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INTRODUCTION
Diabetes mellitus represents a growing burden both on 

health-care expenditures and the quality of life of the afflicted 
individuals. Current estimates for the prevalence of diabetes 
indicate a global prevalence of about 285 million people [1]. 
Type 1 diabetes is a significant cause of morbidity and mortality 
in young adults. Secondary diabetic complications include a 
quadrupled risk of heart attack and stroke and a significant 
decrease in life expectancy. The economic impact of diabetes is 
tremendous across the world, with a projected impact of over 
$200 billion in direct annual costs in North America in 2010 
and an estimated 25% of U.S Medicare annual in-patient care 
expenditures being attributed to the treatment of diabetes and 
its associated complications [2]. 

The current standard treatment for Type 1 diabetes is 
daily injections of exogenous insulin to control blood sugar.
An alternative treatment modality for Type 1 diabetes is the 
replacement of the missing β-cells through transplantation of 
whole pancreas, which in contrast to insulin administration, is 
capable of achieving normoglycemia along with the prevention 
and even reversal of certain secondary diabetic complications, 
such as nephropathy and atherosclerosis [3]. The advantageous 
effects of β-cell replacement therapy on diabetic complications 
compared to insulin treatment may be attributed to the role 
played by the byproduct of pro-insulin cleavage, named 
C-peptide, during insulin processing in the β-cell [4-7].  However, 
the benefits of the β-cell replacement may be masked by collateral 
risks associated with the use of immunosuppressive drugs to 
prevent transplant rejection in transplant recipients [3]. 

While whole pancreas transplantations have been performed, 
it is a complex surgical procedure that is fraught with significant 
morbidities and challenging technical issues including the 
drainage of exocrine secretions from the transplanted pancreas 
[3]. Successful islet transplantation in diabetic patients remained 
elusive [8] until the introduction of the glucocorticoid-free 
immunosuppressive regimen by the Edmonton group, and 
this protocol has successfully led to insulin independence in a 
limited number of diabetic patients transplanted with isolated 
human islets [9,10]. In a few cases, insulin independence has 
been achieved for several years [11,12], thus showing islet 

transplantation to be a viable therapeutic option for patients with 
Type1 diabetes. Still, the need to use immunosuppressive drugs 
to prevent graft rejection and the severe shortage of human islets 
remain two major barriers to clinical islet transplantation [12-
16]. 

An attractive strategy to overcome these two obstacles 
to routine use of islet transplantation is the technique of 
immunoisolation by microencapsulation of islets prior to 
transplantation, as it could potentially solve the problem of 
islet shortage by opening up the possibility of using islets from 
non-human sources while obviating the need for longterm 
immunosuppression of transplant recipients [13,16-24]. 
However, there are a number of issues that need to be resolved 
before microencapsulated islet transplantation can become a 
clinical reality. A major obstacle of this approach is the death of 
large proportions of the encapsulated islet grafts owing to severe 
hypoxia, resulting in the need for large quantities of islets to 
achieve normoglycemia in experimental diabetic animals. 

Why is Oxygen So Important?

Although islets constitute approximately 1% of the pancreas, 
they receive about 6-10% of the blood flow to this gland 
[25,26], indicating a disproportionate level of perfusion in 
which islets receive and consume oxygen. The unusually high 
oxygen requirement of islets is interrupted during the process 
of islet isolation and processing for transplantation, and studies 
have shown that hypoxia has significant deleterious effects on 
the survival and function of islets [27-29]. In the immediate 
post-transplant period, isolated islet transplants are forced 
to depend upon diffusion of oxygen and nutrients through 
peripheral perfusion from the surrounding tissue within the 
site of transplantation [30], until the islet transplants are 
revascularized by angiogenesis, a process that requires 7 – 10 
days [28]. As a result most studies with encapsulated islets have 
used extraordinarily high doses of these cells to achieve variable 
effects on blood glucose levels in large animals and human 
subjects [20,31-35].  Using more cells and hoping enough survive 
is an inefficient and counterproductive approach because more 
cells mean more oxygen demand for a limited supply.  This may 
inadvertantly select for islets with the lowest metabolism in the 
struggle for surival possibly leading to a less effective therapy.
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To achieve the goal of maintaining normal blood glucose 
levels through islet transplantation, a key factor for producing 
high quality of islets is the prevention of oxidative stress during 
islet preparation [36,37] and a sufficient oxygen supply during 
the immediate post-transplant period [30]. How do we get oxygen 
to islets and how do we overcome the challenges associated with 
its delivery?

Significant cell death can occur during the process of isolating 
islets. One should consider the oxygen tensions during the 
islet isolation process.  Culture and transport of islets could be 
performed in gas-permeable devices such as silicone rubbers 
or hollow fibers bioreactors [38]. A factor to consider in using 
these processes would be the need to avoid aggregation or 
accumulation of islets to ensure optimal oxygenation of the cells.

Once implantation occurs, oxygen delivery becomes an even 
more significant requirement during the time window between 
implantation and establishment of the support vascularity.  In 
general, while there are mechanical means to deliver oxygen (e.g. 
perfusion pumps with oxygen carrier solutions), one must also 
consider that after implantation having to perform any second 
procedures to remove an oxygen-delivery system would be 
highly undesirable. There is therefore a crucial need for a more 
elegant solution for oxygen delivery in the immediate post-
transplantation period. One approach could involve incorporation 
of oxygen delivery systems into the microencapsulation process 
that would be exhausted in due time without adverse events in 
the body.

Having the ability to co-encapsulate islets with a source 
of oxygen rich materials may fulfill this goal. Investigators 
have microencapsulated islets in barium-alginate with 
perfluorocarbon (PFC) emulsion. After low oxygen culture 
for 2 days, islets in control alginate capsules without PFC lost 
substantial viable tissue and displayed necrotic cores, whereas 
most of the original oxygen consumption rate was recovered 
with the oxygen-supplying PFC in the microcapsules [39]. The 
PFC can carry, through adsorption, oxygen at much greater 
concerntrations than water. However, other investigators have 
noted that reformulation of the PFC emulsion is required to 
reduce toxicity to the islets, and it has also been shown that PFC 
emulsions may have little or no benefit to encapsulated β-cells in 
culture [40].  

An alternative to perfluorocarbons that involves taking 
advantage of chemical reactions which allows for greater 
densities of oxygen to be stored and delivered subsequently may 
work. Co-encapsulation of islets with micro- or nano- particulate 
oxygen generators that can chemically generate oxygen to help 
bridge to revascularization seems to be a particularly attractive 
option [41]. Solid peroxides, such as sodium percarbonate or 
calcium peroxide, can potentially deliver 100 times the amount 
of oxygen that can be stored in an equivalent amount of water.  
Of course, too much of a good thing can be detrimental and so the 
oxygen delivery systems need to be designed to provide oxygen 
at a therapeutic dosage.  Yet such an approach should be practical 
as our own bodies have developed strategies to keep oxygen and 
reactive oxygen species under control.

SUMMARY AND CONCLUSION
With the impact of diabetes mellitus continuing to grow, 

there is an urgent need for creating effective strategies to treat 
this disease.  For those patients who could most benefit from 
islet transplantation, developing approaches which enhance 
islet cell survival during the periods of isolation, encapsulation, 
and implantation, as well as during the period of integration to 
systemic circulation is critical. Optimal oxygen delivery during 
these processes is critically important.  From the brief review 
above there are several potential approaches which may provide 
the needed boost to enhance the delivery of oxygenin the 
development of the bioartificial pancreas. Further development 
and evaluation of the efficacy of these approaches are needed for 
successful use of the bioartificial pancreas in diabetic animals 
and humans.
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