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Abstract

ECG criteria for left ventricular hypertrophy and ECG criteria for acute ischemia/ myocardial infarction represent two distinct categories. ECG signs of left ventricular 
hypertrophy (ECG-LVH) are based on so-called voltage criteria, i.e. the increased amplitude of QRS complex. On the other hand, the standard ECG diagnosis of MI is based on the 
presence of pathological Q waves and ST segment deviations and additionally on the so-called STEMI equivalents. However, animal, as well as clinical studies bring evidence on the 
occurrence of the increased QRS voltage /ECG-LVH signs in acute ischemia. This paper is focused on the pathophysiological mechanisms that are common for both hypertrophied 
and ischemic myocardium and thus can lead to identical QRS patterns. Recognizing the underlying mechanisms of the ECG-LVH patterns in myocardial ischemia has a strong clinical 
implication. The ECG-LVH signs/ the increased QRS voltage need to be recognized as a predictive electrophysiological marker independent of LV anatomy. Its misinterpretation in 
patients with acute coronary syndrome can lead to reperfusion delays and worst outcomes.

INTRODUCTION
Electrocardiography (ECG) is the basic initial noninvasive 

test for diagnosing acute myocardial ischemia and myocardial 
infarction (MI). The recognition of the ECG manifestation of acute 
myocardial ischemia is of an utmost clinical importance, since it 
usually determines the subsequent diagnostic and therapeutic 
interventions. The basic standard ECG diagnosis of MI is based 
on the presence of ST segment deviations and pathological Q 
waves. Regarding the QRS complex evaluation, it includes also 
the poor progression of R wave in leads V2-V4, absence R wave 
V1-V2, or tall R waves V1-V4 [1,2]. However, it is documented 
that a relatively high proportion of patients with acute MI / 
coronary syndrome that should be justified for a rapid coronary 
intervention are not recognized using current strict ECG criteria 
[3-5]. Additional “STEMI equivalents” have been therefore 
identified, such as Wellens’ syndrome, de Winter sign, hyperacute 
T waves, left bundle branch block-including paced rhythm-and 
right bundle branch block [6,7]. This paper is focused on another 
QRS pattern, which represents a different ECG diagnostic category 
- the increased QRS voltage consistent with ECG criteria for left 
ventricular hypertrophy (ECG-LVH criteria). The increased QRS 
voltage in acute ischemia has been documented in both animals, 
as well as in clinical studies [8-11]. The increased QRS complex 
voltage/ ECG-LVH are here discussed as a possible manifestation 
of acute myocardial ischemia.

ECG signs of left ventricular hypertrophy

At first, I need to express clearly my position in the ECG-LVH 
diagnosis. The classical diagnosis of ECG-LVH is based on the 

increased QRS voltage and postulates that bigger / hypertrophied 
left ventricle producing a stronger electric field is associated 
with the increased QRS voltage. However, it has been repeatedly 
documented that the sensitivity of ECG-LVH criteria is very low; 
it means in other words that the association between increased 
QRS voltage and the increased LV mass is poor [12]. Also, it 
has been shown that the increased QRS voltage is a significant 
independent cardiovascular risk factor, i.e. independent on 
the increased left ventricular mass [13,14]. It is generally 
assumed that ECG-LVH criteria have high specificity and really, 
a number of papers document their high specificity. However, 
the systematic review published in 2007 showed that the 
specificity is actually ranging from 53 to 100 %12. It means that 
the increased QRS voltage is also seen in other cardiac pathology. 
It is thus obvious that the increased QRS voltage reflects a cardiac 
pathology, not necessarily associated with the increased LV mass. 
The suggested shift in paradigm of ECH-LVH defines the altered 
electrical properties of myocardium as the major determinant of 
the increased QRS voltage [15].

Experimental acute ischemia – animal studies

Holland and Brooks [16] documented the effect of acute 
ischemia on the QRS complex changes in a porcine model of 
myocardial infarction. During the initial phase of ischemia they 
observed a transient decrease in the R wave voltage, followed 
by marked increase in R wave voltage associated with marked 
decrease in conduction time indicating a decrease in conduction 
velocity. Similar synchronous biphasic association between 
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ventricular activation pattens and R wave changes were found 
also in a canine model of myocardial ischemia [17], these changes 
in QRS amplitude were not related to ventricular dimensions. 
They concluded that in acute ischemia, the major factor affecting 
the QRS voltage is the ventricular activation time rather than 
the changes in ventricular dimensions. It was also shown that 
this increase in the R wave amplitude is predictive of malignant 
ventricular arrhythmias [8]. Barnhill et al. [18], compared the 
QRS amplitude changes during transient myocardial ischemia in 
patients with variant angina pectoris and in a canine preparation. 
The QRS complex changes in the dog preparation were practically 
identical to those in the patients and strongly correlated with 
a decrease in myocardial conduction velocity. They attributed 
the QRS changes during variant angina to the altered excitation 
pattern due to conduction delay in the ischemic zone. 

Acute ischemia: stress test

The increased QRS amplitude has been observed in patients 
with coronary artery disease during the stress test. Bonoris et 
al. 1978 [19], showed that considering the increase in R wave 
additionally to the ST segment depression during the stress test 
the sensitivity and specificity of stress testing can be significantly 
improved. Similarly, Christison et al. [20], considered no change 
or an increase in R-wave amplitude during the stress test as a 
more reliable indicator of coronary artery disease than ST 
segment changes. The increased R wave / QRS voltage was 
described as additional useful information in patients with 
coronary artery disease [21,22]. Based on the exercise-induced 
changes in QRS amplitude the Athens score was developed for the 
diagnosis and assessment of severity of coronary artery disease 
[22-24]. It has been suggested that these exercise-induced QRS 
changes reflected in the Athens QRS score are related to exercise-
induced myocardial ischemia. It has been also discussed that the 
R wave increase during exercise is associated with an increase in 
the chamber size in patients with coronary artery disease, i.e. to 
the “Brody effect”. However, it was found in animal, as well as in 
human studies that the changes in the R wave amplitude do not 
correlate with the LV volume changes [17,25].

On the other hand, there are also opposite views. Van Tellingen 
et al. [26], did not find the combined interpretation of ST segment 
and R wave very efficient although useful. The association 
between ischemic episodes and often noted R wave amplitude 
changes during exercise was questioned also by [27,28]. In spite 
of controversial findings, the increased QRS voltage is frequently 
observed in patients with CAD during exercise, and cannot be 
ignored. 

Clinical setting

Transient ECG-LVH signs are also observed in patients 
admitted to the emergency department [9]. Giant R wave 
have been repeatedly described in unstable angina and acute 
myocardial infarction [18,29-33]. 

These findings were not stable during serial measurement 
and did not correlate with anatomical LVH, and were earmarked 
as confounding [11]. However, if the increased voltage is not 
related to the anatomical LVH, and although it appears transiently 
in the acute phase, another explanation is needed in patients with 
acute coronary syndrome. It needs to be also stressed that ECG-

LVH signs in patients with symptoms suggesting acute cardiac 
ischemia is a serious finding regarding the short-term mortality. 
As well, these patients were more likely having additional 
cardiac conditions associated with myocardial ischemia, such as 
congestive heart failure and hypertensive heart disease [10,34].

Screening, general population

In this context it is necessary to mention that it has been 
well-known for years that ECG-LVH is associated with significant 
cardiac morbidity and mortality, as has been well documented 
repeatedly [13,14,35-40]. It is listed as the “target organ damage” 
in hypertension guidelines [41,42]. The importance of the 
ECG-LVH was stressed already in 1991 by Kannel [13]:“ECG-
LVH was associated with a 3-15-fold increase of cardiovascular 
events with greatest risk ratios for cardiac failure and stroke. No 
other risk factor approaches LVH in potency”. It is therefore not 
comprehensible why this potent CV risk factor is not included 
into CV risk scores, even not in the Framingham score [43-45]. 
Summarizing, the ECG-LVH / increased QRS voltage reflects 
a cardiac pathology, sometimes transient, not necessarily 
associated with the increased LV mass, and it is an ominous sign.

Electrophysiological characteristics of ischemic 
myocardium

Ischemia influences electrophysiological properties of 
myocardium remarkably. The alterations in conduction velocity 
are studied extensively especially in relation to arrhythmias, 
however, they naturally alter the sequence of impulse propagation 
in ventricles as well, and consequently the QRS complex pattern.

Cardiomyocytes

The extreme ischemic damage of cardiomyocytes leads 
to necrosis. But, also the cardiomyocytes in surviving tissue 
are considerable affected. The ischemic alteration includes 
reduction of the number of gap junctions and their distribution, 
as well as reduced connexin43 level and expression [46,47]. The 
cardiomyocytes at the border of healed infarcts differ significantly 
in the number of gap junctions and their distribution compared 
to the healthy tissue [48,49]. And even the myocardium distant 
from infarction in patients with ischemic heart disease has a 47% 
reduction in gap junction surface area per unit cell volume, and a 
30% reduction per cell [46]. Following the myocardial infarction 
the volume fraction of fibroblasts in myocardium adjacent to 
the infarcted area increases, and the myocyte volume fraction 
decreases [49]. Fibroblasts transformed to myofibroblasts 
also express connexins43 and thus can facilitate heterocellular 
electrical coupling between myocytes and fibroblasts [50,51].

Fibrosis

An integral part of ischemic rebuilding of myocardium is 
fibrosis. It could be a diffuse process, or can create localized 
fibrous tissue depositions, including post-infarction scars 
[52]. It affects considerably the electrical connection between 
cardiomyocytes as well as the electrical impulse propagation, 
these phenomena being extensively described and studied in 
relation to ventricular arrhythmias, as factors creating substrate 
for triggering and maintaining ventricular arrhythmia [53]. 
However, the underlaying structural and electrophysiological 
changes of myocardium during acute/ chronic ischemia alter 
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significantly the impulse propagation and consequently affect the 
QRS complex pattern as well.

Simulations

The effect of the diffuse activation slowing in left ventricle, as 
well as localized conduction velocity slowing was studied using 
a computer simulation [54,55]. It was shown that the diffuse 
slowing in conduction velocity in the left ventricle results in the 
increase in the QRS complex amplitude, consistent with the ECG-
LVH criteria [54] and that the slowed conduction velocity is the 
major determinant of the increased QRS amplitude, and not the 
LV size. The combination of regional slowed conduction and areas 
of electrically inactive areas (as in the myocardial infarction) 
resulted in a range of QRS (and ST segment) changes including 
the increased QRS amplitude [55].

The standard pathophysiological interpretation of 
ECG findings in MI

The basic classical electrophysiological mechanisms 
considered in interpreting the ECG findings in MI include 
predominantly the ST segment deviations and pathological Q 
waves. The interpretation of the ST segment deviations in MI 
refers to the “injury current”, resulting from the voltage difference 
between the ischemic and non-ischemic myocardium during the 
resting and plateau phases of the ventricular action potential 
[56,57]. The pathological Q waves are basically interpreted 
as an absence of localized electrical activity that can be due to 
necrosis or a fibrotic scar. However, the whole spectrum of 
structural and functional/ electrophysiological changes due to 
acute / chronic ischemia is much more complex and complicated 
and this is somehow neglected in interpreting the QRS patterns, 
although these substantially more complicated processes are 
well-described and studied in details in relation to ventricular 
arrhythmias. 

CONCLUSION
To summarize, the myocardial ischemia alters the 

structure and electrophysiological properties of myocardium 
considerably, changing the organization, distribution, and 

electrophysiological characteristics of cardiomyocytes, as well 
as of interstitium. Direct measurements, as well as computer 
simulations document conductivity alteration at cellular and 
tissue levels, results in altered electrical impulse propagation 
in the ventricles, subsequently modifying the sequence of 
depolarization that is reflected in the QRS patterns (Figure 1). 
Since the mental/ diagnostic association between ECG-LVH 
signs and LVH diagnosis is strong, the occurrence of ECG-LVH 
signs is sometimes misinterpreted as “confounding” since it 
does not reflect the size of the ventricles. However, there is 
strong evidence that the increased QRS voltage consistent with 
ECG-LVH criteria can reflect the altered sequence of ventricular 
depolarization due to ischemia [15]. The understanding of the 
effect of the disturbances due to ischemia on the electrical impulse 
propagation in ventricles and subsequently on the resultant QRS 
pattern has a strong clinical implication. The ECG-LVH signs/ 
the increased QRS voltage need to be recognized as a predictive 
electrophysiological marker independent of LV anatomy. Its 
misinterpretation in patients with acute coronary syndrome can 
lead to reperfusion delays and worst outcomes.
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