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Abstract

It is difficult to regenerate or recover kidney function once it has been compromised. Once compromised 
this can lead to nephrolithiasis and renal failure. Mesenchymal stem cells (MSCs), are the prime candidate 
for regenerative medicine and cell therapy. This case report describes a 58-year-old male with a history 
of recurrent nephrolithiasis, decreased estimated glomerular filtration rate (eGFR), elevated blood urea 
nitrogen (BUN), and elevated serum creatinine with a concern for chronic kidney disease (CKD), stage 3 
development who was treated with a total of four MSCs treatments of 5.0 × 108 MSCs per infusion over the 
course of two months. Post-treatment five years later revealed no recurrent nephrolithiasis and normal eGFR, 
serum BUN, and creatinine levels which suggest that MSCs can be a safe and effective modern treatment 
for CKD and nephrolithiasis. 

INTRODUCTION
Chronic kidney disease occurs when the kidneys are damaged 

and unable to filter blood appropriately. CKD is diagnosed when 
a patient has a low estimated glomerular filtration rate (eGFR), 
and increased blood urea nitrogen (BUN), and serum creatinine 
levels for a minimum of three months [1]. If left untreated CKD 
progressively worsens and can lead to renal failure. Renal failure 
occurs when the kidneys lose their ability to excrete wastes, 
conserve electrolytes, maintain fluid balance, and concentrate 
urine [2]. This results in oliguria and azotemia, which are the 
decrease in urine and retention of nitrogenous waste products 
in the blood respectively. Creatinine in the blood also increases 
with a declining glomerular filtration rate [3,4]. Renal failure 
has accelerated rates of renal function decline and formation of 
fibrosis, along with decreased regenerative ability in the kidneys 
and reduced circulating progenitor cell (CPC), count [5,6]. These 
factors contribute to its high rates of morbidity and mortality. 
Current treatments for kidney failure are pharmaceutical, surgical 
therapies, and invasive solutions such as conventional dialysis, 
and kidney transplantation [7]. Due to the kidney’s limited 
regenerative ability, there are no effective treatments, including 
pharmaceutical and surgical therapies, to prevent progression to 
end-stage kidney failure [8]. Therefore, therapeutic interventions 
that improve regeneration in the kidney should be explored. 

Mesenchymal stem cells (MSCs), are the prime candidate for 
regenerative medicine and cell therapy. MSCs can be obtained 
and isolated from a variety of tissues such as the umbilical cord, 
the placenta, amniotic fluid, adipose tissue, etc [9,10]. Their 
regenerative and immunomodulatory properties can promote 
recovery in damaged tissues, making them a promising treatment 
for kidney failure [11]. This case report illustrates the results 
obtained from a patient with renal failure treated with high-
cumulative-dose allogeneic MSCs.

CASE REPORT
A 58-year-old man with a history of hypertension controlled 

by losartan, chronic bilateral lower extremity pitting edema for 
3 years, and recurrent nephrolithiasis every 3-4 months since 
2013 presented with severe alternating left and right flank and 
back cramps that radiated to the groin and urethra. Studies 
have shown that medication used to treat hypertension affects 
kidney function [12,13]. This can be monitored using indicators 
of kidney function, such as estimated glomerular infiltration rate 
(eGFR), blood urea nitrogen (BUN), and creatinine.

The patient’s renal function test on December 30, 2014 
showed BUN of 26.0 mg/dL (normal value is 8.4-25.7 mg/dL), 
serum creatinine of 1.00 mg/dL (normal value is 0.6-1.3 mg/
dL), and eGFR of 76 mL/min (stage 2 mild CKD, eGFR = 60-89 
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with MSCs compared to untreated mice showed MSCs treatment 
improved and repaired glomerular and tubular damage in the 
kidney [30]. In swine with hypertension, treatment of MSCs 
attenuated stenotic kidney injury by improving eGFR, improving 
renal blood flow, decreasing inflammation, decreasing oxidative 
stress, decreasing the number of apoptotic cells, and decreasing 
endoplasmic reticulum stress [31]. Interestingly, MSC treatment in 
swine with renovascular disease improved both cardiac function 
and structure as well as reversed renovascular hypertension 
four weeks after revascularization. It was also observed that the 
MSC treatment reduced oxidative stress, reduced inflammation, 
and preserved stenotic-kidney function [32]. In another swine 
study, MSCs improved kidney vascularization, tubular function, 
reduced fibrosis, and inflammation [33]. Studies with rats also 
revealed improved renal function after MSC treatment as well as 
the safety of the treatments [8,34]. 

In contrast to the cases discussed above, some studies have 
found that MSC therapy might cause kidney harm, including 
structural and functional abnormalities that vary based on 
the patient’s features such as hypertension [35]. However, it’s 
important to note that these patients are most likely suffering 
from other underlying illnesses including cancer, sickle cell 
disease, and/or immunological weaknesses [35]. Nonetheless, 
more recent data suggest that kidney injury after stem cell 
treatment has been decreasing due to lower myeloablative 
regimens, reduced exposure to amphotericin B, and decreased 
risks of sinusoidal obstruction [27]. 

In conclusion, this in-human case demonstrates that early 
diagnosis and treatment with MSC therapy has the potential 
to improve renal failure and could be the gold standard to 
prevent future hemodialysis or kidney transplantation. There 
are challenges, such as the necessity for standardization of MSC 
treatment methodology and limited funding available. More 
research is needed to validate MSCs as a successful treatment 
strategy for treating renal failure. The practicality and efficacy of 
MSC treatment, as well as the best dosing regimen and associated 
risks and benefits, should all be investigated.
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mL/min). The patient’s renal function test on January 15, 2016 
showed BUN of 29.0 mg/dL, serum creatinine of 1.44 mg/dL, and 
eGFR of 50 mL/Min (stage 3A moderate CKD, eGFR = 45-59 mL/
min). The results of the renal function tests represented a decline 
in the patient’s kidney function and concern for kidney damage.

MSCs were prepared as described in the previous study [14]. 
A biopsy of gingival connective tissue from a healthy donor was 
minced into small pieces and cultured in αMEM (ThermoFisher 
Scientific, Grand Island, NY, USA), supplemented with 10% AB 
serum (Sigma-Aldrich, St Louis, MO, USA). Antibiotics, 100 U/ml 
penicillin, 100 μg/ml streptomycin, and 0.25 μg/ml Amphotericin 
B (ThermoFisher), were added to the culture. The medium was 
replaced every other day, and the cells were passaged at 85% 
confluence [14]. The patient received a dose of 5.0 × 108 MSCs 
per treatment twice a month for two months for a total of four 
treatments. During and after each treatment, the patient was 
closely monitored for any adverse reactions including, but not 
limited to, fever, chills, nausea, vomiting, headache, rash, pruritis, 
and shortness of breath, etc. No adverse reactions were observed 
and the patient denied all positive symptoms. The patient 
was routinely monitored for five years post-treatment with no 
recurrence of nephrolithiasis and resolution of bilateral lower 
extremity pitting edema. The patient denied making any dietary, 
lifestyle or medicinal modifications during this period. The 
patient’s renal function test on December 16, 2016 showed 
marked improvement with a BUN of 22.0 mg/dL, serum 
creatinine of 0.88 mg/dL, and eGFR of 87 mL/Min. These results 
illustrate an improvement in renal function from baseline after 
MSCs treatment.

DISCUSSION
This in-human case shows that the primordial stem cell 

improved kidney function and decreased the recurrence of 
nephrolithiasis. MSCs provided a multifactorial treatment that 
helped the patient’s kidney function return to normal. It shows 
the potential safety and therapeutic use for high-cumulative-
dose MSCs for CKD. MSCs’ immunomodulatory effects have anti-
inflammatory effects [15,16] and promoted tissue regeneration 
by modulating capillary permeability, renal blood flow, and 
immunological responses [7,8,17,18]. MSCs’ ability to self-
renewing abilities can contribute to kidney repair by lowering 
tubular epithelial cells (TECs), apoptosis, increasing TEC 
proliferation, thus helping the kidney regenerate [19,20]. MSCs 
produce extracellular vesicles (EVs), that promote proangiogenic 
effects that help the renal microvasculature [21-23] and reduce 
renal fibrosis [24-26]. All these effects help promote the repair 
and recovery of damaged renal tissues, and preserve and improve 
renal function. MSC treatment also decreased the rate of mortality 
and relapse rate of malignant conditions, thus improving long-
term survival [27]. 

Animal studies support this in-human case. Mice and canines 
with kidney injury treated with MSCs had significantly decreased 
levels of serum creatinine, decreased BUN, and demonstrated 
morphological and functional recovery of renal tubular epithelial 
cells, thus improving kidney injury [28-30]. The MSCs had 
promoted a switch in the macrophage phenotype that suppressed 
inflammatory response while simultaneously promoted kidney 
function [28]. Renal histology comparison between mice treated 
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