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ABBREVIATIONS
COC: Cocaine; DNA: Deoxyribonucleic Acid; 6-MAM: 

6-Monoacetylmorphine; ROS: Reactive Oxygen Species; XYL: 
Xylazine. 

INTRODUCTION
The combination of common drugs of abuse such as cocaine and 

heroin with new emerging substances have a high toxic potential 
[1,2]. Since the mechanisms of action for these combinations 
are partially undetermined and clinical laboratories are unable 
to detect them [3,4]. In the case of xylazine (XYL), an emerging 
drug of abuse, its alpha-2 receptor agonist mechanism of action 
was studied in animals, resulting on FDA approval for veterinary 
applications only [5,6]. Human intoxication cases have reported 

bradycardia and transient hypertension followed by hypotension 
[7,8]. Also, sedation and reduced cardiac output were observed 
as an effect of norepinephrine release blocking by this alpha 2 
agonist [9,10]. Its combination with heroin (opioid) is highly toxic 
because this opioid is a μ(Mu) receptor agonist, that also causes 
sedation, hypotension and respiratory depression [1,2,4,11,12]. 
Concomitant use of these drugs may cause potentiation of 
physiological toxic effects, such as sedation, hypotension and 
respiratory depression by a different mechanism of action, which 
could cause death [13]. The use of XYL as heroin adulterant or 
substitute has increased in many countries, causing a great deal 
of concern among physicians and the National Institute on Drug 
Abuse (NIDA) [9,14,15]. XYL has unknown acute and chronic 
toxic effects, that may be important in clinical treatment and 
rehabilitation.
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Abstract

Emerging drugs of abuse, such as xylazine (XYL), are receiving great interest due 
to increasing use and the potential health toxicity effects, in the addict population. XYL 
is an alpha two agonist without medical applications in humans. Our previous studies 
indicated XYL and its combination with cocaine (COC) and/or 6-monoacetylmorphine 
(6-MAM) induced apoptotic cell death and DNA fragmentation in endothelial cells. In 
addition XYL and 6-MAM trigger reactive oxygen species (ROS) production in these 
cells. This study aim is identify apoptosis path way in cell death and determine cell 
cycle effects of xylazine and its combination with COC and 6-MAM in Human umbilical 
vein endothelial cells (HUVEC, EA.hy926). HUVEC were treated with XYL (60 μM), 
COC (160 μM), 6-MAM (160 μM), camptothecin (Positive control, 50 μM), XYL/COC 
(50 μM), XYL/6-MAM (50 μM) and XYL/COC/6-MAM (40 μM) for a period of 24 
hours. Activation of caspases 8 and 9, and cell cycle assessment were analyzed using 
differential microscopy assays. Results reveal that all drugs tested in this study and their 
combinations activate caspases 8 and 9, involved in extrinsic and intrinsic pathways 
respectively. Also, these drugs in combination have presented cell cycle arrest in 
G2/M phase. While cells treated with COC and 6-MAM, show cell cycle arrest in G0/
G1 phase. The findings suggest that these drugs trigger apoptotic process in human 
endothelial cells involving both extrinsic and intrinsic pathways, and furthermore induce 
cell cycle arrest in two of the major checkpoints.
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The main administration route by drug users is intravenous, 
gaining rapid access to the vascular system. Distribution thru the 
circulatory system, will deliver direct to organs such as the heart, 
lungs, liver and kidney, with full dose bioavailability [16,17]. 
Through this type of administration the vascular endothelium is 
continuously exposed to XYL, or its combination with COC and 
6-MAM (heroin metabolite) and the effects are partially unknown. 
Cocaine and heroin effects in endothelial and other cells have 
been studied, due to the endothelium’s extensive functions and 
implications of its damage in health, and disease development 
[18–28]. XYL toxic effects in the human endothelium have not 
been studied. Endothelial cells are involved in the exchange of 
nutrients, homeostasis and recovery of lesions [29,30]. Their 
role in mediating normal physiology is crucial for the human 
body [31]. Our previous studies has reported that XYL use and 
its combination with COC and 6-MAM triggers apoptotic death 
in EA.hy926[32]. These  studies report that xylazine triggers 
ROS production as well as 6-MAM in these cells, and DNA 
fragmentation mainly in G0/G1 and G2/M phase [33] . 

Reactive species have a role in several signal transduction 
pathways, as signaling molecules and transcriptional regulation 
[34]. Significant amounts of superoxide anion are produced by 
the cells as part of normal functions [35–37]. Sustained high 
levels of ROS, implicating severe oxidative stress, could trigger 
tissue damage, subsequently inducing cellular death and disease 
[38]. In vitro studies in human neuronal progenitor cells exposed 
to cocaine demonstrated that high levels of oxidative stress lead 
to cell death. Programmed cell death, apoptosis, is used to remove 
selectively damaged cells [39, 40]. Dysregulated apoptosis 
process has been characterized in the pathophysiology of many 
diseases [41–43]. This uncontrolled process triggers diseases 
such as vasculitis and key events featured in renal disease 
[44]. Apoptotic cell death is regulated by either two pathways; 
extrinsic or intrinsic [45, 46]. 

In this study, we used EA.hy926 cells to identify the apoptotic 
pathway induced by xylazine and its combinations with COC 
and/or 6-MAM. These drugs and their combination were also 
investigated to elucidate their effect in cell cycle progression. 

MATERIALS AND METHODS 

Stock solutions and reagents

Experimental stock solutions of all drugs were prepared 
at concentrations of 3 mM in ethanol 70%, obtained from 
Sigma Aldrich, (St. Louis, MO) and were kept in sterile glass 
vials and stored at 4 ºC. The positive control (camptothecin) 
cocaine and xylazine were obtained from Sigma Aldrich, and 
heroin metabolite (6-monoacetylmorphine) was from Cerilliant 
Corporation (Round Rock, Texas). DNA dye reagent (DAPI) was 
obtained from Chemometec (Allerød, Denmark). Green FAM 
FLICA k it was obtained from Immunochemistry Technologies, 
Bloomington, Minnesota.

Instrumentation 

Countess automated cell counter (Invitrogen, Carlsbad, 
California) was used for cell quantification. Analysis of cell cycle 
was achieved by cytometry using the Nucleo counter NC-3000 
(Chemometec, Allerød, Denmark) instrument.

Cell culture

The cell line used in this study was human umbilical vein 
endothelial cell (HUVEC) line Ea.hy926, kindly provided by Dr. 
Cora-Jean S. Edgell, from the University of North Carolina at 
Chapel Hill (UNC). Cells were cultured on DMEM culture media 
(ATCC, Manassas, Virginia) with 10% fetal bovine serum (ATCC, 
Manassas, Virginia) [47, 48]. These cultures were maintained at 
37 ºC and 5% CO2[49]. Cell viability was determined with trypan 
blue exclusion method, to be consistently over 90% previous to 
seeding cells. After monolayers reached confluence were used 
within 24 hours. 

Cell treatment

Cells were exposed for 24 hours to vehicle (negative control 
group), XYL (60 μM), COC (160 μM), 6-MAM (160 μM), and 
drugs at their approximated IC50 (previously calculated [32]) 
camptothecin  (positive control group, 50 μM), XYL/COC (50 
μM), XYL/6-MAM (50 μM) and XYL/COC/6-MAM (40 μM). The 
EA.hy926 cells were cultured at a density of 5.0 x105 cells per 3.5 
mL of culture media in 25 cm2 flasks to assure steady metabolic 
state and exponential growth. Drugs treatment solutions and 
combinations were prepared freshly by dilution in medium, and 
then added to cultures.

Caspase 8 and 9 activation assay

Caspase activation is a hallmark of apoptosis in response to 
drug toxicity. Activation  of effector caspases is a key event in the 
apoptotic pathway; caspase 8 is activated by extrinsic stimuli and 
caspase 9 by intrinsic. These enzymes trigger many of the typical 
hallmarks of apoptotic cell death. This assay was performed using 
Fluorescent Labeled Inhibitors of Caspases (FLICA). These probes 
bind covalently with active specific caspase (8 or 9, individually). 
After treatment as described previously, cells were harvested and 
stained using the green FAM FLICA kit. This interaction allows 
cells with active Caspases 8 or 9 a green fluorescence emission, 
while cells with inactive caspases will present an absence of 
fluorescence. Campthotecin was employed as the positive 
control and the drug vehicle as the negative control. Following 
treatments, cells were rinsed with PBS, detached, centrifuged 
and quantified. These cells were stained for an hour following 
the manufacturer’s instructions with slight modifications. The 
fluorescence was measured in fluorescence standard units (FSU) 
by image analysis with Nucleo counter NC3000 instrument; 
Nucleoview software interpreted data, as a percentage of cells.

Cell Cycle Assessment

Determination of the effects on cell cycle progression is used 
as indicators of drug toxicity assessment. This assay measures 
stained cells, which indicate cellular DNA content related to 
cell cycle phase. Cells were harvested after treatment and 
implementing the previously defined conditions, fixed with 70% 
ethanol, incubated 24 hours at 4ºC, stained with 500 μL of 1 μg/ml 
DAPI and incubated for 5 minutes, according to manufacturer’s 
specifications and analyzed by image analysis with Nucleo 
counter NC3000 instrument.

Statistical analysis

Significant changes in the cell exposed to the tested drugs 
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were assessed by statistical analysis, performed using one-
way ANOVA, with Tukey post hoc test, where p < 0.05 was 
considered significant. Calculated with Graphpad Prism software 
(v.5.03). Results were presented as mean + SD of replicates, 
from duplicates experiments and shown as negative control 
standardization (percent, %).

RESULTS AND DISCUSSION 

Caspases 8 and 9 activation 

When EA.hy926 cells were exposed to all drugs and their 
combination at concentrations described previously, activation 
of caspases 8 and 9 was detected (Figure 1 and 2). Caspase 8 
activation was detected at higher proportion in cells treated with 
6-MAM, XYL and its combination with 6-MAM or 6-MAM and 
COC, (P<0.0001, Figure 1) when compared to the negative (NC) 
and positive control (PC, camptothecin), using ANOVA analysis. 
When comparing XYL to PC groups, a significant difference was 
observed (P<0.001), cells treated with XYL exhibited an increase 
in caspase 8 activation, more than PC, as well as cells treated 
with XYL in combination with 6-MAM and/or COC (P<0.0001). 
Meanwhile cells treated with COC presented lower caspase 8 
activation than PC, but higher than NC (P< 0.01). 

Caspase 9 activation was detected in all treatments used in 
this study (Figure 2), showing higher activation in cells treated 
with 6-MAM and its combination with XYL and COC (P<0.0001) 
when compared with NC, PC, XYL, COC and XYL in combination 
with COC. No significant difference (ns, P>0.05) was observed 
between PC and COC treated groups. Meanwhile COC treated 

cells, presented significant higher caspase 9 activation than XYL 
(P<0.001). Cells treated with XYL and its combination with COC 
or 6-MAM present no significant difference in their response 
(ns, P.0.05), but higher than NC (P< 0.0001). Cells treated 
with the three drug combinations present the higher caspase 
8 and 9 activation, showing synergistic effect, higher than 
activation observed in cells treated with the drug individually, 
with exception of 6-MAM treated cells, which presented higher 
caspase 9 activation than the other drugs individually, but equal 
to the three drugs combination response. 

Results of Cell Cycle Assessment

When EA.hy926 cells were exposed to XYL, COC and 6-MAM 
and their combinations at concentrations describes previously, 
presents different cell cycle arrest among phases Sub-G0, G0/G1, 
S and G2/M, when were compared to NCgroup (Figure 3A and 3B). 
Sub-G0 and G0/G1 phases shows higher amount of cells arrested 
when were treated with COC and 6-MAM.In contrast, cells treated 
with XYL and its combination with COC and/or 6-MAM presented 
no significant (P>0.05) difference when compared to NC group 
in Sub-G0 and G0/G1 phases. Whereas cells treated with COC 
and 6-MAM show no significant cell cycle arrest in S and G2/
Mphase. However cells treated with XYL and its combination 
with COC and/or 6-MAM presented significant difference in cell 
cycle arrest (P < 0.0001) in S and G2/M  phases, when compared 
to NC group. No significant difference was observed in S phase 
among cells treated with XYL and its combination with COC or 
6-MAM (ns, P=0.05), while cells treated with XYL in combination 
with COC and 6-MAM presented less cells arrested than XYL 

Figure 1 Effects of xylazine, cocaine, 6-monoacetylmorphine and their combination; on Caspase 8 activation in Human Umbilical Vein Endothelial 
Cells (EA.hy926). Caspases 8 activation in EA.hy926 cells after 24 h of exposure to vehicle (negative control group), xylazine (XYL, 60 μM), cocaine 
(COC, 160 μM), 6-monoacetylmorphine (6-MAM, 160 μM), camptothecin (positive control group, 50 μM), XYL/COC (50 μM), XYL/6-MAM (50 μM) 
and XYL/COC/6-MAM (40 μM), were as follows: 1A; showed significant levels activation of caspases 8 in EA.hy926 cells, when exposed to XYL, COC, 
6-MAM and their combinations. All values are expressed as mean ± SD of 6–9 replicates, from 2 to 3 experiments. Statistical analysis performed was 
one-way ANOVA, with Tukey post hoc test, where p < 0.05 was considered significant. P summary; *** significantly different from negative control 
group (P < 0.0001), ns = no significant different from negative control group (P > 0.05).The experiment was repeated for at least three times in 
replicate , expressed as change from negative control normalization (%).
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Figure 2 Effects of xylazine, cocaine, 6-monoacetylmorphine and their combination on caspase 9 activation in Human Umbilical Vein Endothelial 
Cells (EA.hy926). Caspase 9 activation in EA.hy926 cells after 24 h of exposure to vehicle (negative control group), xylazine (XYL, 60 μM), cocaine 
(COC, 160 μM), 6-monoacetylmorphine (6-MAM, 160 μM), camptothecin (positive control group, 50 μM), XYL/COC (50 μM), XYL/6-MAM (50 μM) 
and XYL/COC/6-MAM (40 μM), were as follows: 2A presented activation levels of Caspases 9 in EA.hy926 cells when exposed to XYL, COC, 6-MAM 
and their combinations. 2B presented levels of caspases-9 activation in EA.hy926 cells when exposed to XYL, COC and 6-MAM.2Cpresented levels 
of caspases-9 activation in cells when exposed to combination of XYL, COC and 6-MAM. All values are expressed as mean ± SD of 6–9 replicates, 
from 2 to 3 experiments. Statistical analysis performed was one-way ANOVA, with Tukey post hoc test, where p < 0.05 was considered significant. 
P summary; *** significantly different from negative control group (P < 0.0001), ns = no significant different from negative control group (P > 0.05). 
The experiment was repeated for at least three times in replicate , expressed as change from negative control normalization (%).

group (P<0.001), but higher than NC (P, 0.0001).Cells treated 
with XYL and its combination with COC and/or 6-MAM exhibited 
no significant difference among their response, in G2/M phase.

Cocaine and heroin are drugs of abuse well studied, 
with known harmful effects, their combination (known as 
speedball) is very common among addicts [50,51]. Their toxic 
effects in neuronal and vascular damage has been identified 
[21,23,24,26,51]. Meanwhile XYL has no significant studies of its 
toxic effects in humans. This drug belongs to a drug group known 
as phenothiazines, in reference to its chemical structure, [10, 
52]. Phenothiazines act as antagonist of alpha 2, dopamine and 
other receptors in the central nervous system (CNS), subject to 
chemical structure substitutions [53]. These drug groups exhibit 
cytotoxic effects in a diversity of non-CNS cells [54] and interact 
with macromolecules such as proteins, DNA and RNA [53]. 

Phenothiazines have been associated to cell death by 
apoptosis, by mitochondrial permeability induction [54]. This 
cellular death by apoptosis is in accordance with our previous 
results, obtained from cells treated with xylazine and its 
combination with cocaine and/or 6-MAM. Significant increase in 
the expression of activated caspase 8 and 9 has been detected in 
our study with EA.hy926 cells. This data suggests activation of 
both pathways in apoptotic cellular death process. Stress signals 
from inside the cells could activate intrinsic pathway, were 
caspase-9 is activated, and subsequently caspase-3 and poly 
ADP-ribose polymerase (PARP) activation. Moreover extrinsic 

pathway induction activates caspase-8, which successively 
activates downstream effectors, that likewise include caspases-3 
and PARP [46, 55].

Xylazine apoptotic cell death induction in endothelial cells 
is significant since the endothelium is the regulator of vascular 
tone, an active participant in hemostasis, cellular proliferation, 
inflammation, and immunity [24]. Drugs, xenobiotic compounds 
and chemical agents could interact with molecular targets 
expressed on membranes, inducing endothelial cell toxicity and 
initiating a signaling cascade. Consequently, lesions in vascular 
tissue, skin and vital organs could be developed [16]. Recently, 
disproportionate apoptotic death of endothelial cells have been 
related to vascular injury, in human studies, characterized by 
inflammation, neutrophil infiltration and lamina breaking [24, 
31, 56]. Drug-induced vascular injury is a great concern in clinical 
toxicology; due to the extension in their function and potential 
systemic impact [16, 31, 44, 57]. 

Moreover cell cycle is regulated by entry checkpoints into 
each phase [58–60], cells entrance in G1 phase, followed by S 
phase (DNA replication) [61]. Subsequent to S phase, cells enter 
to G2 phase, where DNA repair and protein synthes is occurs  and 
Mphaseis where separation of progenitorand daughter cells is 
achieved. DNA damage manifestation in these checkpoints mainly 
appears in late in G1 and G2 phase. This DNA damage could 
triggers[59, 61], cell cycle arrest in G0/G1 and/or G2/M phase 
andmightbe related to the apoptotic process, adduct formation 
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Figure 3 Effects of xylazine, cocaine, 6-monoacetylmorphine and their combination on cell cycle in Human Umbilical Vein Endothelial Cells (EA.
hy926). EA.hy926 cells after 24 h of exposure to vehicle (negative control group, NC), camptothecin (positive control group, PC, 50 μM), xylazine 
(XYL, 60 μM), cocaine (COC, 160 μM), 6-monoacetylmorphine (6-MAM, 160 μM), XYL/COC (50 μM), XYL/6-MAM (50 μM), and XYL/COC/6-MAM 
(40 μM), were evaluated and compared to negative control group. Cell cycle assay was performed to measure cells containing less DNA dye with 
DAPI [65]. Cells were harvested after treatment, fixed with 70% ethanol, incubated 24 hours at 40C, stained with 500 μL of 1 μg/ml DAPI (5 min. 
incubation) and image analyzed with Nucleo counter NC3000 instrument. Results obtained when EA.hy926 cells were exposed to XYL, COC and 
6-MAM and their combinations at concentrations described previously, presents different cell cycle arrestment among phases Sub-G0, G0/G1, S and 
G2/M, when compared to the negative control group (Figure 3A and 3B). Phase Sub-G0 shows higher amount of cells arrested when treated with 
COC and 6-MAM (Figure 3C). Phase G0/G1 shows no cell cycle arrest with significant difference (P > 0.05) in cells treated with drugs combinations 
(Figure 3A and 3B). Cells exposed to XYL and its combination with COC and/or 6-MAM presented cycle arrest with significant difference (P < 0.0001) 
in Phase S (Figure 3D and 3E). Similar results were observed in G2/M phase (Figure 3F and 3G). All values are expressed as mean ± SD of 6–9 
replicates, from 2 to 3 experiments.. Statistical analysis performed was one-way ANOVA, with Tukey post hoc test, where p < 0.05 was considered 
significant. P summary; *** P<0.0001, ** P<0.001, * P<0.01 significantly different, ns = no significant difference p> 0.05, when compared to negative 
control group.
The experiment was repeated for at least three times in replicate , expressed as change from negative control normalization (%)
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and by reactive species interaction. The assay employed to 
evaluate cell cycle allows DNA content can be measured using 
fluorescent dye (DAPI); emission signals exhibited by DNA-
selective stains are proportional to DNA mass. Our results indicate 
that EA.hy926 cells treated with XYL and its combination with 
COC and/or 6-MAM induce significant cell cycle arrest in G2/M 
and S phases; in contrast to cells treated with COC or 6-MAM 
that presented significant cell cycle arrest only at Sub-G0 Phase. 
Cell cycle arrest in S phase could be associated to mitochondrial 
membrane potential disruption, leading to cytochrome c release, 
and subsequently apoptotic cell death, which has been observed 
by previous research[50, 62–65].This phase is highly regulated 
by cyclin dependent kinases and other proteins. Meanwhile 
cell cycle arrest in G2/M could be related to a secondary 
necrosis event, resulting from severe and acute mitochondrial 
dysfunction that initially activates apoptosis. Additionally, it 
could be associated to inhibition, activation or phosphorylation 
of proteins such as Cdc2, p35, Chk1and Chk1 and Chk2 kinases, as 
well as other proteins [63, 66].Molecular mechanism underlying 
XYL, and its combination with COC and/or 6-MAM, effects in 
the cell cycle still unknown, but is part of our future plans. Our 
previous work and this study are among the first research related 
to XYL molecular effects in human cells. Previous studies of COC 
and 6-MAM or heroin and their combination (speedball) concur 
with our findings, cell cycle arrest in Sub-G0 and G0/G1 phase 
presented in cells treated with COC or 6-MAM,a typical apoptotic 
response and has been related to mitochondrial disruption, 
Bcl-2proteins cleavage and cytochrome c release, among other 
mechanisms, [21,23,27,67,68,62,69].

CONCLUSION
This study reports primarily the pathways involved in the 

induction of apoptosis byxylazine and its combination with 
cocaine and/or 6-monoacetylmorphine on the EA.hy926, human 
umbilical vein endothelial cell line. Our results demonstrate that 
the effects of all drugs tested in this study are comparableto 
those induced by camptothecin (positive control) activating both 
pathways in apoptotic cell death. In addition this study identified 
caspase 8 and 9 activation as important intermediate steps 
involved in apoptotic cell death . Drug combination treatments 
effects are similar to those induced by drugs individually. 
Cell cycle assessment shows that effects of COC and 6-MAM 
treatments were observed in Sub-G0 and G0/G1 phase. Cells 
treated with XYL, and its combinations with COC and/or 6-MAM 
show effects mainly in S and G2/M phases. 

Our study has contributed to understanding the mechanisms 
involved in xylazine toxicity alone and in combination with 
cocaine and/or 6-monoacetylmorphine on endothelial cells. 
Relationship among xylazine abuse and impairment of the 
endothelial barrier functions has been demonstrated in this 
study. This is an essential event in the pathological processes 
in a broad variety of diseases. Further, potential health risk in 
addict population could be suggested, once clinically monitored 
and documented, in users of xylazine and its combination with 
speedball modality. 
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