopausal groups 
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was not significant (all P values > .05). Overall, the fluctuation of 
breast density measured at MR imaging during a menstrual cycle 
was around 7%.

Lastly, we investigated how the breast density would change 
when a woman was scanned in different MR scanner [55]. 
This is a very challenging topic yet very important issue to be 
answered, especially for multi-center combination of MR data. 
We recruited 34 healthy Asian women to have breast MRI study 
using four different MR systems from three vendors, including 
two 1.5 Tesla (T) (GE and Siemens) and two 3T (GE and Philips) 
MR scanners. All the four MR studies were completed in half 
day to avoid any physiological effect on the measured breast 
density. The measured parameters between each pair of MR 
scanners were highly correlated, with R2 ≥ 0.95 for BV, R2 ≥ 0.99 
for FV, and R2 ≥ 0.97 for PD in all comparisons. The mean percent 
differences between each pair of scanners were 5.9%-7.8% for 
BV, 5.3%-6.5% for FV, 4.3%-7.3% for PD; with the overall CV of 
5.8% for BV, 4.8% for FV, and 4.9% for PD. The results showed 
that the variation of FV and PD measured from four different MR 
scanners is around 5%, suggesting the parameters measured 
using different scanners can be used for a combined analysis in a 
multicenter study.

Despite of the merit of 3D MR density method, there are two 
issues which may hinder its clinical application. First, MRI is 
costly compared to 2D MD. Second, the procession time of multi-
slices 3D MR data is generally time consuming. To gain popularity 
for this new density method, there is a need to make technical 
breakthrough. Most of the reported MR density methods in the 
literature are based on semi-automated methods that require 
some operator interventions, which are subject to variations 
from an operator’s personal judgment. To overcome the 
problems, model-based segmentation methods, using the whole 
breast as the template, have been developed [56-58]. However, 
simply using one universal template may not be accurate enough 
to segment all types of breasts. To improve the robustness, we 
have developed a new automatic template-based method using 
the chest body model for breast segmentation [59].  In this 
method, the chest template was mapped to each subject’s image 
space to obtain a subject-specific chest model for exclusion. The 
automatic method can provide an efficient tool for processing 
large clinical datasets for quantifying the fibroglandular tissue 
content in breast MRI [60].

CONCLUSIONS
Breast MRI has emerged as a new imaging tool for assessing 

breast density, which provides 3D true volumetric information 
without tissue overlapping issue. Efforts have been made to 
improve the technique and segmentation algorithm. Its high 
measurement consistency has been proven in different situations 
related to scanners, sequences, operators, and physiology. 
Current fully automatic methods have tremendously solved the 
time-consuming issue and human intervention. Studies have also 
been performed and others are still undergoing to investigate its 
role in improving cancer risk assessment and aid in treatment 
response.
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