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Abstract

MicroRNAs are powerful regulators of gene expression having crucial impact 
on cell differentiation, proliferation and survival. Their dysregulation is implicated in 
carcinogenesis including development and progression of thyroid cancer. Since the 
discovery of pivotal role of miRNAs in thyroid carcinogenesis, a number of studies have 
explored the miRNAs assessment as a promising tool of the thyroid cancer screening, 
diagnostic and management. These studies were carried out using different analytic 
approaches and different sources of miRNAs that complicates comparison, analysis 
and practical application of the results. The purpose of this review is to systematically 
evaluate the utility of miRNAs assessment for thyroid cancer management and to 
summarize advantages and disadvantages of methods can be applied. In this Review, 
we discuss the practical aspects of miRNA-based diagnostic and prognostic approaches 
that may be of interest for both physicians and researchers dealing with thyroid cancer. 

 INTRODUCTION

Thyroid cancer clinical issues

Origin: Thyroid cancer (TC) is a group of neoplastic disease 
arising from thyroid gland. Follicular cells of the gland give 
a rise for most of the TC (95%) while small portion of cancers 
(5%) is developing from para-follicular C cells and referenced 
as medullary TC. Carcinomas originated from follicular 
component are subdivided in according to differentiation rate 
as well- , purely- and undifferentiated cancers. Most common 
group of well-differentiated TC includes papillary and follicular 
types which account for about 75-80% and 10-15% of total TC 
occurrence, correspondently. Undifferentiated (anaplastic) 
tumors present rare (0.2-2%) and most aggressive group of 
TC. So far, classification of TC is based on histological grading 
and growth pattern, however, controversial issues still exist in 
classification of borderline cases. Moreover, cancer with well-
defined histological characteristics may exhibit heterogeneity 
of clinical behavior that indicates a need for mere extended 
classification [1]. 

Epidemiology: TC accounts for 95 % of all endocrine 
malignancies and its incidence is constantly increasing [2]. In 

countries of North America [3,4], West Europe [5] and Australia 
[6] the incidence of TC has increased approximately threefold 
over the last two decades. In territory of Russian Federation, 
TC incidence rate has increased from 47,3 to 86,5 cases per 100 
000 population over ten years period 2001-2011 [7]. According 
to different national statistics, the five-year relative survival 
rate for people with papillary, follicular, and medullary TC that 
is confined to the thyroid gland and doesn’t invade its capsule 
is close to 100%. Spreading of TC to the regional lymph nodes 
reduces survival rate down to 90-70%. Appearance of distant 
metastases further reduces survival rate of TC patients however 
in strong accordance with histological type of cancer. About half 
of the patients diagnosed with well-differentiated (papillary and 
follicular) TC at stage IV will reach 5-years survival rate, while 
this statistics drops down to 25-40% for medullary thyroid 
cancer. Anaplastic (undifferentiated) cancer has poor prognosis 
in almost all cases with median survival close to 6-12 months. 

In according with recent analytic reviews [8], the global 
increase of TC incidence isn’t associated with increase of 
mortality and is rather caused by diagnostics improved over 
last decades. The spread of ultra-sonographic and cytological 
procedures led to diagnostic advance: to the discovery of 
occult micro-carcinomas and to a better preoperative selection 
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of patients [9]. Although current standard strategies for the 
management of thyroid cancer offer good outcomes for patients 
with favorable histological types at early stage, challenges arising 
from diagnosis and therapy still exist.

Diagnostics: TC is typically manifesting as thyroid nodule, 
which are very common and their prevalence varies from 3% to 
76%, depending on the detection methods and the population 
evaluated [10,11]. However, only 5 % of thyroid nodule cases 
are malignant and most nodules are benign [12]. Currently, 
fine needle aspiration cytology (FNAC) of thyroid nodules is the 
“gold standard” diagnostic method providing with acceptable 
sensitivity and specificity (65-98% and 72-100%, respectively) 
[13-15]. Because of obvious technical reasons and inherent 
methodological limitations, substantial portion of FNAC provides 
with diagnosis as “atypia of undetermined significance” or 
“follicular lesion of undetermined significance” [16,17]. Thus, 
from 3-6 up to 10-25 % of the FNAC investigations are interpreted 
as indeterminate without a definitive diagnosis [18,19]. 
Misdiagnosis of the thyroid nodules results either in delay of 
necessary surgery or in unnecessary thyroid resections, which 
harbor risks like hypo-parathyroidism, recurrent laryngeal nerve 
palsy, and the need for lifelong thyroid hormone replacement 
[20,21]. Thus, achieved improvements of diagnostic of small and 
predominantly indolent thyroid nodules require of development 
of reliable biomarkers that can efficiently select the minority of 
patients with malignant tumors.

Management: The management of thyroid cancer may 
appear challenging issue because the tumors comprise a 
wide range of biologic behaviors, from small papillary micro-
carcinomas that pose little or no risk to survival for the patient, 
to anaplastic thyroid cancers that are arguably the most lethal 
tumor [22]. As it was mentioned, tumors within well-defined 
histological group may considerably vary in terms of clinical 
behavior. Therapeutic standards for particular clinical situations 
are hard to be established largely because randomized controlled 
trials are lacking as a result of the low incidence and generally 
favorable prognosis of the disease. The current guidelines of 
most national and international associations (American Thyroid 
Association [23], European Thyroid Association [24], and Russian 
Association of Endocrinologists [25]) are based predominantly 
on clinical studies and suppose a limited application of molecular 
genetics and/or epi-genetics. For instance, The American Thyroid 
Association (ATA) advised to consider the use of commercially 
available genetic tests (like status of TSH receptor mRNA, BRAF, 
RAS, RET/PTC, and PAX8/PPARγ genes) with appropriate caution 
due to absence of evidence-based recommendations and until 
an expert consensus review of existing data can be completed 
[26]. Guidelines regarding testing of RET mutations in frame of 
the medullary thyroid cancer management are still discussed 
between American Thyroid Association (ATA) and European 
Panel of Experts (EPE) while C-cell-derived carcinomas presents 
as hereditary form in 25-30% of cases [27]. 

Considering a number of genetic and epi-genetic alterations 
have been described in thyroid cancer over the last decades, 
the need for a shift of algorithms in the management of thyroid 
cancer patients is obvious. In order to personalize therapy of TC, 
novel molecular markers need to be identified and introduced to 

clinical practice. Among promising candidates, small regulatory 
RNAs (microRNAs) attract a great interest.

MiRNA in thyroid cancer (TC)

MiRNA biology and clinical utility: MicroRNAs (miRNAs) 
are small non-coding RNAs (19–25 nucleotides) that regulate 
gene expression at the transcriptional or post-transcriptional 
level. Perfect or imperfect complementary miRNAs bind to the 
3’-untranslated region (3’-UTR) of an mRNA transcript and block 
its translation, thus leading to the control of various cellular 
processes including cell differentiation, cell cycle progression, 
and apoptosis. Over 2000 miRNA regulating the expression of the 
human genome have been identified so far, and they are believed 
to regulate around 60% of the protein-coding genes. 

Half of the human miRNA genes are located in cancer-
associated genomic regions or in fragile sites [28,29]. Over the 
recent years, an increasing number of studies have indicated 
a causal contribution of miRNAs in tumorogenesis, local 
progression and metastatic spread of cancer [30,31]. Moreover, 
several features of miRNAs make them attractive biomarkers for 
cancer. First, they are upstream regulators of mRNA, and each 
miRNA is able to target multiple protein-coding genes, resulting 
in substantial functional effects [32]. Thus, detection of certain 
miRNAs may have a robust relevance to certain phenotypic 
characteristics compared to mRNA. Next, in contrast to mRNAs, 
miRNAs do not need to be translated to proteins in order to exert 
their effects. The expressional status of miRNA may correlate 
closely with the functional status of the regulated gene(s), and 
its biological effect can be experimentally tested by generic 
sequence-based methods [32]. Finally, miRNAs are remarkably 
stable and maintain their expression profiles in various biological 
materials such as plasma, serum, residual cells obtained by FNA 
biopsy, archival formalin-fixed paraffin-embedded and frozen 
samples [32-34]. 

General suppression of miRNA biogenesis associated 
with TC: In their seminal paper published in 2005, He et al. were 
the first to profile miRNA in TC [35]. One of their significant 
findings was that in papillary TC the global suppression of miRNA 
patterns is associated with overexpression of several key cancer-
driving miRNAs. This finding has since been confirmed in a recent 
study revealing decreased Dicer gene expression in malignant 
thyroid tissue and its association with aggressive features: 
extrathyroidal extension, angiolymphatic invasion, multifocality, 
distant metastasis, and fast recurrence [36]. These data suggest 
that disruption of normal Dicer miRNA processing may play a 
role in thyroid cancer progression. Overall dysregulation of the 
miRNA-based gene regulatory machinary in thyroid cancer is 
comprehensively analysed by Marina N. Nikiforova et al., and 
James C. Lee et al., in recent reviews [37,38].

Specific miRNA implicated in thyroid cancer: Between 
2005 and 2014, a considerable number of studies reported the 
involvement of specific miRNAs in thyroid cancer. However, 
these reports are quite heterogeneous in terms of the patient 
cohorts included, tissue samples, and methodology applied. Most 
studies were focused on types of well-differentiated TC, since 
they are most common [39,40]. Some investigations relied on 
specific histological types of TC like medullary [41], anaplastic 
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[42], or follicular variants of papillary thyroid carcinoma [43]. 
The control or comparison groups varied from normal thyroid 
tissue [44] to multi-nodular goitre (MNG) [45,46] or benign 
follicular lesions [46]. Despite the great inconsistencies, some 
general trends of miRNA deregulation can be observed. The 
most consistently overexpressed miRNAs in well-differentiated 
TC types appear to be miR-221 [35,36,43-45,47-50], miR-222 
[35,36,43-45,48-54], and miR-146b [35,36,43,44,46-49,52-56]. 
Other commonly reported overexpressed miRNAs were miR-
155 [44,47,50,57] and miR-181 [43,48,52,58,59]. There was less 
consistency of downregulated miRNAs and miRNA implicated in 
other histological types of TC. Current knowledge in the field is 
comprehensively reviewed by Stefano Forte et al., [60]. 

Diagnostic/prognostic potency of tumour-derived 
miRNA

Diagnostics: Considering the broad applicability of fine 
needle aspiration cytology (FNAC) for TC diagnostics, the 
inherent ‘bottle-neck’ of this method provides space to develop 
an miRNA-based diagnostic approach. Indeed, correlation 
between miRNA profiles obtained by analysis of surgical and FNA 
samples was first indicated by M. Nikiforova et al., [44]. Later, 
Shen et al., developed a set of four miRNAs (miR-146b, -221, -187, 
-30d) that could differentiate a malignant thyroid lesion from a 
benign tumour with a validated diagnostic accuracy of 85.3%, 
sensitivity of 88.9% and specificity of 78.3% [61]. Meanwhile, 
Keutgen et al., reported overall good diagnostic characteristics: 
86.0% sensitivity and 85% specificity for another set of four 
miRNAs (miR-328, miR-222, miR-21, and miR-197) [52]. Mazeh 
et al., have achieved a specificity of 100%, sensitivity of 88%, 
and accuracy of 90% in differentiation of benign from malignant 
thyroid nodules by profiling of miR-21, -31, -146b, -187, -221, 
and -222 in FNA material [62]. These and other results are 
obviously promising, but are hard to directly apply to clinical use 
due to inherent statistical limitations. An alternative approach is 
a meta-analytic compilation of the data from various studies [63-
65]. Most profiling studies in thyroid cancers were performed 
using oligo DNA microarrays [66]. Thus, Stokowy et al., have 
developed two-miRNA-classifiers based on the microarray data 
set, resulting in a specificity of 49% and a sensitivity of 82% in 
discriminating follicular adenomas from the follicular TC [67]. In 
contrast to others investigations, these classifiers consider both 
over- and under-regulated miRNA. However, excellent results 
are still required to be validated in independent sets of samples. 
When FNAC is a common approach to evaluate definitive 
diagnosis of a benign or malignant nodule in the majority of cases, 
the multi-gene next-generation sequencing (NGS) assay can offer 
significant improvement in diagnosis in AUS/FLUS (atypia of 
undetermined significance / follicular lesion of undetermined 
significance) nodules [68]. 

Prognostic: In addition to diagnostic purposes, altered 
miRNA expression in TC tissue was shown to be associated with 
certain aspects of clinical behaviour. For instance, overexpression 
of miR-146b is a prognostic factor associated with BRAF 
mutation and an aggressive tumour pattern [55,56]. Aggressive 
tumour behaviour can be predicted by the assessment of miR-
146b, -222, -34b and -130b expression [54]. MiRNA-199b-5p 
was overexpressed in papillary TC patients with extra-thyroidal 

invasion and cervical lymph node metastasis [46]. The tendency 
of papillary TC to metastasize to cervical lymph nodes was 
shown to be associated with overexpression of miR-2861 and 
miR-451 [69]. Significant associations were identified between 
miR-21 overexpression and lymph node metastasis [49]. These 
and other results indicate that miRNA profiling of thyroid cancer 
tissue may be useful to improve prognosis and to personalize 
the management of TC patients. Since the current therapeutic 
strategy is mostly defined by histological grading and the growth 
pattern of a tumour, further studies will have to adopt miRNA 
assessment approaches to histological parameters and to actual 
clinical algorithms. 

Circulating miRNA: perspectives of clinical 
application

Based on the suggestion that miRNAs are released from the 
primary tumour to the interstitial space and the circulation, 
the profile of blood-derived miRNA may also provide clinically 
relevant information. For instance, blood markers indicating the 
risk of malignant transformation would be helpful for clinical 
follow-up of benign nodules, while markers of recurrence are 
in demand during post-surgery management of TC patients. 
Currently, serum thyroglobulin (Tg) is used to evaluate the 
effectiveness of treatment and to monitor for recurrence. 
However, Tg assessment cannot be applied in many clinical 
situations such as low-differentiated non-producing Tg tumours, 
presence of Tg antibodies, performance of less than total 
thyroidectomy or metastatic stage of disease. Thus, circulating 
miRNA could present alternatives to conventional Tg test. While 
several reports focused on extra-cellular miRNA associated with 
TC have been published, further effort should be made to prove 
the clinical value of circulating miRNA.

Yu et al., measured miRNA expression in the serum of large 
cohorts of patients with either malignant or benign thyroid 
nodules and healthy donors using Solexa sequencing followed by 
RT-PCR validation. They found that serum levels of let-7e, miR-
151 and miR-222 were significantly overexpressed in TC patients 
[70]. Moreover, expression of miR-151 and -222 in plasma was 
found to be reduced after surgery and associated with increased 
expression in tumour tissue [70]. In another study comparing 
plasma miRNA expression before and after total thyroidectomy, 
Lee et al., reported a significant reduction in miR-146b, -221 
and -222 levels (5.1, 10.8 and 2.7 -fold correspondently) [53]. 
However, a similar pattern was observed in a group of patients 
with multi-nodular goitre that reduces the applicability of this 
analysis in a clinical setting. Lee and co-authors evaluated levels 
of miR-146b, -221,-222, and -155 expressions in the blood of 
patients with benign lesions, and papillary TC with and without 
lymph node metastases before surgery [71]. The authors reported 
that miR -146b and -155 can be used to discriminate between 
benign and malignant tumours with sensitivity/specificity 
indexes of 61.4/57.9% and 74.3/63.2%, respectively. Correlation 
between miR-146b and -155 blood level and presence of lymph 
node metastases and tumour size were also reported. However, 
all conclusions were made by comparison groups of patients 
with benign and malignant tumours, which diminishes the 
diagnostic applicability of these results. Differential expression of 
miRNA-579, -95, -29b and 190 in the serum of papillary TC patients 
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versus healthy individuals or patients with nodular goitres was 
reported by Cantara et al. [72]. Although all cited studies were 
focused on the same type of TC (papillary) and miRNA expression 
was measured/verified by the same method (RT-qPCR), their 
results are still far from consensus. An absolute quantification 
of circulating miRNA by droplet digital PCR (ddPCR) technology 
in groups of patients with different cancer types (including 
thyroid cancer) was recently reported [73]. Using this advanced 
method, authors revealed over-representation of miRNA-181a-
5b in the plasma of thyroid cancer patients compared to healthy 
donors and patients with other cancers. Although these results 
did not clarify an insight of TC-associated miRNA in peripheral 
circulation, one very important observation came from this 
report. Similar levels and characters of data distribution were 
revealed for each of the nine miRNAs tested across all groups of 
patients, while these parameters varied considerably between 
different miRNAs. For instance, the plasma level of miRNAs 
-378a-3p and -766-3p varied in a range up to 2-4 copies per uL, 
while miRNAs -125a-5p and -21-5p were counted within the 
limit of 100 and 200 copies per uL, respectively. The presence 
of some miRNAs (for instance miRNA-21a-5b) differed in an 
order of magnitude between plasma and serum samples, while 
the amount of other miRNAs revealed little or no dependency 
on thrombotic event. Taken together, these results indicate that 
the pattern of circulating miRNA is not random, and each miRNA 
seems to have a certain range of physiological (and pathological) 
fluctuations. This conclusion justifies further input to evaluate 
cancer-associated signatures of circulating miRNA.

Thus, miRNA may be isolated from both thyroid gland tissue 
and circulating plasma, and miRNA analysis may provide with 
clinically relevant results at various situations including small 
asymptomatic thyroid nodes management, diagnostic of thyroid 
cancer, prognosis and therapy individualization and post-surgery 
follow up (Figure 1). 

Challenges of miRNA quantification: pre-analytical 
issues 

Despite the promising data mentioned above, many concerns 
still exist regarding the methods of miRNA analysis including 
isolation, quantification and evaluation. Most of the reports 
published to date utilize TC tissue frozen after surgery. This 
is a most reliable approach providing sufficient amounts of 
cancerous and normal thyroid tissue, and this analysis is easily 
accompanied by routine histological assessment. miRNA can be 
also isolated from formalin-fixed/paraffin-embedded tissues 
after long storage, which enables large retrospective studies 
[45]. miRNA can be assessed in the material of preoperative FNA 
[62,74]; however, parallel performance of routine cytological 
tests and miRNA analysis requires increased amounts of 
aspirated tissue. In a clinical setting, miRNA analysis of material 
obtained after non-informative cytological tests would be in the 
greatest demand, allowing additional diagnostic iteration for 
cases undetermined by a standard approach. Thus, methods of 
miRNA isolation from routine air-dried and stained slides are 
under active development [75,76].

The impact of source choice and material processing has 
special importance in the case of circulating miRNA analysis 

[77,78]. Extracellular miRNA in blood circulation does not 
present a homogeneous population, and there still is no common 
opinion regarding its predominant cellular origin, mode of 
release into the bloodstream, packaging forms and dynamic of 
circulation (half-life). Circulating in blood of healthy individuals, 
miRNA are likely derived from endothelial cells, blood cells, and 
platelets. Injury of any tissue can lead to the release of tissue-
specific miRNAs, as was reported for cordial [79], renal [80] or 
hepatic [81] pathology. Perturbations in blood cell count and 
haemolysis can alter plasma miRNA levels up to 50-fold [82] 
while certain miRNAs may be more or less sensitive to such 
impacts [73]. Even being associated with cancerous process, 
miRNA may be released by immune cells or other cells/tissues 
implicated in tumour invasion and inflammatory responses [83]. 
Thus, the cancer specificity of circulating miRNA markers must 
be evaluated with great caution and with respect to other tissue- 
and blood cell-based phenomena [84-86]. 

Besides concerns of cellular origin, the form of miRNA 
release may considerably influence purification efficacy and 
sensitivity of the analysis. Circulation miRNAs can be packaged 
into apoptotic bodies, shedding micro-vesicles, exosomes, or 
bound with high-density lipoprotein particles or complexed with 
AGO proteins. Experimental data reporting the prevalence of 
extra- [87,88] or intra- [89] vesicular forms of the extracellular 
miRNA packaging are still controversial. In the recent years 
of active research, exosomes were found as a specific form of 
cell-to-cell communication, and their miRNA cargo is supposed 
to have an essential biological and diagnostic significance. 
Exosomes are 30-100 nm vesicles consisting of a lipid bilayer 
membrane surrounding a small cytosol, they are derived from 
the microvesicle body (MVB) sorting pathway and contain 
various molecular components that are derived from their cell 
of origin. Cancer cells actively release exosomes that are able to 
suppress host immunity and induce tumour progression [90-
92]. Many functional effects of exosomes are mediated by their 
miRNAs transferred from tumour cells to recipient host cells 
[93]. For instance, exosomal miRNA contribute, or even define, 
the metastatic potency [94] and drug resistance [95] of tumours. 
Importantly, circulating exosomes can be extracted from blood 
and their miRNA content can be assayed separately from the 
rest of the circulating miRNA population. Exosome isolation is 
supposed to improve the sensitivity of following miRNA analysis, 
and this promising approach is being explored now in order to 
develop novel markers for various types of cancer [96]. In the 

Figure 1 miRNA analysis.



Central
Bringing Excellence in Open Access





Malek et al. (2017)
Email:  

JSM Thyroid Disord Manag 2(1): 1007 (2017) 5/10

field of TC, one report revealing the relative abundance of miRNA 
-222 and -146b in exosomes derived from papillary CT cells (TPC-
1) in vitro has been published [97]. New research into circulating 
exosomal miRNA in TC patients is anticipated in the near future. 

Total RNA or short RNA-enriched fractions are usually 
isolated from tissues or bodily fluids by the classic phenol-
chloroform method or by conventional spin column-based 
isolation technologies explored in many commercially available 
kits. Despite the small fraction and short length of miRNA, 
degradation of total RNA crucially impacts miRNA profiling [98]. 
As was recommended, RNA integrity number (equal or above 
seven) should be used to control the quality of starting material 
before miRNA fraction analysis. 

Challenges of miRNA quantification: analytic 
approaches

Regardless of the source and method of RNA isolation, 
further analysis can be performed by number of approaches: 
hybridization-based (microarray), sequencing-based (massive 
parallel/next generation sequencing), amplification-based 
(real-time reverse transcription-PCR) and some advanced 
combinatorial techniques. However, the specific nature of miRNA 
faces methodological challenges affecting the sensitivity and 
specificity of its assessment:

	i.	 The short length of mature miRNA makes it difficult to 
design of specific primers and probes

	ii.	 The variability of GC content leads to different melting 
temperature across miRNA population

	iii.	 Lack of a common sequence feature prevents miRNA-
selective processing

	iv.	 Close homology of miRNAs within the same family may 
lead to differences of a single nucleotide that is hard to 
distinguish

	v.	 Co-existence of mi-RNAs in different stages of maturation 
(pri-miRNA, pre-miRNA, mature miRNA) that share a 
common sequence are hard to distinguish

These features affect methods of miRNA analysis differently 
and should be resolved by the selection of an optimal analytic 
approach.

miRNA microarrays

As with gene expression profiling, microarrays are still the 
best choice for a standardized multiplex assay that is amenable to 
high-throughput applications. Over 20 studies of TC miRNA have 
successfully utilized commercial miRNA microarrays. However, 
in addition to the known merits and drawbacks of microarray-
based expression profiling, there are specific challenges relevant 
to miRNA nature. The short length of mature miRNA restricts 
the design of probes and difficult achievement of equal melting 
temperature across the chips. Members of miRNA families with 
limited sequence difference however differential expression 
pattern and biological functions are rather not distinguishable. 
These issues require specific efforts to be overcome and to reach 
an adequate specificity of arrays-based analysis. Systematic 
comparisons of the main commercially available miRNA 

microarray platforms in terms of their reproducibility, specificity 
and reliability have been reported [99,100]. Comparative analysis 
of advanced techniques aimed at improving the performance 
of array-based miRNA assessment-Locked Nucleic Acid (LNA) 
microarray, beads array, and TaqMan quantitative real-time 
PCR Low Density Array (TLDA) was performed in another study 
[101]. Taken together, these data overall demonstrated good 
intra-platform reproducibility; however, the results obtained by 
different platforms appeared to be less reproducible. Thus, the 
optimization of a normalization method and combination with 
non array-based assays are both required to increase the fidelity 
of array-based miRNA profiling irrespective of the platform used.

Sequencing

Despite being relatively expensive, the sequencing-based 
analysis of miRNA involved in TC seems to be utilized more 
frequently than arrays-based assays. The major theoretical 
advantage of sequencing over microarrays is that it is not biased 
and it helps to explore all miRNAs that exist in a sample. Important 
practical advantages of next generation sequencing techniques 
compared with arrays- and RT-qPCR-based analysis were 
recently evaluated using a set of samples from benign follicular 
adenoma and follicular thyroid carcinoma [102]. The authors of 
this study proposed three different approaches of sequencing 
data analysis: direct mapping that allows expression profiling of 
known miRNA (pipeline A), isoform analysis that allows discovery 
of new miRNAs with close similarity to that known (pipeline B), 
and analysis focused on seed region that allows exploration of the 
functional link between discovered miRNAs and their regulatory 
targets (pipeline C). Thus, sequencing analysis has broader 
applicability compared with arrays. Moreover, the saturation 
of miRNA array signal intensity was indicated by the authors 
of this report. Consequently, profiling overexpressed miRNA by 
microarrays may not be accurate enough, while deep sequencing 
provides a much broader range of signal intensity and may 
present an optimal analytic approach.

Differences between analytical performances of various 
sequencing platforms is further described in [103]; most of these 
sequencing platforms (Illumina [102,104], SOLiD [105] and Ion 
Torrent PGM [106,107]) are applied successfully for TC research. 

Reverse transcription-quantitative PCR

Most of the data describing the role of the miRNA in TC are 
obtained or validated using reverse transcription followed 
by real-time quantitative PCR (RT-qPCR). This method is 
traditionally established as a ‘gold standard’ of gene expression 
analysis including miRNA expression. Considering the relative 
low cost, high fidelity and easy interpretation of RT-qPCR data, 
this method will likely provide a basis for first miRNA-based 
clinical assays. 

The first important step of RT-PCR is the complete and 
correct conversion of miRNA into complementary DNA, which 
can be performed in one of two ways (Figure 2). In the first 
approach, miRNA of interest is transcribed using specific reverse 
transcription primers. The 5’-end of one primer is complementary 
to the 3’-end of the specific miRNA, while the other primer is a 
universal PCR primer. The universal primer-binding sequence 
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may be designed to form a loop (Figure 2A) or as a linear primer 
(Figure 2B). The stem-loop structure of an RT primer reduces its 
annealing to pre- and pri-miRNAs and increases its specificity 
to mature miRNA molecules. A second approach to reversely 
transcribe miRNA uses its modification that allows the annealing 
of a universal RT primer. Two methods of miRNA modifications 
are described: polyadenylation by E. coli (A) Polymerase (PAP) 
(Figure 2C) [108] or ligation with a short linker by T4RNA ligase 
(Figure 2D) [109]. In both cases, the equal modification of all RNA 
molecules creates a binding site for the RT primer that allows 
the performance of universal (non-miRNA-specific) reverse 
transcription. 

The second step of analysis is quantitative PCR. Since the 
miRNA pool is very heterogeneous in terms of GC content, the 
design of primers for PCR may be a challenging issue in this 
case, especially if many miRNAs are assayed in parallel. The 
temperature of primer annealing can be adjusted either by 
shortening primer length (decreased T) or by introducing LNAs 
(Locked Nucleic Acids) into the primer sequence (increased T) 
[110]. Among the existing fluorescent technologies for tracking 
PCR efficacy, SYBR Green I, and TaqMan probes are the most 
common for miRNA analysis. 

The final challenge of RT-qPCR-based assessment of miRNA is 
correct normalization of results. The most reliable approach was 
proposed by Mestdagh et al., and uses the mean expression value 
of all miRNA in a given sample as a normalization factor [111]. 
However, this approach is applicable only when a large enough 
number of miRNAs is assayed in parallel. Diagnostic application 
measures few miRNA markers, and should include some reference 
invariant miRNA/miRNAs. Unlike mRNA expression analysis, no 
reference miRNA have so far been identified. Small nucleolar 
RNAs (snoRNAs)-RNU44, RNU48, RNU43, RNU6B-are frequently 
used as references; however, alteration of their expression may 
be associated with the cancer process [112]. Since each tissue is 
supposed to have а typical pattern of miRNA, references may be 
selected from a list of stably expressed tissue-specific miRNA. For 
instance, miR-16, miR-223, miR-103a, miR-124 were proposed 
as a reference for the analysis of plasma/serum-circulating 

miRNA [113,114]. In order to define a reliable miRNA reference 
for thyroid gland tissue, deep sequencing analysis of tissue 
miRNAome should be performed using a sufficient number of 
samples. Such a study was recently performed [105]; however, 
the results of this investigation indicated great variability in the 
co-existing isoform of known miRNAs that presents difficulties 
in the identification of a ‘bona fide’ reference. Thus, the selection 
of a method for normalization of miRNA expression profiling 
is still an issue that needs to be resolved. Development of new 
high-throughput analytical approaches for the simultaneous 
assessment of a large number of miRNAs may provide an option 
to apply the mean expression value through the sample as a 
normalization factor. 

Advanced high-throughput technologies of miRNA 
analysis

Since the problematic issue of data normalization has still 
not been resolved, the results of the miRNA analysis methods 
described above remain hardly comparable and frequently 
contradictive. This issue may theoretically be overcome by 
the absolute quantification of specific miRNA molecules in the 
tested sample. Several new approaches allowing the capture 
and detection of individual miRNA molecules were developed in 
recent years. Thus, droplet digital PCR (ddPCR) is based on the 
amplification of each individual molecule inside a small droplet 
created by a massive sample partitioning in the form water-
oil emulsion. Amplification inside the droplet can be detected 
by conventional TaqMan probe or EvaGreen dye-based assays 
[115]. Using this method, miR-181a-5p was quantified in plasma 
samples of thyroid cancer patients (n.27) and healthy donors 
(n.20) [106]. The results were presented as miRNA copies per 
plasma microliter. Despite the relatively low number of samples 
assayed, expression difference was estimated as statistically 
significant (p < 0.0005). NanoString technology uses colour-coded 
molecular barcodes that can hybridize directly to different types 
of target molecules. Capture and detection of miRNA is mediated 
by two target-specific probes: a 3’ capture probe containing 
biotin to allow absorbance to the solid phase via streptavidin, 
and a second 5’ probe with an individually barcoded sequence. 
This method does not require amplification or labelling, and 
is considered one of the most reliable approaches for miRNA 
assessment [116]. Using this technique, a pattern of 18 miRNAs 
was reported to be sufficient in order to distinguish papillary TC 
from non-malignant thyroid tissue. Moreover, the involvement 
of miR-339-5p in the regulation of NIS-mediated radio iodide 
uptake by thyroid cancer cells, and hence the sensitivity of TC 
patients to radioiodine therapy was evaluated [117]. Another 
promising method exploring surface plasmon resonance sensors 
is still under active development. This approach provides 
high specificity, and multiplex sensing capacity coupled with 
a wide dynamic sensitivity range that should allow the reliable 
assessment of biological fluids containing a mixture of miRNAs 
at a wide range of concentrations [118]. First attempts to apply 
a plasmonic biosensor for cancer-related miRNA detection were 
recently reported [119,120].

CONCLUSION
Thyroid cancer is heterogeneous disease in terms of 

clinical behaviour and prognosis. Currently management of 

Figure 2 miRNA into complementary DNA by using RT-PCR.
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this disease heavily relies upon the histological classification 
and measurement of the protein Thyroglobulin (Tg) in blood. 
However, personalised management of patients with TC requires 
more detailed evaluation of tumour characteristics. Assessment 
of tumour-derived and/or circulating miRNA presents a 
promising approach to estimate presence of TC, to define its 
malignant and metastatic potency and to develop personalized 
therapeutic strategy. It is hoped that with further investigation 
of TC-associated miRNAs and development of new analytic 
methods, miRNA-based diagnostic and predictive tests will be 
soon introduced in to clinical practice. 
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