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EDITORIAL
DNA double-strand breaks (DSBs) are deleterious because 

they frequently lead togenomic instability, cell death or cancer 
[1]. However, the formation of DSBs is also a key molecular event 
underlying the therapeutic effects of many anti-cancer agents.
Cells have evolved complex network of DSB sensing and repair 
systems, collectively referred to as the DNA damage response 
and repair (DDR) pathway [2]. Manipulation of the DDR pathway 
has recently emerged as an alternative strategy in cancer therapy 
[3]. The two major DSB repair mechanisms are the error-prone 
non-homologous end-joining (NHEJ) and error-free homolo-
gous recombination (HR). NHEJ repairs DSBs by direct ligation 
of the DSB ends that are either processed or unprocessed [4]. 
The classical NHEJ pathway requires the actions of several inde-
pendent protein complexes—the Ku70/Ku80 heterodimer, the 
DNA-PKcs-Artemis nuclease and the XLF-XRCC4-LIG IV ligase—
together with the polymerases λ and µ. NHEJ operates through-
out the cell cycle whereas HR is mainly active in the S/G2 phases 
since it requires a donor template [5]. Besides cell cycle depend-
ent selection, the pathway choice of NHEJ and HR is additionally 
controlled by the competition between the loading of 53BP1 and 
BRCA1 onto DSB-containing chromatin [6-9]. Proper DSB repair 
also requires the activities of DNA damage responsive protein ki-
nases, which facilitate the activation of checkpoints to ensure cell 
cycle delay during DSB repair. The two key kinases are ATM and 
ATR. ATM, activated by DSBs, phosphorylates CHK2 and trans-
duces the signal to p53 for G1/S checkpoint arrest whereas the 
ATR kinase is activated by single-strand DNA and phosphorylates 
CHK1 for G2/M arrest [10,11]. 

One of the pertinent effects of many anti-cancer treatments is 
induction of DSBs in the genome. For instance, ionizing radiation 
(IR) leads to unbiased introduction of DSBs, which, if unrepaired, 
can trigger mitotic catastrophe and cell death [3,12]. Radiomimetic 
drugs (e.g. bleomycin) have similar effects as radiotherapy. DSBs 
can be also created amid repair and the processing of other types 
of DNA lesions. For example,Topo I inhibitors, such as irinotecan, 
create single-strand breaks (SSBs) that can subsequently be 
converted to DSBs during DNA replication. Topo II inhibitors, 
such as etoposide and doxorubicin, generate DSBs throughout 
the cell cycle. Replication inhibitors can cause replication fork 
collapse and the formation of one-ended DSBs, whereas DNA 
interstrand crosslinks created by cisplatin and mitomycin C can 
be processed into DSBs during repair. Since most cancer cells 

undergo unrestricted cellular proliferation, DNA replication 
is a clear target for chemotherapeutic intervention. In fact, 
combinational anti-cancer treatment strategies are often used to 
maximize the therapeutic efficacy and minimize the development 
of anti-cancer drug resistance. Because most of the DSBs induced 
by IR and Topo II inhibitors can be repaired by NHEJ, inhibition 
of NHEJ is expected to block a significant fraction of DSB repair in 
IR-treated tumor cells. Indeed, the DNA-PKcs inhibitor NU7026 
has been shown to enhance sensitivity to IR and etoposide in 
patient-derived B-CLL cells [13], and a dual DNA-PK and mTOR 
inhibitor CC-115 is currently in Phase I clinical trial.Formation 
of secondary DSBs likewise occurs in cells treated with Topo I 
poisons, replication inhibitors or crosslinking agents. And since 
this class of DSBs is largely dependent on HR for repair, strategies 
for HR blocking are presently also being explored [3]. Another 
strategy to silence DDR is to target the ATM-CHK2 and/or the 
ATR-CHK1 pathways. The ATM inhibitor KU55933 has been used 
in combination with IR and Topo II inhibitors [12], and the ATR 
inhibitor VE-821 has been shown to effectively sensitize cells to 
cisplatin [14]. Specific CHK1 and CHK2 or dual inhibitors showed 
sensitization in combination with gemcitabine and irinotecan 
have also entered Phase I trials [15].

Recent advances in the understanding of the intertwinement 
of DDR and DSB repair pathways have led to yet another promis-
ing approach in cancer therapy utilizing synthetic lethality. The 
best example is the use of poly(ADP-ribose) polymerase (PARP) 
inhibitors to treat BRCA1/2-deficient tumors [16]. PARP inhibi-
tors block the repair of SSBs and therefore promote their conver-
sion to DSBs that increase the demand for HR. Since BRCA1/2-
deficient cells are HR-impaired, they are particularly sensitive to 
the toxic effects of accumulated DSBs. PARP inhibitors can also 
be used to treat ATM- or MRE11-deficient tumors [17]. Currently 
Phase I and II studies that involve the PARP inhibitor olaparib 
have shown promising effects on treating BRCA-deficient breast, 
ovarian and prostate cancers [18]. Given the fact that develop-
ment of anti-cancer drug resistance is the most common cause of 
treatment failure, further exploration of synthetic lethal relation-
ships seems a promising avenue for devising potential “resist-
ance-proof” strategies in our continuing effort to conquer can-
cer. However, highly individualized synthetic lethal approaches 
that are tailored to fit the molecular phenotypes of the tumor are 
clearly needed in the future. In the case of treating BRCA-defi-
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cient tumors with PARP inhibitors, resistance can also arise from 
secondary mutations in the BRCA genes or from down-regulation 
of the NHEJ pathway [12,19]. Thus, establishment of biomarkers 
that allow quicker evaluation of DDR and DSB repair activities in 
cancer cells is definitely among the first steps in the process of 
developing strategies to better manage cancer in patients.
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