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Abstract

Obstructive sleep apnea hypopnea syndrome (OSAHS) is a serious respiratory disorder 
and the current detection method is Polysomnography (PSG). However, PSG is time consuming, 
high cost and inappropriate for the diagnosis at home. In recent years, the studies of acoustical 
analysis of snoring for the OSAHS diagnosis have got rapid development. Researchers have 
tried to explore a portable monitoring system that is affordable and can offer greater comfort 
to patients. In this review, we summarize the methods for the OSAHS diagnosis based on the 
acoustical analysis of snoring. The articles we selected show the acoustical analysis of snoring has 
a great potential in OSAHS diagnosis. At last, the future research on the acoustical analysis of 
snoring is prospected.

INTRODUCTION
Obstructive sleep apnea hypopnea syndrome (OSAHS) is 

a common sleep-related breathing disorder, characterized by 
the repeatability obstruction of the upper airway during sleep, 
causing the airflow in the upper airway to decrease or stop, and 
the clinical manifestation includes snoring at night with apnea 
and daytime sleepiness. The disease not only impaired the quality 
of life, but also easily leads to a series of complications, such as 
neurocognitive dysfunction, metabolic disorders, cardiovascular 
disease, respiratory failure and cardiopulmonary [1-4]. OSAHS is 
highly prevalent in adults, approaching 4-5% of men and 2-3% 
of women between the ages of 30-60 years [5], which threatens 
people’s health and safety.

Polysomnography (PSG) is considered as the gold standard 
for diagnosis of OSAHS. The patient is required to sleep in the 
hospital for the whole night to acquire PSG testing whereby 
measurement equipment with 15 channels is mounted to his/
her body. The physiological signals or parameters includes 
the electrocardiogram (ECG), electroencephalogram (EEG), 
electroculogram (EOG), electromyography (EMG), nasal/oral 
airflow, body positions, body movements and the blood oxygen 
saturation of a patient which are monitored for the whole 
night to make the diagnosis [6]. However, PSG’s high cost, time 
consuming, labor-intensive and its complex operation nature 
have resulted many patients worldwide not to be treated on time. 
It has been estimated that more than 90% patients never accepted 
the related detection in developed countries [7]. Therefore, the 
researches on finding cheap and portable monitoring method to 
diagnose OSAHS have been a hotspot in sleep medicine at present.

Snoring is caused by the collapse of the soft tissue in the 
upper airway and the vibration of narrow soft tissues. In addition, 
the tongue falls back by the action of the gravity aggravating 
obstruction [8]. Although not everybody with OSAHS is a snorer, 
the majority of OSAHS people do snore [9]. Snoring appears to 
be the most intuitive characteristic symptoms of OSAHS patients, 
so it is often regarded as an important clinical characteristic and 
plays an indicative role in the diagnosis of OSAHS. As snoring 
is similar to voice, some researchers have done a lot of studies 
adopting methods similar to phonetics study [10-14], trying to 
achieve the diagnosis of OSAHS and determine its severity and the 
obstructive sites. They rely on the acoustical analysis of snoring 
as an assistant way for surgery and clinical treatment [11,14-17] 
and some portable devices are also used at home (home sleep 
testing, ambulatory cardio-respiratory screening devices) are 
available, standardized and widely accepted for sleep diagnosis 
[18].

Acoustical analysis of snoring as an affordable and 
noninvasive diagnostic method for OSAHS is promising [19]. The 
diagnostic process mainly includes the feature extraction of each 
single snoring period from the whole night sleep sounds and the 
features classification for identifying different snore sounds, as 
the detailed procedure as shown in Figure (1). The process of the 
acoustical analysis of snoring is divided into three primary parts: 
first, all the snores in the acoustic nocturnal signals are detected; 
then, the most discriminative features for the classification are 
determined, and finally, the pattern classification algorithms are 
used to classify the subjects into different classes.

In this article, we aim to review the recent diagnostic 
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method for OSAHS at home and abroad based on the acoustical 
analysis of snoring technique, the acoustical analysis of snoring 
and detection methods, the features extraction and the snoring 
classification methods will be respectively introduced and the 
open issues of the diagnosis of OSAHS will be discussed.

Methods of Acoustical Analysis and Detection of 
Snoring

The snoring sound is a non-stationary and pseudo-periodic 
signals [20]. In order to acquire the whole night snoring period, 
the effective analysis method to analyze the snoring sound of 
patients is desirable. Fast Fourier Transform (FFT) is an analysis 
method earliest applied in the snoring frequency domain analysis. 
For non-stationary signals, the locality in frequency domains by 
the FFT is poor, it can’t give the detailed results of acoustical 
analysis of snoring. In recent years, many methods such as the 
Wavelet Transform, the Hilbert-Huang Transform and blind 
source separation have been used to improve the acoustical 
analysis of snoring.

Wavelet transform

FFT is a powerful tool for analyzing the components of a 
stationary signal (no change in the properties of signal) while 
is less useful in analyzing non-stationary signal (change in the 
properties of signal). Wavelet Transform allows the components 
of a non-stationary signal to be analyzed. Compared to FFT, 
wavelets offer a simultaneous localization in time and frequency 
domain. Wavelet Transform is able to separate the fine details in a 
signal by using the multi-scale operation of scaling and translation, 
which is a very useful tool to analyze the instantaneous and time-
varying non-stationary signals.

Due to the great flexibility of wavelet transform, additional 
wavelet basis function is variable. The Wavelet Transform 
used wavelet series to deduce and construct a new wavelet 
basis function depending on the characteristics of the snore, 
realized real-time analysis and signal enhancement of snore 

[21]. This problem bases on how to construct a proper wavelet 
basis function that can be applied to a more accurate acoustical 
analysis of snoring.

Hilbert-Huang transform 

Hilbert-Huang Transform (HHT) is a new analysis method 
used for nonlinear and non stationary signals. It decomposes 
the signals into intrinsic mode function by using empirical mode 
decomposition based on the local characteristic time scale of 
signals. Each intrinsic mode function through Hilbert-Huang 
transform gets the ultimate Hilbert spectrum, which reflects the 
inherent characteristics of the signals [22]. For the acoustical 
analysis of snoring, Zhang [23] applied HHT method to establish 
the signals’ Hilbert spectrum and marginal spectrum. The results 
showed that HHT had higher time-frequency resolution than the 
time-frequency distribution established by wavelet transform. 
HHT avoided the difficulty of the choice of the basis function and 
non-adaptive limitation of wavelet transform, though there are 
still some problems such as the optimization of empirical mode 
decomposition algorithm and boundary problem.

Independent component analysis 

Blind source separation is mainly used to remove the signals 
interference of uncorrelated sources and to recover the source 
signals we need [24]. Independent component analysis (ICA) is an 
efficient signal processing method dedicated to solve blind source 
separation and attempts to confirm transformation to ensure the 
independence of each component as much as possible [25]. It 
is a computational method for separating a multivariate signal 
into additive subcomponents. Vrins et al. [26], explored blind 
source separation to analyze snoring signals and possible to 
extract snoring signals by ICA, it gave the encouraging results of 
the method in their application and also stressed the obstacles, 
which came from hardware equipment that could cause a bad 
influence on the signals separation. Moreover, a basic ICA model 
is classic linear, instantaneous and noiseless, it doesn’t conform 
to the most realistic model, so the method applied to the snore 
analysis still needs to be improved.

Higher order statistics analysis

Usually, the statistical characteristics of a Gaussian random 
variables or a Gaussian random process can be completely 
expressed by first order and second order statistics. Snoring 
sounds are non-stationary in nature [27] using low order statistics 
analysis probably causes the loss of phase information, besides, 
low order statistics could not deal with if mixed the additive 
Gaussian noise. Nevertheless, higher order statistics can solve this 
problem very well. This method can not only reveal information 
on amplitude of a signal, but also its phase [28]. It is particularly 
used in estimation of shape parameters when measuring the 
deviation of a distribution from the normal distribution, so the 
estimation of source and total airways response by higher order 
statistics provides a new method into the study of non-contact 
diagnosis of obstructive sleep apnea [28].

An appropriate analysis method is better for the subsequent 
snoring segment. Snoring detection algorithms are mainly 

Snore Related Sound (SRS)

Snore Detection and Other
Sound Removal

Feature Extraction

Pattern Classification 
Algorithm

OSAHS Severity or Disease 
Sites Estimation

Figure 1 Detail process of the acoustical analysis of snoring.
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divided into two categories at present: one uses signal 
processing method including the short-time energy threshold 
method [29], double-threshold end-point detection [30], snoring 
enhancement method based on autocorrelation character [21] 
and so on. The algorithms of these methods are relatively easy, 
but the detection accuracy are not high. The other is based on the 
category theory, such as artificial neural network method [31], 
support vector machines method [32] and Gaussian mixture 
model method [33]. These methods are efficient approach with 
high precision, become the research hotspot of snoring detection 
recently, but the algorithms are complex, which require an 
improved algorithm to achieve a higher efficiency and accuracy.

SNORING FEATURES
It’s important to find the most discriminative features for 

the classification of subjects. In the following sections, the major 
features appeared in many research are reviewed.

Time-domain features

Pitch period: The fundamental frequency is de-
fined as the lowest frequency of a periodic waveform. Pitch pe-
riod is a fundamentalfrequency of an audio waveform,-
 which is one of the essential parameter for the descrip-
tion of speech signals. The autocorrelation method [34], cepstrum 
method [35] harmonic product spectrum method [36] and pitch 
estimation algorithm based on higher order statistics [28] are the 
available methods to evaluate the snoring pitch period, which re-
flects the difference of snore sounds of different types to some 
extent [19].

Snoring sound intensity/sound pressure level: Snoring 
sound intensity is defined as the sound power per unit area. The 
research found that the snoring sound intensity is connected 
with apnea hypoventilation index (AHI, represented by the 
number of apnea and hypopnea events per hour of sleep and 
used to indicate the severity of sleep apnea), and the greater 
the snoring sound intensity, the more severe the OSAHS [37,38]. 
Sound pressure level is the logarithmic form of sound pressure 
and people’s sense of sound pressure is proportional to sound 
pressure level instead of sound pressure. Peng and Xu’s study 
[12] selected the sound pressure level parameters based on the 
A-weighted equivalent sound level and accumulative percentile 
sound level 10, 50, 90, which were significantly different between 
simple snoring and OSAHS.

Inter-event silence: Apnea symptom is easily observed 
from snoring recording. If respiratory apnea occurs in sleep and 
the interval duration between two adjacent snoring event lasts 
10~60s, this interval duration are called inter-event silence [39]. 
Inter-event silence is related to AHI and reflects the seriousness 
of OSAHS. Besides, body posture during sleep may affect the 
acoustic characteristics of snores, such as snoring intensity, 
but inter-event silence is the feature not affected by snoring 
intensity. In the study of Ben-Israel, Tarasiuk and Zigel indicated 
that the inter-event silence was the best feature for predicting 
AHI [39,40]. 

Frequency-domain features

Formants: The formants of snoring are the resonant in the 

upper airway, manifested in the spectral peaks of the sound 
spectrum and reflected the complex characters of upper airway. 
Linear prediction coefficient method [41] is widely used to 
estimate the snoring formant. It is shown that the formant 
frequency may carry the important information of snoring, which 
can differentiate apnea snorers from benign snorers [42].

Energy spectral density features: Energy spectral density 
represents the relation that the signal energy changes with 
frequency. Spectrum estimation usually employs the FFT [43]. 
Some researches proposed the energy spectral features: the 
maximal intensity, the mean intensity, the peak frequency and 
the mean frequency in different frequency bands of sleep sounds 
were change with AHI, which reflect the severity of OSAHS 
[44,45].

Power ratio 800 (PR800): Power ratio 800 (PR800) is 
defined as the ratio of spectral power below 800 Hz to that 
from the band 800 Hz to the cut-off frequency. The first formant 
and PR800 were reported to well reflect structure information 
of upper airway [29]. Some researchers have pointed out that 
PR800 could achieve the recognition between mild OSAHS and 
benign snorers. They also have illustrated the great performance 
of PR800 in diagnosis of OSAHS [46]. Furthermore, PR800 itself 
also provide a promising feature to diagnose the obstructive sites 
[47].

Mel cepstability: The name derived from ‘mel frequency 
cepstrum coefficient stability’, is the feature used frequently 
in speech recognition. In the snoring analyses aspect, Mel 
Cepstability is the method of measuring entire night snoring 
spectrum’s stability. The feature is defined as the sum of variances 
of 12 MFCCs related to the frames with the highest energy in each 
snore:

Where z means all snore, ci is a vector of the ith MFCC of each 
snore, and is the total energy of the kth snore. Compared 
to healthy subjects, the muscle of OSAHS patients in upper 
airway is unstable, so correspondingly having the smaller Mel 
Cepstability [39].

Psychoacoustic parameters

In the sight of psychoacoustics, snore sounds belong to noise, 
psychoacoustic analysis as an environment noise analysis tool 
also has a great potential in the diagnosis of OSAHS. Three typical 
psychoacoustic parameters (loudness, sharpness, roughness) 
are used to analyze three different snoring sounds (primary 
snoring; upper airway resistance syndrome; obstructive sleep 
apnea syndrome) [48,49]. The results showed that the acoustical 
analysis of snoring by psychoacoustic parameters provided a 
promising way to differentiate the different snoring types.

The nonlinear features with chaos theory

It seems that majority studies have focused on the snoring 
detection by the linear features, such as zero-crossings, MFCCs 
and formants, but SRSs is complex in nature [50], it’s difficult to 
solve the classification of SRSs depending on traditional linear 
feature. Some researches indicate the chaotic characteristics of 
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snoring sounds [51,52]. The largest Lyapunov exponent (LLE) is 
one of the indices of chaotic nature and quantifies the dynamic 
stability of a system; Yılmaz and Ankıs [53] evaluate the LLE of 
apnea/hypopnea patients and simple snorers. The results showed 
the LLE are quite different between apnea/hypopnea patients 
group and simple snorers group. Moreover, the randomness of 
a system is called entropy, there also showed that entropy can 
be used in classification of SRSs [54]. It is likely to achieve more 
accurate results by linear and nonlinear analysis together.

Other features

To increase the accuracy of the snoring feature 
extraction, multiple features are often extracted. The Azarbarzin 
and Moussavi [37] reported that gender, BMI, and height were the 
parameters that did change the characteristics of snoring sounds 
significantly. In the process of snoring feature extraction the 
effect of anthropometric parameters should be comprehensively 
considered [55]. Beyond that, the ECG signal could give an 
opportunity to improve the diagnostic accuracy [56,57].

SNORING CLASSIFICATION METHODS
The classification technology can be applied to determine 

the snoring types and the snoring site by features analysis of 
snoring. Bayesian classification, k neighbor method (KNN) and 
support vector machine (SVM) are common methods to realize 
classification.

Bayesian classification

Bayesian classification is a simple and effective 
classification algorithm for feature object based on the 
Bayes principle. The method may be divided into three main steps. 
First, calculating the priori probabilities of objects’ features. 
Second, determining the posteriori probability according to 
Bayesian formula. Last, Bayesian decision is established to 
identify the classes by the minimum error or the minimum risk 
rules. Based on the same snoring features, Ben-Israel et al., chose 
the Bayesian classifiers for binary classification and multiple 
classification [39,40]. The results indicated the good precision 
in the diagnosis of OSAHS and disease severity. We can also 
find improved Bayesian classification method to improve the 
algorithm accuracy appreciably.

Gaussian mixture model 

Gaussian mixture model (GMM) was developed to estimate 
the probability distribution by using multiple Gaussian 
distribution functions:

Where,  is a Gaussian distribution function,  is the feature 
vector extracted, the weighted coefficient  between the 
different Gaussian distribution should satisfy the normalizing 
condition:

A GMM is often used to model speech, the studies [57] 
hypothesized that speech signal properties of obstructive sleep 
apnea patients would be different than those subjects not having 
obstructive sleep apnea. Each phoneme, which was the basic 
element of speech, could be represented as a single cluster on the 
feature space. A GMM classifier was trained and the maximum 
likelihood estimator was adopted to estimate model parameters. 
The result achieved a good performance of the specificity and 
sensitivity, at least 79%, but with a high algorithm complexity 
and a low real-time [58].

K-nearest neighbor algorithm

K-nearest neighbor (KNN) is one of the simplest machine 
learning algorithms. It is a mature classification method in 
theory, which can realize the binary-classification and multiple 
classifications of subjects. The input of this algorithm is the 
extracted feature vectors which corresponding to the points on 
the feature space and the classification results is its output. The 
distance of two points on the feature space indicates the neighbor 
degree. To make the right decision, it often adopts the majority vote 
principle. KNN was used by Mikami et al. [36,59], for classifying 
oral/nasal snore sounds. Although the KNN method is relatively 
simple and the parameter only one (k; the number of neighbors), 
it is easier to obtain a nonlinear classification boundary and don’t 
have to adjust many hyper parameters in advance, which reduces 
the complexity of classification boundary. As a result, over 89% of 
oral and nasal snores are successfully classified, but KNN method 
appropriate to larger number of samples, for small sample, it fails 
to identify [36,60].

Artificial neural network

Artificial neural network (ANN) is an information processing 
system to imitate the structure and function of the brain’s neural 
network [61]. It forms network structures by a large number of 
processing units (neurons), and reflects the basic characteristic 
of the brain. On the one hand, the learning process obtains 
knowledge from the external environment. On the other hand, 
the internal neurons store knowledge and information obtained 
by the learning process. ANN has a high speed information 
processing and strong self-regulation ability, which can be 
used in the classification of different snoring types. De Silva, 
Abeyratne and Hukins [28] applied a neural network-based 
pattern recognition algorithm for obstructive sleep apnea /
non-obstructive sleep apnea classification, the method resulted 
in a sensitivity of 91 ± 6% and a specificity of 89 ± 5% for test 
data, achieved the approximate diagnosis of OSA. The complex 
structure, long training time and tending to occur over fitting 
phenomenon become the limitation for ANN to diagnose OSAHS, 
it is still at the stage of study and exploration around the world 
[60].

Support vector machine

Support vector machine (SVM) is a new method of machine 
learning, proposed by Vapnik in 1995. It is a two-class model 
developed in statistical theory and the basic thought is maximize 
margin on the feature space. SVM has many applications in 
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pattern recognition. Mikami et al. [59], on the establishment of a 
previous study, adopted Support Vector Machine (SVM) classifier 
to classify oral and nasal snore sounds. Snoring is nonlinear, based 
on the spectral properties, they selected seven kernel functions 
(linear, polynomial, sigmoid, Gaussian, Laplacian, Chisquare and 
Kullback-Leibler) to identify oral and nasal snore sounds. The 
results elucidated that at least over 93% classification accuracy 
was obtained, the highest accuracy reached over 95% by the use 
of KL kernel and there was not so much difference among seven 
kernel functions. Moreover, compared to previous study, the 
classification accuracy has increased about 5% by the use of SVM. 
The SVM seems to have a good performance for two-class, but it 
still worth improving for the difficulty of solving kernel functions 
and multi-class problems [62].

CONCLUSIONS
Snoring is a prevalent disorder, increases with age and is 

serious in adults. In this study, we review the present state 
of acoustical analysis of snoring for the OSAHS diagnosis, the 
acoustical analysis of snoring and detection methods, the 
features extraction and snoring classification methods are 
respectively summarized and analyzed. These methods have 
their own advantages and shortcomings and some of them have 
achieved good accuracy in the diagnosis of OSAHS compared 
the PSG method. It is believe that the choice of proper analysis 
method given the best reflection on the snoring characteristics 
and the use of improved algorithms from the pattern recognition 
algorithms above for snoring detection and classification can 
obtain a better result in the diagnosis of OSAHS. 

The practice has so far proven that acoustical analysis of 
snoring is a noninvasive, convenient and promising method 
for the diagnosis of OSAHS. However, more research and 
development are required to clarify whether acoustical analysis 
of snoring can be realized for diagnosis in the home environment. 
To improve the diagnostic accuracy, in addition to a large 
number of subjects, more than one night snoring signals have 
to be recorded. What’s more, the use of a standardized method 
to record snoring and reduce the influence of snoring sound 
intensity are needed in order to compare studies of OSAHS and 
snoring to advance this field. 
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