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INTRODUCTION
Deep vein thrombosis (DVT) is a prevalent syndrome, 

particularly in the aged, which often leads to significant morbidity 
and mortality. It also leads to costly, extended hospitalization. 
Pharmacologic manipulation and anti-coagulant drugs are the 
standard approaches to treatment of DVT patients. There are 
more than one million cases of DVT each year in the USA. Despite 
many decades of research, the precise vascular mechanisms still 
remain to be revealed [1]. According to recent observations, by 
numerous investigators, DVT is a multifactorial syndrome, which 
has a variety of underlying causes: genetics, endothelial cell injury 
(due to injury, trauma, and /or surgery), hypercoagulability (due 
to cancer, pregnancy, protein mutations), and venous stasis [1]. 
Although most DVTs resolve by themselves, many do not, and leave 
fibrotic alterations. These fibrotic changes in venous vessels often 
result in post-thrombotic syndromes, leading to chronic pain, leg-
cramping, limb edema, stasis, and venous ulcerations [2,3]. More 
than 150 years ago, the great pathologist, Rudolph Virchow, was 
the first to establish the principles of thrombogenesis in humans 
[4,5].

In-vivo animal models remain the best way to investigate new, 
beneficial therapies for DVT [1]. Recently, three of us discovered 
a novel biologic molecule which according to in-vivo TV -image 
quantitative microscopy performed on intestinal, cutaneous, 

skeletal muscle and cerebral circulations (at magnifications 
approaching 6,500x-normal), in our laboratories, appeared to 
exhibit the ability to maintain patent blood flows in arterioles, 
metarterioles and post-capillary venules under hemorrhagic 
shock, intestinal ischemic shock, diverse endotoxins, and 
sublethal trauma [6,7]. We termed this biologic molecule host 
defense factor -x or “HDFx” [6].

Discovery of HDFx and Its Protective, Anti-
Inflammatory and Regenerative Properties

Working with mice, rats, guinea-pigs, and rabbits more than 
50 years ago, one of us showed that treatment of these diverse 
animals with various colloids, lipids, and special peptides made 
these mammals tolerant to sublethal hemorrhage, sublethal 
bowel ischemic shock, sublethal body trauma, sublethal 
centripetal forces, and diverse endotoxins [8-32]. In addition, 
in-vivo examination of the microcirculatory beds of intestinal, 
cutaneous, skeletal muscle and cerebral cortex , in these injured 
animals, revealed that most of these protective treatments 
resulted in non-sticking of monocytes, platelets, phagocytic 
leukocytes, and macrophages to the inner endothelial walls of the 
post-capillary venules, thus producing smooth surfaces to result 
in near-normal transcapillary blood flows. Blood flows through 
precapillary sphincters (micro vessels only 4-6 um in lumen 
sizes) were often near-normal. Further extensive investigations 
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on thousands of animals revealed that the surviving animals 
showed a release of a 35-40 kD protein, HDFx, into the plasma, 
which appeared to come from macrophages and natural killer 
(NK) cells [6]; the greater the stressful incident, the greater the 
amounts of HDFx released by the macrophages and NK cells 
[6]. Surprisingly, CD4 and CD8 T-lymphocytes which released 
cytokines (e.g., TNF-alpha, interleukins, etc), during the injurious 
and sublethal stresses, were attenuated by HDFx [6,7]. 

In addition, HDFx accelerated wound healing in peripheral 
injured tissues of the stressed animals [33]. 

In view of these unique findings we decided to investigate 
whether HDFx would ameliorate or prevent DVT in two rodent 
models [34].

HDFx in Experimental Therapy of DVT in Rodent 
Models: Direct In-Vivo Observations on the 
Microcirculation

Using mice and rats, we employed mesenteric, femoral and 
inferior vena cava (IVC) blood vessels to induce thromboses 
[34]. We often preferred permanent occlusion of the IVC with 
the sacrifice of all side branches distal to the left renal vein [34]. 
This procedure has a profound effect on venous flow; verified 
by measuring venous pressure [34]. This model demonstrates 
a correlation between venous stasis, increased release of tissue 
factor, and augmented coagulation inside the vein. Since this 
model has a high survival rate [1], it lends itself to measurement 
of chronic thrombus formations and thrombus resolution. We 
utilized a second model of thrombus formation perfected by Vogel 
et al [35]. In the latter model, two ligatures are placed around 
the posterior IVC and all side branches closed off distal to the 
left renal vein and proximal to the bifurcation are ligated. Then 
various amounts of thrombin (100-2,000 ug/kg) are injected 
inside the right femoral vein to induce thrombus formation.

Employing both of the above rodent models we found 
that the systemic injections of purified extracts of HDFx (i.e., 
two doses/d for seven days) resulted in dramatic reductions 
in thrombus size formations (i.e., 60-75%) and dramatic 
improvement in stasis, improvement in microcirculatory blood 
flows, vast improvement in vascular tone and vascular reactivity, 
as measured quantitatively, in-vivo, with an image-splitting TV 
recording system at microscopic magnifications approaching 
6,500x-normal [34]. This TV microscope recording system, partly 
pioneered by our group, allows one to quantitatively measure 
lumen sizes , micro vessel diameters and lumens, sizes of micro-
vascular smooth muscle cells and sizes of endothelial cells on 
arterioles (18-35 um in size), metarterioles (14-18 um in size) , 
muscular venules (40-70um in size), and precapillary sphincters 
(3-6 um in size) [36-42]. 

Careful in-vivo microscopic examination of the post-capillary 
venules (16-35 um in size) revealed that sticking of white 
blood cells and platelets to the endothelial walls, seen after 
the thrombi formations (with the above rodent models), were 
dramatically-attenuated (65-75%) using treatment with HDFx 
[34]. In addition, using our high-powered in-vivo microscopic 
observations, we clearly noticed there was a reduction in release 
of circulating and released inflammatory cytokines usually found 
in thromboses such as TNF-alpha, IL-6, chemokines, and other 

inflammatory mediators [34], which we have found in animal 
models of sublethal hemorrhage, intestinal ischemia, body 
trauma, and bacterial infections [6].

CONCLUSIONS AND FUTURE THOUGHTS
DVT is a growing concern, particularly among the elderly. 

Many anti-thrombotic and anti-coagulant drugs are currently 
in use to treat and prevent DVT. However, most of these drugs 
often do not relieve patients of complications which arise from 
DVT such as swelling, erythema, renovascular complications, 
tissue necroses, limb loss, acute respiratory distress syndrome 
(ARDS), pulmonary hypertension, cardiovascular collapse, 
thromboembolism, and subsequent death. We have found a new 
biologic in every mammal so far investigated that possesses a 
variety of unique host defense properties, including the ability to 
accelerate wound healing. A preliminary in-vivo microcirculatory 
study with HDFx, so far, indicates that it has the ability to attenuate 
thrombotic formations using two different rodent animal models. 
We believe it would be propitious to examine the prophylactic 
usefulness of HDFx in DVT patients.
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