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Abstract

Pluripotent Stem Cells were originally derived and cultured using a feeder layer 
of cells. Movements have been undertaken to transition from this method to one more 
defined, high-throughput, and without xenogenic factors. Tremendous research has 
been done in this area and many products have been developed, however, based on 
our analysis of recent publications in stem cell related journals many in academia are 
still using older methods like a feeder layer. In this short communication, we discuss the 
feasibility of transitioning to defined, xeno-free methods, how a standardized method 
could improve the field and industry, and that a study bringing together multiple 
institutions comparing culture methods could be done to evaluate the efficacy of these 
new methods.

ABBREVIATIONS
iPSC: Induced Pluripotent Stem Cells; MEF: Mouse Embryonic 

Fibroblasts; ESC: Embryonic Stem Cells; FBS: Fetal Bovine Serum; 
BSA: Bovine Serum Albumin

SHORT COMMUNICATION
Several revolutionary technologies [1,2] have been developed 

recently to improve the consistency and clinical potential of iPSC 
research, however, many academic labs have yet to transition 
to these culture systems. This brief review will discuss some of 
the issues that pertain to this topic, in particular the history, the 
current state of the field, the costs associated with the culture 
techniques, and what this means for the goals of the field as a 
whole.

Pluripotent stem cells were first derived and cultured 
using a MEF feeder layer [3,4]. This was never meant to be 
their permanent culture method and there was a movement 
to eliminate the feeder layer [5], xenogenic sources [6,7], and 
define all needed components of the culture early on [8,9]. The 
goal is to identify a defined, xeno-free culture system including 
the media, substrate, and dissociation reagent. Defined culture 
systems use chemically defined media whose every component 
and concentration is known while xeno-free culture systems for 
human (i.e., clinical) applications use by definition the biological 
components derived from human or are produced in culture 
recombinantly using human genetic sequences. Defined and xeno-
free culture systems would minimize the inherent variability in 
biological components and standardize the experimental system 
in the research community and clinical products by providing 

the more stringent quality control necessary. While there are 
tremendous amounts of research and products available now for 
defined and xeno-free culture, this movement of applying these 
techniques has fallen flat so far. In 2016 (Jan – June), well over half 
of the articles published on iPSCs or ESCs in two highly regarded 
stem cell journals (Cell Stem Cell [10-27] and Stem Cells [28-55]) 
still use a feeder layer (27 of 46) [10-19,28-44], while no study 
utilized truly defined and xeno-free conditions. The remaining 
(20 of 46) did not use a feeder layer, but utilized undefined or 
xenogenic conditions in one way or another (e.g., Matrigel®, FBS, 
or BSA) [14,20-27,45-55]. One study utilized both in comparison 
so it was included in both lists [14]. This phenomenon of defined 
and xeno-free cultures not being published on is also seen when 
you look at all articles on PubMed. The share of “Stem Cell” articles 
with the phrases “defined culture” and “free” is not increasing 
over the last 20 years, see Figure (1). If these techniques were 
being implemented, it would be expected that these shares 
would be increasing. Scale-up and development of clinical grade 
products using human pluripotent cells need defined and xeno-
free cultures, so why is the research community lagging behind 
in the adoption of these methods when many of the projects are 
translational research rather than basic science?

These methods may seem to be more expensive or prohibitive 
by the cost of materials or new reagents needed for the culture, 
as seen by the cost of materials (Table 1). However, when you 
look at the cost of implementation, defined and xeno-free 
methods are competitive in price and very close to that of the 
feeder system and undefined systems, see Figure (2). This may 
still be prohibitive for some labs with inherited feeder systems 
or cheaper ways to make media, but for the labs that can afford 
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this minor increase what else needs to be done to promote the 
adoption of these changes? The companies supplying these 
alternatives have provided methodology for transitioning to 
defined, xeno-free systems and have shown validation of the 
products [1,2,57-60]. While the end goal of some of these group’s 
studies may not be a therapy or large scale production, it will 
undoubtedly help the field if researchers are united in utilizing 
the same, consistent experimental system instead of those with 
tremendous inherent variability [61] or those that garner large 
patient by patient inconsistency [62]. So what is the next step 
for those in this industry, does the field need to validate the 
technologies more or on a larger scale? There are some claims of 
lower efficiency of the new methods [63,64], so perhaps it is that 
research groups are attempting to adopt the new techniques and 
are obtaining poor results?

Defined, xeno-free cultures of pluripotent cells are imperative 
for their industrial scale production and clinical application. 
In 2010 the International Stem Cell Forum funded a project 
comparing the performance of different media for culturing 
human ESCs [74]. Emerging stem cell products [72] including 
those in clinical trials [75] will benefit from a similar organized 

Table 1: Cost of ESCs and iPSCs culture: Prices of making own media estimated using Thermo Fisher products. Substrate for Feeder condition 
could vary greatly based on the cells origin or if derived from animal in lab.

Media (per 500mL) Substrate (Units Vary) Dissociation (per 100 mL)

Feeder [3,4,17,65,66] Make own $126.33 Derive/Buy  MEFS  (7million cells) $0/$66 0.25% Trypsin $12.17 

Xenogenic or undefined [67-70] Make own/TeSR™-1 $140.6/$270 Matrigel® (10mLs) $269.12 Accutase® $17.00 

Defined and xeno-free [1,2,58,59] TeSR™-E8™ $206 Truncated Vitronectin  (5mg) $503.50 Versene $10.31 
Recipes and cost for making own medias are as follows:
Feeder Media (All Thermo Fisher products)
Knockout DMEM medium- $28.75 per 500mL
•	 Need 391mL - $22.48
supplemented with 20% KSR – $332.25 per 500mL
•	 Need 100mL – $66.5
1.1	 mM nonessential amino acids - $17.96 per 100mL (10mM)
•	 Need 5mL - $0.90
0	 mM L-glutamine - $24.50 per 100mL (200nM)
•	 Need 2.5mL - $0.98
1.1	 mM β-mercaptoethanol - $7.46 per 20mL (50mM)
•	 Need 1mL - $0.37
penicillin-streptomycin - $20.05 per 100mL (1000x)
•	 Need 0.5mL - $0.10
4 ng/ml bFGF - $175 per 10ug
•	 Need 2ug – $35
Total: $126.33 per 500mL

Xenogenic Media (All Thermo Fisher products)
Knockout DMEM/F12 - $35.80 per 500mL
•	 Need 391mL - $28.00
Penicillin-streptomycin - $20.05 per 100mL (1000x)
•	 Need 0.5mL - $0.10
0	 mM L-glutamine - $24.50 per 100mL (200nM)
•	 Need 2.5mL - $0.98
1% nonessential amino acids - $17.96 per 100mL (10mM)
•	 Need 5mL - $0.90
1.1	 mM 2-mercaptoethanol - $7.46 per 20mL (50mM)
•	 Need 1mL - $0.37
20% (v/v) knockout serum replacement – $332.25 per 500mL
•	 Need 100mL – $66.5
5 ng/ml recombinant human FGF2 - $175 per 10ug
•	 Need 2.5ug – $43.75
Total: $140.60 per 500mL

Figure 1 Graph showing the trend of stem cell articles relating to the 
topics of “defined” or “free” cultures: For this analysis, searches were 
conducted on PubMed and the “results by year” was analyzed. The 
searches “stem cell”, “stem cell AND defined culture”, and “stem cell 
AND free” were conducted. The graph shows the percent of stem cell 
articles that contain the terms “defined culture” and “free” over the 
past 20 years [56].
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standardization project for evaluating the advanced culture 
technologies.  Our cost analysis results shown in Figure (2) and 
Table (1) indicate that the difference in cost between undefined/
xenogenic and defined/xeno-free culture systems is becoming 
negligible. Therefore, it is an ideal time to validate and adopt 
those technologies by the laboratories not only in industry but 
also in academia. Benefits and limitations of the new technologies 
should be evaluated objectively to establish standards. 
These standardizing efforts streamline the materialization of 
revolutionary technology discovered in academic and start-ups 
laboratories.
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