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Abstract

The isomeric mixture of α- and β-amyrin isolated from Protium heptaphyllum has considerable pharmacological effects, mainly with an effect on the central 
nervous system. Still, no reports in the literature demonstrate its impact on zebrafish. This study evaluated the anxiolytic, sedative, anticonvulsant and memory 
effects of the isomeric mixture of α- and β-amyrin (ABAM) isolated from Protium heptaphyllum. ABAM was submitted to light-dark tests, seizures induced by 
pentylenetetrazol and inhibitory avoidance induced by electroshock in adult zebrafish. ABAM showed sedative, anxiolytic and anticonvulsant effects,preventing 
memory in adult zebrafish via GABAergic neurotransmission. However, ABAM has pharmacological potential for the treatment of anxiety and seizures while 
preserving memory, which can be explained by an interaction with the GABAA receptor.
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INTRODUCTION

Diseases such as anxiety, insomnia, depression, epilepsy, 
dementia and chronic pain are disorders of the central nervous 
system (CNS) that are increasingly frequent worldwide. They 
are the main neuropsychiatric disorders, which tend to coexist, 
making their treatment even more difficult diagnosis and 
treatment [1]. According to the World Health Organization 
(WHO), approximately 264 million people suffer from anxiety 
disorder and epilepsy affects about 50 million people worldwide 
[2].

Benzodiazepines (BZs) are still widely used to treat anxiety 
disorders and seizures, they act on GABAA receptor subunits 

(mammalian neuroinhibitory receptor) at the benzodiazepine 
binding site, which generate allosteric modulations that 
potentiate the action of the gamma-aminobutyric acid 
neurotransmitter (GABA) on GABAA receptors [1], contributing 
to an increase in the frequency of opening of chloride channels, 
causing CNS neuroinhibition [3].

Several mechanisms of BZs are attributed to their side effects, 
including sedation, myorelaxation and amnestic effects if used 
as anxiolytics [4]. In addition, BZs have been reported to induce 
temporary anterograde amnesia by affecting the first stage of 
the memory process (coding of new information) [5,6]. The 
binding region of BZs in GABAA receptors involved in memory 
is in the CA1 region of the hippocampus [7]. In addition, BZs 
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cause physical and mental dependence, so rebound effects and 
significant withdrawal symptoms arise if treatment interruption 
occurs [8]. 

Animal models are widely used in the development of 
new drugs for the treatment of neuropsychiatric disorders. 
For example, the zebrafish (Danio rerio) has preserved 
neurotransmitters and a fully sequenced genome, corresponding 
to more than 80% of orthologous genes related to human diseases 
[9], expressing all GABAA and GABAB receptor genes, as well as the 
genes that encode the associated proteins to the GABAA receptor 

[10], so it is an efficient model in studies of diseases related to 
GABAergic neurotransmission. 

Protium heptaphyllum is widespread in Brazilian territory 
and popularly used to treat several diseases. The isomeric mixture 
of α- and β-amyrin are the pharmacologically active triterpenes 
isolated from this species [11]. Previous studies have evidenced 
the sedative, anxiolytic, antidepressant and anticonvulsant 
activities of the mixture of α- and β-amyrin, possibly involving 
both the GABAergic and noradrenergic systems in mice [11,12]. In 
other studies, α, β-amyrin caused a periodontal anti-inflammatory 
effect in a rat model of ligature-induced periodontitis [13] and 
exhibited long-lasting antinociceptive and anti-inflammatory 
properties in models of persistent nociception via activation of 
cannabinoid receptors and by inhibition of cytokine production 
and expression of NF-κB and cyclooxygenase 2 [14,15]. However, 
this work investigated the anxiolytic, sedative, anticonvulsant 
activity and effect on memory in adult Zebrafish of the isomeric 
mixture of α- and β-amyrin isolated from P. heptaphyllum. 

MATERIAL AND METHODS

Drugs and reagents

In this study, Diazepam (DZP, Neo Química®), Flumazenil 
(Fmz; Sandoz®), Dimethyl sulfoxide (3% DMSO; Dynamic®) and 
Pentylenetetrazole (PTZ, Sigma-Aldrich) were used.

Obtaining a mixture of α- and β-amyrin

The isomeric mixture of α, β-amyrin [Figure 1] was isolated 
from P. heptaphyllum resin. The resin fractionation (20 g) was 
carried out by chromatography on a silica gel column with hexane, 
chloroform, ethyl acetate and methanol. Fractions extracted with 
chloroform (5.2 g) were repeatedly chromatographed on silica 
gel and eluted with increasing amounts of hexane-ethyl acetate. 
Fractions obtained from hexane: acetate [1:1] were analyzed by 
TLC and contained 450 mg of alpha and beta-amyrin [16].

Animals and Maintenance 

Wild adult zebrafish (Danio rerio) (age 90 to 120 days; 0.4 
± 0.1 g, 3.5 ± 0.5 cm) of both sexes (approximately 50:50 male 
to female ratio) were purchased at a local store (Fortaleza, 
CE). Before the experiments, the fish were kept for at least two 
weeks in a glass aquarium (30 × 15 × 20 cm) of 10 L (n = 3/L), at 
a temperature of 25 ± 2°C, in light-dark cycles of 24 hours with 
chlorinated water (ProtecPlus®) and air pump with submerged 
filters, the temperature of 25°C and pH 7.0, circadian cycle of 
10–14 h (light/dark), fed twice a day with commercial feed in 
flakes (Alcon BASIC™, Alcon, Brazil) up to 12 hours before the 
experiments. For anesthesia, the animals were anesthetized in ice 
water before drug applications, orally or intraperitoneally. After 
the experiments, the animals were euthanized by immersion 
in ice water (0 and 3°C) for 1 min until the loss of opercular 
movements. All protocols used in this work were approved by 
the Ethics Committee on Animal Use of the State University of 
Ceará (CEUA-UECE; No. 04983945/2021), following the Ethical 
Principles of Animal Experimentation.

General protocol: Adult zebrafish were randomly selected in 
the experiments, transferred to a damp sponge, and treated with 
20 µL of the test sample (mixture of α, β-amyrin - ABAM at doses 
of 4 mg/kg, 20 mg/kg and 40 mg/kg) or controls (3% DMSO) 
orally (p.o.) using an automatic pipette. Then, the animals were 
placed individually in a container (500 mL) containing 350 mL 
of aquarium water and kept at rest for 1 h until the experiments.

Figure 1 Molecular structures of α, β-amyrin compounds: (A) α-amyrin (3α-hydroxyurs-12-ene) and (B) β-amyrin (3β-hydroxyolean-12-ene).
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The tank was divided into two equal compartments (black and 
white) separated by a manually operated guillotine-type partition 
(10 × 10 cm). The black compartment contained three pairs of 
metal bars (1 cm in diameter) spaced 3 cm apart and connected 
to an electro-stimulator. To cause the aversive stimulus, the fish 
received a pulsed shock of 100 Hz for 5 s. Animals (n = 6 animals 
per group) previously separated individually into 500 mL pots 
and identified were submitted to the training session, in which 
the fish were placed individually in the white compartment of 
the device. After 1 min of acclimatization, the guillotine door was 
lifted, and each animal’s latency time to enter the black area was 
recorded. After the fish crossed the dark compartment, the door 
was lowered, and a mild electric shock (125 mA, 3 ± 0.2 V) was 
delivered. Then, the fish were removed from the tank and orally 
treated (n = 6 fish per group) with ABAM in three doses (4; 20 
or 40 mg/kg, one dose for each group), another group treated 
with DZP (4 mg /kg, p.o.) and another with 3% DMSO (negative 
control; drug diluent). The test session was performed after 24 
hours, similarly to the training session, but without applying an 
electric shock.  

Statistical analysis

Data were analyzed using Graphpad-Prism software 
version 8.0. After confirmation of normal distribution and data 
homogeneity, differences between groups were submitted to 
analysis of variance (One-Way ANOVA) and Two-Way ANOVA in 
experiments with antagonists, followed by Tukey’s test. The level 
of statistical significance was set at 5% (p < 0.05).

RESULTS

Light-dark test

ABAM at the three doses tested and Diazepam significantly 
reduced anxiety (****p<0.0001 vs. Control) in adult zebrafish, 
as the time spent in the clear region of the aquarium increased 
significantly when compared to animals in the negative control 
group [Figure 2A]. In addition, the evaluated doses of ABAM 
did not change the latency time [Figure 2B] and the number of 
crossings between the light and dark sides [Figure 2C] when 
compared to the animals in the control group, since there was 
no significant difference, suggesting that there were no changes 
in the locomotor activity and exploratory capacity of the fish, 
unlike the group treated with Diazepam, which had an increase 
in latency (***p<0.001 vs. Control) and a reduction in the number 
of crossings, indicating the sedative effect and motor impairment 
of Diazepam. 

Assessment of GABAergic neuromodulation

The involvement of ABAM with the GABAA receptor was 
assessed by pre-treatment with flumazenil (a GABAA receptor 
benzodiazepine antagonist). As a result, it was identified that 
flumazenil blocked (# # # # p<0.0001 vs. ABAM) the anxiolytic 
and sedative effect of ABAM (4 mg/kg), reducing the time spent 
in the clear area of the aquarium and latency, similar to what 
happened with the group pre-treated with flumazenil and DZP 

Light-dark test: Anxiety behavior in zebrafish was observed 
using a light/dark test according to the protocol developed by 
Gebauer et al. [17], with adaptation. The experiment was carried 
out in a glass aquarium (30 cm × 15 cm × 20 cm) divided into 
white areas (covered with white matte adhesive paper) and 
another black area (covered with black adhesive paper) without 
the entry of light. The aquarium was filled with tap water without 
chlorine, with a water level of 3 cm, which simulated a new 
shallow environment different from the conventional aquarium 
and capable of inducing anxiety behaviors. Adult fish (n = 6/
group) were administered orally with ABAM at 4; 20 or 40 mg/
kg doses. Negative and positive control groups consisted of 3% 
DMSO and 1 mg/kg DZP solution, respectively. After 1 h, each fish 
was placed in the light zone of the aquarium for 60 s to provide 
acclimatization. After that, the barrier that divided the two sides 
were opened, allowing free circulation in the tank for another 
300 s, and data were collected by trained evaluators at mowing. 
The following parameters evaluated the anxiolytic effect: a) the 
time spent by each animal on the light side suggests less anxiety; 
b) the latency time to pass from the light side to the dark side, 
indicating a sedative effect; c) the number of crossings between 
both sides, investigating locomotor impairment. Each group was 
tested, followed by the previous one.

Assessment of GABAergic neuromodulation: The 
mechanism of action involved in the anxiolytic effect of ABAM 
was identified through pre-treatment with flumazenil (a GABAA 
receptor modulator that acts in the same region as Diazepam) [18]. 
Adult zebrafish (n = 6/group) were pretreated with flumazenil 
(4 mg/kg; 20 μL; intraperitoneally - i.p.), and after 15 min, the 
lowest effective dose of ABAM (4 mg/kg; 20 μL; p.o.) found in 
the pilot test (see previous section); One group was treated with 
3% DMSO (vehicle; 20 μL; p.o.) and used as a negative control, 
and DZP (1 mg/kg, 20 μL; p.o.) and was used as a GABAA receptor 
agonist. After 1 h of treatment, the animals were submitted to the 
light/dark test as described in the previous section, and the time 
spent in the light region of the aquarium (anxiolytic behavior), 
latency time and crossing from the light side to the dark side 
during 300 s was observed.

PTZ-induced convulsive behavior at 10 mM: The reversal 
of PTZ-induced seizures was investigated in this study. Animals 
(n = 6/group) were orally treated with ABAM at doses of 4; 20 or 
40 mg/kg, DZP (1 mg/kg; 20 μL; p.o.) or negative control - vehicle 
(3% DMSO; 20 μL; p.o.). After 1 h, the animals were individually 
exposed to 10 mM PTZ, dissolved in water in a 250 mL beaker, 
and the convulsive behavior was evaluated in the three stages: 
stage I - increased swimming; stage II - swirling behavior; and 
stage III - clonus-like seizures, (loss of posture when the animal 
falls to the side and remains motionless for 1-3 s). At the end of the 
evaluation of the three test stages, the animals were euthanized 
on ice [19]. The mechanism of action was further evaluated.

Inhibitory avoidance task: The assessment of ABAM in 
inhibitory avoidance was performed as described by Bertoncello 
et al [20]. The apparatus consisted of a glass tank (28 cm long x 14.7 
cm wide x 19 cm high) filled with 1.3 L of non-chlorinated water. 
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Figure 2 Effect on ABAM in the light-dark test (0 –5 min). (A) Staying in the light; (B) Latency; (C) crossing from light to dark. Control group (3% 
DMSO); DZP – Diazepam (1.0 mg/kg; 20 μL; p.o.). Values represent the mean ± standard error of the mean for 6 animals/group; ANOVA followed by 
Turkey’s test (*** p < 0.001; **** p < 0.0001 vs. Control).

decrease the number of crossings from light to dark area in the 
test [22–25]. This study identified that ABAM causes anxiolytic 
and sedative behavior without impairing the locomotor activity 
of the animals, unlike Diazepam, which, despite causing 
anxiolytic and sedative effects, compromises the locomotion of 
the fish [22–24, 26]. Furthermore, the anxiolytic and sedative 
effect of ABAM has already been identified in mice through 
GABAergic neurotransmission through the same binding site of 
Benzodiazepines [12], corroborating to the results.

Sedative and anxiolytic drugs, such as Benzodiazepines, 
increase the action of gamma-aminobutyric acid (GABA) 
on the GABAA receptor. Therefore, compounds capable of 
combating anxiety and causing sedation can act through 
GABAergic neurotransmission in the same region of action of 
benzodiazepines on the GABAA receptor. For this investigation, 
it is possible to use flumazenil, a competitive antagonist of 
Benzodiazepines commonly used in the clinic in cases of overdose 
and preclinical studies of new compounds with anxiolytic and 
sedative effects [22,23-26]. A high-resolution cryoelectron 
microscopy study indicates that Diazepam and flumazenil bind 
to the same benzodiazepine binding pocket on GABAA receptors 
but use different modes. Diazepam binds to the α1β3γ2 subunit 
and flumazenil to α1β2γ2 [27]. Thus, compounds whose action 
is blocked by flumazenil can act in the same region as Diazepam. 
Therefore, in this study, pre-treatment with flumazenil was 
used and blocked the anxiolytic and sedative effect of ABAM, 
increasing the time of the animals in the dark area and drastically 
reducing the latency, the same occurring with the animals 
treated with Diazepam, in addition, flumazenil preserved the 
locomotor activity of fish treated with Diazepam, similar to what 
happened with Zebrafish larvae in which Diazepam-induced 
hypolocomotion (sedation-like state) was effectively antagonized 
by flumazenil￼ ￼ . 

The evaluation of the anticonvulsant effect of ABAM in the PTZ 
model has already been investigated after oral and intraperitoneal 
administration and after acute or subchronic treatments in mice 

(1 mg/kg), which also had the time spent in the light region 
and latency decreased (# # # #p<0.0001, # # # p<0.001 vs. 
DZP) [Figure 3A and B]. Furthermore, flumazenil pre-treatment 
restores locomotion in the DZP-treated group (p>0.05) [Figure 
3C].

PTZ-induced convulsive behavior at 10 mM

Higher doses of ABAM reversed PTZ-induced seizure 
behavior in all three stages (*p < 0.05; **p < 0.01; ***p < 0.001 vs. 
Control), an effect similar to that of DZP, which also significantly 
(****p < 0.0001 vs. Control) delayed onset of seizures in all three 
stages when compared to Control treatment [Figure 4]. 

Inhibitory avoidance task

The inhibitory avoidance caused by electroshock indicated 
that the doses of 4 and 20 mg/kg of ABAM retained the memory 
(*p < 0.05 vs. Training) of the Zebrafish in the test session, unlike 
the group treated with Diazepam that had memory retention 
impaired, as the latencies to enter the dark compartment 
between the training and test sessions did not differ [Figure 
5A]. Furthermore, there were no significant differences in the 
retention index between the groups. However, it was observed 
that the group treated with Diazepam had reduced performance 
in the test session (p > 0.05) [Figure 5B].

DISCUSSION

Although studies on the isomeric mixture of α- and β-amyrin 
with anxiolytic, sedative and anticonvulsant effect in mice have 
been studied [11,12], this is the first report of its effects on 
anxiety, seizure and memory retention in adult zebrafish. 

The light-dark paradigm is a commonly used preclinical 
test for anxiolytic drug screening [18-21]. Anxiolytic drugs 
such as benzodiazepines are reported to increase the time of 
adult zebrafish in the light region of the aquarium, increase 
the latency to enter the dark area (sedation behavior) and 
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Figure 3 Effect of flumazenil on anxiolytic behavior induced by ABAM (4 mg/kg; 20 μL; p.o.) in the light-dark test (0 –5 min). (A) Staying in the 
light; (B) Latency; (C) crossing from light to dark. Control group (3% DMSO); DZP – Diazepam (1.0 mg/kg; 20 μL; p.o.). Values represent the 
mean ± standard error of the mean for 6 animals/group; ANOVA followed by Turkey’s test (*** p < 0.001; **** p < 0.0001 vs. Control. # # # p < 0.001; 
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of the hippocampus, where they represent approximately 20% 
of GABAA receptors [30], This location suggests that α5 may be 
involved in the physiological processes underlying learning and 
memory [31]. This study investigated the effect of ABAM on 
memory retention using the electroshock-induced inhibitory 
avoidance test. It was observed that ABAM preserved the animals’ 
memory, which was not identified in the group treated with 
Diazepam. Furthermore, neurobehavioral and in silico studies 
indicate that the impairment in memory and learning caused by 
Diazepam is related to an interaction with the amino acid His101 
of the α1 receptor on the GABAA receptor and that compounds 
with an anxiolytic effect that does not cause these symptoms do 
not interact with this amino acid residue [32], indicating that 
ABAM causes anxiolytic, sedative and anticonvulsant effects 
without compromising memory and learning because it does not 
bind with His101 and has an affinity with the α5 subunit of the 
GABAA receptor.

CONCLUSION

The isomeric mixture of α- and β-amyrin has anxiolytic 
and sedative activity without causing motor impairment and 
an anticonvulsant effect that attenuates tonic-clonic seizures 
in adult Zebrafish. The effects of ABAM are possibly related to 
GABAergic mechanisms, acting in the same binding region of 
benzodiazepines. These findings confirm the relevance of ABAM 
as a potential target for developing new treatments for central 
nervous system disorders.
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