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Abstract

Cardiovascular function is regulated by a dynamic balance comprised of 
sympathetic and parasympathetic influences. Sympathetic regulatory centers include 
the rostra ventrolateral medulla (RVLM) and paraventricular nucleus of hypothalamus 
(PVN). Pre-sympathetic neurons (PSNs) in these centers project directly to sympathetic 
preganglionic neurons in the intermediolateral nucleus of the thoracic spinal cord. Altered 
function of PSNs along with impaired cardiac vagal activity may lead to autonomic 
imbalance. Enhanced sympathetic activity has been associated with hypertension, 
heart failure, stroke and cardiac arrhythmias. In this review, we will discuss the central 
physiological mechanisms of sympathetic cardiovascular regulation and how alteration 
in these mechanisms may lead to cardiovascular dysfunction reported in individuals 
with hypertension and sleep apnea. 

INTRODUCTION

Dual autonomic innervation of the cardiovascular 
system

The heart is dually innervated by both sympathetic and 
parasympathetic limbs of autonomic nervous system [1]. 
Parasympathetic efferent preganglionic axons to the heart are 
carried in cardiac branches of the vagus nerves and premotor 
cardiac vagal neurons (CVNs) originate in the nucleus ambiguous 
(NA) and dorsal motor nucleus of the vagus (DMV) [2-4]. The 
majority of sympathetic postganglionic axons innervating 
the heart course in cardiopulmonary nerves originating from 
the middle cervical, stellate, and upper thoracic ganglia of the 
paravertebral ganglion chain [2,5]. Increases in sympathetic 
nerve activity increases heart rate and contractility, whereas 
parasympathetic activity typically dominates and slows the heart 
rate [6]. The reciprocal control of cardiac function by sympathetic 
and parasympathetic limbs of the autonomic nervous system is 
dynamic and changes dramatically under different physiological 
and behavioral conditions [7]. For example, at rest there is a 
tonic level of parasympathetic nerve firing and little, if any, 
sympathetic activity in both conscious and anesthetized animals 
including humans [8-11], dogs, cats, and rats. On the contrary, 
during exercise or decreases in blood pressure there is increased 
sympathetic and reduced parasympathetic transmission to the 
heart [12]. However, under some physiological conditions such 
as during a period of increased a trial filling both sympathetic and 
parasympathetic inputs to the heart are activated [7]. Regulation 
of blood pressure occurs via tonically active sympathetic 
adrenergic vasoconstrictor fibers [13,14]. Increasing sympathetic 
outflow beyond tonic level causes more vasoconstriction, whereas 
inhibition of sympathetic tone results in vasodilation [13,14]. 

Most blood vessels do not have parasympathetic innervations, 
however, parasympathetic nerves have been shown to innervate 
salivary glands, gastrointestinal glands, genital erectile tissue 
and skin where they cause vasodilation [15,16]. Autonomic 
imbalance, including when vagal inhibitory influences to the heart 
are deficient and sympathetic activity is enhanced, is associated 
with an increased risk of arrhythmia and death [17]. The cellular 
and neurobiological mechanisms responsible for autonomic 
balance of sympathetic and parasympathetic transmission to 
the heart may include integration of sensory information, local 
interactions at the heart as well as sympathetic-parasympathetic 
interactions in the central nervous system [18,5].

Central sympathetic regulation of cardiovascular 
function

Activity of the sympathetic branch of the autonomic nervous 
system predominantly originates from pre-sympathetic 
neurons (PSNs) that reside in the rostral ventrolateral medulla 
(RVLM) of the brainstem [19-23]. PSNs project directly to 
cardio acceleratory and vasomotor sympathetic preganglionic 
neurons in the intermediolateral nucleus of the upper thoracic 
spinal cord [24,25]. These neurons project axons to sympathetic 
postganglionic neurons of intrathoracic ganglia and intrinsic 
cardiac ganglia [26]. Different types of PSNs have been 
characterized in the RVLM including those with a regular firing 
pattern even during pharmacological blockade of synaptic inputs 
and a different group of PSNs that fire in an irregular mode, 
and receive significant synaptic activity  [27,28]. A substantial 
proportion of PSNs are contained with the adrenergic C1 group 
[29]. In addition, both glutamatergic and GAB Aergic neurons 
in the RVLM also contribute to pre-sympathetic projections to 
the spinal cord [30,31]. Electrical or chemical stimulation of the 



Central
Bringing Excellence in Open Access





Dergacheva (2016)
Email: 

JSM Spine 1(1): 1009 (2016) 2/4

RVLM produces elevations of arterial pressure, tachycardia, and 
inhibition of blood flow to many organs due to activation of PSNs 
[29]. In addition to PSNs in the RVLM, PSNs in the paraventricular 
nucleus of the hypothalamus (PVN) have been shown to play a 
crucial role in tonic and reflex neural control of cardiovascular 
activity. Activation of these neurons contributes to increase 
in sympathetic nerve discharge, heart rate, blood pressure 
and breathing [32-35]. Magno cellular PVN cells innervate the 
posterior pituitary while parvo cellular neurons in the PVN 
project to the intermediolateral cell column of the thoracic spinal 
cord [36-38]. Approximately 30% of the spinally-projecting PSNs 
in the PVN have collateral fibers to pressor region of the RVLM. 
Therefore, PSNs in the PVN can modulate cardiovascular function 
via both direct spinal projections and indirect PVN-RVLM-spinal 
cord pathways [36-38]. The PVN is innervated by glutamatergic, 
GAB Aergic, adrenergic, noradrenergic and serotonergic inputs 
and is known to be a major integrative site for autonomic function 
[39,36,40].

Central sympathetic dysregulation and cardiovascu-
lar diseases

Increased levels of sympathetic activity are implicated in 
cardiovascular diseases such as hypertension, heart failure and 
arrhythmias [41-43]. Increased sympathetic activity has also 
been associated with obstructive sleep apnea (OSA). This disease 
is characterized by episodes of airway obstruction resulting 
in intermittent hypoxia and hypercapnia (H/H) [41,44]. OSA 
participates in initiation and progression of several cardiovascular 
diseases [45,43]. The compelling evidence supporting the role of 
OSA in hypertension, and consequent cardiovascular morbidity. 
The results from recent studies demonstrated a dose-response 
predictive association between sleep-disordered breathing 
and the presence of hypertension 4 years later [46,45,43]. This 
association between OSA and hypertension is independent 
of other known risk factors, such as baseline hypertension, 
body mass and habitus, age, gender, and alcohol and cigarette 
use [43]. For example, recent study assessed the association 
between sleep-disordered breathing and hypertension in a 
prospective analysis of data [47]. In addition to assessment of 
sleep-disordered breathing and blood pressure, many potential 
confounding factors such as age (average age, 46 ± 8 years), 
gender, cigarette and alcohol use were assessed [47]. Age and sex 
minimally confounded the association between sleep-disordered 
breathing and hypertension [47]. In addition, no evidence was 
found that cigarette and alcohol use were important confounders 
[47]. The mechanisms underlying these hypertensive effects of 
OSA are not fully understood but likely include nocturnal chemo 
reflex activation by H/H, with consequent sympathetic activation 
and increased blood pressure [45,48]. The excessive nocturnal 
sympathetic activity and higher blood pressure may persist 
during daytime normoxia and in many cases remains resistant 
to pharmacologic antihypertensive therapy [45]. Clinical findings 
suggest that 50–56% of patients with OSA have high blood 
pressure while 30–40% of hypertensive subjects have OSA [49]. 
In addition, masked hypertension is frequently underestimated 
in OSA [49]. The prevalence of OSA is considerably higher 
in patients with resistant hypertension compared with 
hypertensive patients whose blood pressure is not resistant to 

treatment [49,50]. Several mechanisms are involved in causing 
resistant hypertension in OSA, and the key mechanism includes 
increased sympathetic activity during repetitive apnea episodes 
during sleep [45,48]. The increased sympathetic nerve activity 
is most intense toward the end of the apnea when H/H is most 
profound [45]. Chronic exposure to this stress may result in the 
compromised cardiovascular regulation including enhanced 
sympathetic activity with may cause elevated blood pressure 
resistant to antihypertensive therapy.

Increased activity of PSNs in the RVLM and/or PVN could 
be responsible for the excessive sympathetic activity and 
hypertension associated with OSA. Supporting this hypothesis, 
increased neuronal activity in the PVN and RVLM has been shown 
in animals exposed to chronic intermittent hypoxia (CIH), an 
animal model for OSA [42]. Neuronal activity in the PVN has been 
postulated to play a substantial role in CIH-induced hypertension 
and elevated sympathetic nerve activity [51,52]. Recent studies 
demonstrated CIH increases vasopressin transmission from 
the PVN to the RVLM [33] and chemical inhibition of neuronal 
discharge in the PVN reduces lumbar sympathetic nerve activity 
more in CIH-exposed than in control animals [52]. In addition 
to increasing sympathetic outflow in CIH-exposed animals, the 
PVN contributes to diminishing parasympathetic activity to the 
heart as excitatory neurotransmission from the population of 
PVN neurons projecting to cardiac vagal neurons in the brain 
stem is diminished in animals exposed to CIH [53]. Similar to the 
PVN, spinally-projecting PSNs the RVLM have been postulated 
to play arole in CIH-induced sympathetic hyperactivity and 
hypertension. A population of PSNs in the RVLM increases firing 
activity in response to acute hypoxia and hypercapnia [54]. The 
findings from another study indicate that the excitatory inputs, 
probably from expiratory neurons, drive the increased RVLM PSN 
activities and induce the increased sympathetic activity observed 
inCIH rats [55]. CIH has been shown to enhance sympatho-
excitatory response to ATP microinjections into the ventrolateral 
medulla, supporting the concept that nucleotides play a role in the 
dynamic central control of the sympathetic autonomic function. 
In addition to increasing sympathetic neuronal activity in the 
brainstem, CIH has been shown to diminish parasympathetic 
cardiac vagal neuron activity in the nucleus ambiguus [56]. 
Suggesting that impaired parasympathetic cardiac control may 
contribute to cardiovascular abnormalities associated with CIH 
and OSA. 

CONCLUSION
Recent work has elucidated the role of hypothalamic and 

brainstem sympathetic neurons in the mechanisms responsible 
for changes in central sympathetic activity under control 
conditions and upon metabolic challenges such as chronic 
intermittent and acute hypoxia and hypercapnia. Challenges for 
the future include how to effectively and selectively diminish 
excessive sympathetic neuronal activity to the heart and blood 
vessels associated with hypertension and OSA and reduce the 
risk of developing or maintaining cardiovascular diseases. 
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