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Abstract

Recent findings of our group show strong evidences that T3 is a direct regulator 
of gastrointestinal epithelial morphogenesis via E-cadherin-catenins-Rac1 pathway. 
Thus, T3 differentially mediate cell proliferation and differentiation promoting the 
configuration and functionality of the epithelial barrier. By using gene expression, 
bioinformatics and morphometric tools we have demonstrated this physiological 
signaling route. Our results open therapeutic possibilities not only for thyroid disorders 
management, but also for pathological imbalances between cell proliferation-
differentiation events that occur in diseases such as colon cancer.

ABBREVIATIONS
T3: 3,5,3’-Triiodothyronine; TH: Thyroid Hormone; Rlp8: 

Ribosomal Protein L8; G: Larval Stage of Gosner 1960; NF: 
Nieuwkoop and Faber Larval Stages; RTβ: Hormone Receptor 
Beta; IFABP: Intestinal Fatty Acid Binding Protein; TRE: Thyroid 
Hormone Response Element; PWM: Position Weight Matrices; 
Tfs: Transcription Factors; AJC: Apical Junctional Complex.

INTRODUCTION
Postembryonic animal remodeling by thyroid hormones 

regulation is an ancestral feature of chordates, and anuran 
metamorphosis is an extreme example of a widespread life 
history transition [1]. This developmental period is fully open to 
environment changes as well as genetic (and epigenetic) factors, 
in which thyroid hormones play a central role. Therefore, the 
study of anuran gastrointestinal metamorphosis is a key model 
to better understand its physiology and pathology in mammals 
[2,3], including humans.

Amphibian-digestive tract morphogenesis results from tissue 
disruption and larval cell apoptosis, stem cell proliferation and 
differentiation to replace larval epithelial, connective and muscle 
tissues. These events involve a deep disassembly-reassembly 
process of cell-cell and cell-extracellular matrix contacts [4,5]. 
Between these adhesive contacts, the cadhesomes [6] have critical 
roles in epithelial morphogenesis. These molecular complexes 
act integrating signals from extracellular and intracellular 
environments [5,7,8].

Our results and those reported by other authors allow to 

deepen the knowledge of the molecular mechanisms involved 
in the dynamic regulation of gastrointestinal epithelial cell-cell 
adhesive contacts in physiological and pathological stages [2,5,9].

MATERIALS AND METHODS 

Spontaneous and 3,5,3’-Triiodothyronine (T3)-
induced metamorphosis

Rhinellaarenarum (stage G33, [10]) and Xenopus laevis 
(stage NF53, [11]) pre-metamorphic tadpoles were maintained 
in artificial pond water at a population density of 10 larvae/l 
at 20 ± 2°C under a 12:12 h light-dark photoperiod up to final 
metamorphosis (G45 and NF66, respectively).

Pre-metamorphic tadpoles G33 and NF53 were immersed 
in 1.25 nM and 7.5 nM T3-solutions respectively (Sigma-Aldrich 
Co. St. Louis, MO, USA) for 24 hours (T324h) and 5 days (T35d), 
and T3-effects compared with those in control groups pre- and 
post-metamorphic stages (G33, NF53 and G45, NF 66). Solutions 
were daily renewed and animals maintained without feeding. 
Bioassays were performed by quintuplicate, according to 
preliminary assayed conditions and previous reports [4,12,13].

RT-PCR Gene expression quantification 

Digestive tracts of X. laevis were dissected and immediately 
used for total-RNA extraction. Nine digestive tracts were pooled 
for each of five replicates per treatment. First strand cDNAs 
were obtained by retro-transcription (Thermo Scientific Inc., 
Maryland, USA). The PCR reactions were developed from cDNAs 
and gene-specific primers. The mRNAs levels were established 
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by co-amplification of each interest gene with the ribosomal 
protein L8 (rlp8) constitutive gene [14], from larval digestive 
tracts of NF53, NF66, T324h and T35d, and visualized in ethidium 
bromide-stained 2.5% agarose gel. The expression levels were 
quantified by Image J software and band-intensities ratios were 
calculated. The control group value was considered as 1, whereas 
the treatment-group values were analyzed regarding to control. 
The difference between means was evaluated according to Fay 
and Gerow [15]. The thyroid hormone receptor beta (RTβ) 
mRNA quantification was used as positive control of a T3-direct 
response gene, whereas the intestinal fatty acid binding protein 
(IFABP) mRNA was used as a positive control of T3 inhibitory-
response gene [16].

Bioinformatics’ studies

Genes involved in cadhesome organization and dynamics 
were analyzed to predict cis regulatory sequences, particularly 
T3 response elements (TREs). The DNA binding affinity of 
transcription factors (TFs) was analyzed by means of the Position 
Weight Matrices method (PWM) [17] by using the INSECT2.0 tool 
[18].

Morphological and morphometric studies

Control and T3-treated tadpoles were fixed and their digestive 
tracts were dissected, processed and analyzed by wild field and 
electron transmission microscopies, according to Izaguirre and 
Casco [4] and Galetto [13]. 

Morphometric studies of larval stomach/fundus were carried 
out both in R. arenarum (immunhistochemical, IHC) and X. 
laevis (ultrastructural) to analyze the molecules involved in AJs 
dynamics (See Izaguirre [19]; Galetto [13] for details). 

RESULTS AND DISCUSSION
It is very well known that THs exert profound effects on 

tissues, modulating cell-type dependent proliferation and 
differentiation [2,4,5]. These are regulated by genomic and non-
genomic mechanisms [20,21]. 

Analogous to the positive T3-responsive control gene (RTβ), 
E-cadherin, β- and α-catenin genes are upregulated at 24 hrs. A 
similar performance is exhibited by the Rac1small GTPase. On the 
contrary, occludin and Rap1 expression become more significant 
at day 5 of T3-treatment. Similar to IFABP behavior, a negative 
T3-responsive gene, the Rho small GTPase decreased at day 5 of 
T3-treatment. Thep120-catenin, Arp2 actin-nucleation protein, 
Cdc42 and ZO-1 mRNA levels remain practically unchanged 
both at 24 hours and day 5 of T3-treatment, as well as during 
spontaneous metamorphosis.

Moreover, putative TERs were found in X. laevis E-cadherin, 
β-catenin, α-catenin and Rac1 genes, but not in the p120-ctn gene 
[13]. This finding coincides with gene expression responses as 
early as 24 hrs after T3-treatment. The morphometric analysis 
in R. arenarum coincides with cadhesome-proteins increase 
despite gastrointestinal intense remodeling (Figure 1). While one 
E-cadherin-TER was found in a 5´UTR region, one TER was found 
for β-catenin in intron-1, three TERs for α-catenin arranged in a 
5´UTR region and in intron-1, and one site for Rac1 in intron-1.

The duo-expression analysis of guanine nucleotide exchange 
factors (GEFs) and GTPase-activating protein (GAP) for each small 
GTPase ─Rac1-TIAM/GAP12 pair; Rap1-C3G/SPA1 pair; Cdc42-
FRG/Rich pair; RhoA-GEF18/p190-GAP─ was less conclusive, 
but their genes do not respond directly to T3. Only Rac1-GAP12 
showed a significant physiological increase at 5 days of T3-
induction correlated with decrease of Rac1 and increase of Rap1. 
These results mainly suggest non-genomic control mechanisms 
on their GEFs/GAPs and/or others involved. 

Morphometric analysis provided very relevant data. 
While the numbers of tight junctions (TJs) are not modified 
during T3-treatment, supporting their role in the maintenance 
function of the epithelial barrier from larval stages to juvenile 
stages, adherens junctions (AJs) and desmosomes (Dms) led 
the major changes in epithelial remodeling. At 24 hrs of T3-
treatment while AJs number remain constant, Dms significantly 
decreased. However, the cell-cell distance of AJs and Dms 

NF53                   T3 24h                  T3 5d                   NF66

20

100

120

40

60

80

TJs

AJs

Ds

AJCs

Po
rc

en
ta

ge
of

 ic
el

l-c
el

la
re

as
In

te
rc

el
lu

la
r

di
st

an
ce

(n
m

)

20

40

AJs

Ds

NF53                   T3 24h                   T3 5d                    NF66

1

2

3

occludin
ZO1
Rac1
Rap1

E-cadherin gene

β-catenin gene

α -catenin gene

Rac1 gene

p120-catenin

E-cadherin
β-catenin
α-catenin

A B

Figure 1 (a) Upper view, representation of X. laevis mRNA expression involved in adherens and desmosome junctions. Values upper to 1.5-fold change respect to those 
NF53 are considered both physiologically and statistically significant data. Box shows the putative TREs (green box) found in the T3-responsive genes at 24 hrs. (b) Figure 
shows the stomach histology, the distribution of cell-cell junctions and intercellular distances through spontaneous and T3-induced metamorphosis. NF53: Nieuwkoop 
and Faber 53larval stage; NF66: Nieuwkoop and Faber 66larval stage; T324h: T3-treated larvae at 24 hs; T35d: T3-treated larvae at 5 days; TJs: tight junctions; AJs: 
adherens junctions; Ds: desmosomes; AJCs: apical junctional complexes; TREs: thyroid hormone response elements.
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significantly increased, suggesting the increase of epithelial 
adhesive plasticity, promoting cell proliferation and migration 
during gastrointestinal remodeling. At 5 days of T3-induction 
in agreement with a differentiated epithelium, the cell-cell 
distances of AJs and Dms return to those of mature epithelia, now 
of juvenile anurans. In contrast, a significant decrease of AJs and 
a significant increase of Dms were produced correlated with an 
impressive increase of apical complex junctions (ACJs), features 
of epithelial barrier strengthening (Figure 1). In addition, the 
morphometric IHC analysis has demonstrated that T3 exerts 
a positive regulatory effect on E-cadherin and β- and α-catenin 
expression and de novo synthesis in stomach epithelium during 
metamorphosis (Figure 2). 

CONCLUSION
T3 mediates genomic response on E-cadherin, β-, α-catenin 

and Rac1 gastrointestinal genes rapidly responding to adhesive 
plasticity and promoting lamellipodia formation, necessary 
during epithelial remodeling. In contrast, the master regulator 
of junctional E-cadherin stability, p120-catenin does not respond 
to T3, whereas Rap1 indirectly reacts to T3 during the re-
establishment of mature epithelium. 

These behaviours open the possibility for alternative 
treatments to control proliferative disorders as colon cancer.
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Figure 1 (a) Upper view, representation of X. laevis mRNA expression involved in adherens and desmosome junctions. Values upper to 1.5-fold change respect to those 
NF53 are considered both physiologically and statistically significant data. Box shows the putative TREs (green box) found in the T3-responsive genes at 24 hrs. (b) Figure 
shows the stomach histology, the distribution of cell-cell junctions and intercellular distances through spontaneous and T3-induced metamorphosis. NF53: Nieuwkoop 
and Faber 53larval stage; NF66: Nieuwkoop and Faber 66larval stage; T324h: T3-treated larvae at 24 hs; T35d: T3-treated larvae at 5 days; TJs: tight junctions; AJs: 
adherens junctions; Ds: desmosomes; AJCs: apical junctional complexes; TREs: thyroid hormone response elements.
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