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Abstract

A variety of animal models have been developed to study the effect of 
antiepileptic drugs. These models provide the means of inducing changes and causing 
alterations in neural function which may lead to epileptogenesis. Kindling is a lasting 
change in brain function caused by repeated stimulation resulting an increased seizure 
duration and progressive intensification of seizure activity. The kindling model is 
widely used by investigators to provide insights into epileptogenesis. Kindled seizures 
can be induced in a number of animal species by electrical stimulation of brain as 
well as by chemical convulsants. The repeated administration of convulsant agents 
at sub-threshold concentrations is known as chemical kindling. This phenomenon can 
be achieved using convulsants like GABAergic antagonists, neurotoxicants, local 
anaesthetics etc.  Chemical kindling has attracted the interest of many investigators as 
a model to study the effects of multiple seizures on the brain. The present review is an 
attempt to compare the various chemical models of kindling.

INTRODUCTION
Epilepsy is one of the major neurological disorders which are 

characterized by recurrent and unpredictable interruptions of 
normal brain function, called epileptic seizure. Epileptogenesis is 
the gradual process by which a normal brain develops epilepsy. 
Epilepsy is a chronic condition in which seizures occur. These 
changes to the brain occasionally cause neurons to fire in a 
hyper-synchronous manner. This hyper-synchronous firing of 
neurons is called seizures. . The discovery and development of 
new antiepileptic drugs relies heavily on the preclinical use of 
animal models to establish efficacy and safety prior to first trials 
in humans [1]. A diversity of animal models is available for the 
study of epilepsy and these models have a proven history in 
enhancing our understanding of basic mechanisms underlying 
epileptogenesis [2]. The kindling model is widely used to 
study the epileptogenesis and discovery of antiepileptic drugs. 
Kindling is a lasting change in brain function that results from 
repeated focal stimulation and leads to the development of a 
predisposition to epileptiform convulsions [3]. It is associated 
with Tran’s synaptic changes, synaptic re-organization, long term 
potentiation, changes in synaptic morphology, protein synthesis 
and axonal transport [4]. It was invented by Goddard in 1967 
and now this model has widely been accepted as a functional 
epilepsy model in which the altered neuronal response develops 
in the absence of gross morphological damage that is seen in 
many other epilepsy models [5]. It has become major focus of 

the neuroscientific research [6]. The achievement of the kindling 
criterion takes a long time, usually between 15 and 38 days, 
depending on the kindling procedure and animal strain [7]. 
The advantages of the kindling model for epilepsy research are 
clear: precise focal activation of the target brain sites is possible, 
development of chronic epileptogenesis is reliably observed, 
the pattern of seizure propagation and generalization is readily 
monitored, and interictal, ictal and postictal periods are easily 
monitored [5]. 

PHENOMENON OF KINDLING
Kindled seizures can be induced in a number of species, 

including rats and mice. It can be induced by electrical 
stimulation of different areas of brain such as the amygdala, 
hippocampus and frontal cortex [8,9]. It has been shown that an 
effect similar to electric kindling can be induced by the repeated 
administration of subconvulsant doses of central nervous system 
stimulants [10]. Different stages of seizures are observed during 
kindling. Racine’s grading of convulsive stages of kindling was 
based on electrical stimulation of amygdale which includes five 
stages. The stages 1 and 2 are primarily associated with facial 
and oral activities which include ipsilateral eye closure and 
blinking followed by head bobbing and drooling. Forelimb clonus 
eventually appears in the stage-3. Soon thereafter, in stage-4, 
the seizures generalize with stronger clonus and rearing. Then 
dramatic rearing and falling behaviour is observed in stage-5 [9]. 
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Researchers continue to stimulate the animal in most kindling 
studies till the development of stage-5 seizures [11]. When more 
carefully examined, it should be observed that the amygdala 
kindled stage-5 seizures are not merely clonic but rather tonic-
clonic seizures and involves all four limbs. Animal is considered 
as fully kindled if there is development of stage 5.  This effect of 
kindling is long lasting and may endure for the life of animal [12]. 
Kindling starts with the limited neural circuits and with increased 
duration of seizures, changes in brain ability occur [13]. 

CHEMICAL KINDLING
Kindling induced by repeated administration of convulsant 

agents at subthreshold concentrations is known as chemical 
kindling. These agents can induce kindled seizures by direct 
intracerebral administration or systemic administration. 
There are many chemicals which possess primary actions on 
central nervous system function. Some of these chemicals lead 
to appearance of convulsions with acute high dose exposure 
[14,15]. Administration of these chemicals in subthreshold 
doses prior to the electrical stimulation may also demonstrate 
their subconvulsive properties in a standard kindling paradigm 
[16]. However, these chemicals also produce kindling effect if 
delivered repeatedly at low concentrations in the absence of 
electrical stimulation [17-19]. Different chemoconvulsants used 
for kindling are shown.

Kindling induced by GABAergic antagonists

γ-Aminobutyric acid (GABA) is the principal inhibitory 
neurotransmitter which maintains the inhibitory tone to 
counterbalance the  neuronal excitability. Seizures may be caused 
when this balance is disturbed. Therefore, GABAergic antagonism 
is a mechanism of action of some chemical agents that induce 
seizures [20]. Pentylenetetrazole, bicuculline, picrotoxin and 
β-carbolines are potent GABA antagonists which are preferred to 
develop kindling models of epilepsy. 

Pentylenetetrazole-induced kindling: Pentylenetetrazole 
(PTZ) has been widely used in experimental models of epilepsy. 
Absence, myoclonic and generalized tonic-clonic seizures are 
induced by PTZ administration. It is a commonly preferred 
behavioural approach used for chemical kindling to study brain 
excitability. PTZ has a proconflict effect on acute administration 
and induces convulsions in rats and mice [21]. After repeated 
injections the susceptibility of seizures was increased [22]. 
After every PTZ injections seizure score is calculated [23]. Rapid 
and strong seizures are initiated 5 min after a single high dose 
of PTZ (50 mg/kg) in animals which lasts for approximately 30 
minutes. After repeated daily administration of a subconvulsive 
dose of PTZ (30 mg/kg) the animals show very weak behavioural 
overactivity during the first 1-2 weeks. However, stronger 
epileptic activity is developed in the following 3-4 weeks, and 
finally leads to full kindling in 4-6 weeks [4]. 

Various behavioral, neurophysiological and neurochemical 
changes occur during PTZ-induced kindling. PTZ causes atrophy, 
selective neuronal loss and astrocytosis in hippocampus, 
Alterations in GABAergic systems, glutamergic systems and 
antioxidant defence systems have been observed in PTZ-induced 
animal models [24]. 

Kindling produced by PTZ may be related with permanent 
attenuation of inhibitory function of GABAergic system [21]. This 
activity is especially due to blockade of GABAA gated chloride 
receptors [4,25] GABAA receptor number or function may be 
modified by either single or repeated PTZ administration. 
Injection of a moderate dose of PTZ which produces kindling, 
has several neurochemical effects including a decrease in GABA 
binding, [35S] t-butylbicyclophosphorothionate (TBPS) binding 
and in GABA stimulated Cl- uptake [26]. 

An alteration in density and sensitivity of different glutamate 
receptor sub types also occurs due to PTZ. An increase in the 
density of glutamate receptor, glutamate binding and hence 
increased glutamate concentrations in the hippocampus after 
PTZ kindling has been observed [27]. Pentylenetetrazole in 
toxic doses induces massive release of endogenous glutamate 
in various structures of the brain. Pentylenetetrazole-induced 
seizures in rats are associated with glutamate activation of AMPA 
and NMDA receptors in the brain [28]. It was reported that PTZ 
kindling phenomenon was sustained by AMPA receptors in cortex 
and basal ganglia. AMPA has also an important role in appearance 
of epileptiform burst discharges in hippocampal slices. 

Bicuculline induced kindling: Bicuculline is an alkaloid which 
produces generalized seizures after systemic administration. 
Unilateral application of bicuculline in deep prepirlform cortex 
is sufficient to induce generalized seizures [29]. The bicuculline 
kindling is identical to electrical kindling in many respects. A 
similar pattern of seizure development has been observed which 
eventually results in general convulsive seizure. However, the 
rate of chemical kindling caused by bicuculline is much faster 
than the electrical kindling. Multiple seizures are caused by 
a bicuculline injection in the kindled state [30]. The changes 
in arterial blood gas concentrations, cerebral blood flow and 
extracellular ionic concentrations have been extensively studied 
[31]. The kindling effect of bicuculline persists semi-permanently 
and the phenomenon is not correlated with visible tissue damage 
at the stimulating site. Bicuculline is a GABAA antagonist, and 
thus amygdala neurons bearing GABAA receptors may play a very 
important role in the initiation and development of amygdaloid 
seizures. Bicuculline is supplied as either the free base ora methyl 
derivative [32]. Bicucullinemethiodide is the methylated form of 
bicuculline which is more active than the parent drug molecule 
[33,34]. Repeated injection of bicuculline methiodide into the rat 
amygdala induces chemical kindling [35]. Bicuculline methiodide 
completely suppresses the fast inhibitory postsynaptic potential 
without affecting the slow hyperpolarization. At the same time, 
augmentation of both the fast and slow excitatory postsynaptic 
potential is caused by bicuculline leading to burst discharges 
[36]. 

β-Carboline induced kindling: β-Carboline alkaloids 
are a large group of natural and synthetic indole alkaloids 
[37]. β-Carbolines are identified as potential endogenous 
ligands for the benzodiazepine binding site, and found to have 
competitive affinity for benzodiazepine binding sites [38]. The 
β-carboline family of compounds have since been found tospan 
the complete range from full agonists to full inverse agonists at 
the benzodiazepine allostericsite for the GABAA receptor [39]. 
FG-7142 (N-methyl-p-carboline-3-carboxamide) is an amide 
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derivative of β-carboline-3-carboxylate ethyl ester [39,40]. It 
is used as proconvulsant and found to potentiate the kindling 
effect of a subconvulsive dose of PTZ as a negative ligand of 
benzodiazepine receptor [41,42]. Repeated administration of 
FG 7142 produces sensitization to its effects so that full seizures 
develop [43]. DMCM (6,7-dimethoxy-4-ethyl-beta-carboline-
3-carboxylate methyl ester and ß-CCM (methyl β- carboline -3- 
carboxylate) are full inverse agonists of GABAA benzodiazepine 
receptor complex and thus are characteristic β-carbolines with 
convulsant activity in vivo [44,45]. 

Picrotoxin induced kindling: Picrotoxin is a poisonous 
crystalline compound, found in the fruit of the plant Anamirta 
cocculus (Moonseed family). Picrotoxin exerts its epileptogenic 
effect by blocking GABA mediated chloride conductance. Various 
investigations suggest that picrotoxin kindles seizures by 
reducing the GABA inhibitory effect. Thus, repetitive excitatory 
events occur leading to paroxysmal depolarizing shifts [46]. 
Mechanism of picrotoxin inhibition of this receptor is a complex 
phenomenon. The inhibitor has been considered to be a simple 
open-channel blocker [47,48]. A mixed/noncompetitive 
inhibitor, or a noncompetitive inhibitor that binds to an allosteric 
site to stabilize a closed or desensitized state of ligand-gated ion 
channels [49,50]. Detailed analysis of single-channel current 
recordings suggested a more complex scheme [49]. Neither 
picrotoxin nor its more active component picrotoxinin had any 
effect on the conductance of single-channel events mediated by 
GABAA receptors [49,51,52]. Single-channel current recordings 
showed that picrotoxin decreased the channel-opening frequency 
in a manner compatible with the stabilization of an agonist-
bound closed state that perhaps corresponds to a desensitized 
conformation of the receptor [49,53-55]. 

Kindling induced by neurotoxicants: Neurotoxicants are 
the substances which attack nervous system and alter nerve cells 
functions by altering the neurotransmitters levels. These agents 
affect neurotransmitter release and binding thus, affecting ion 
channel receptors. Exposure to these toxic chemicals may induce 
seizures [56]. Therefore, some of these agents have been used in 
kindling models.

Endosulfan induced kindling: Endosulfan is a pesticide, 
belonging to the chemical family of organochlorines, in the 
subclass of chlorinated cyclodienes containing one double bond 
[57]. Organochlorine pesticides have been proven to have several 
deleterious effects on the central nervous system [58], and also 
a potent proconvulsant compound. Repeated administration of 
subconvulsive doses of endosulfan induces chemical kindling. 
This proconvulsant kindling paradigm also contributes to the 
induction of the spontaneous electrographic and behavioral 
seizures [59]. The proconvulsant activity of endosulfan has 
also been investigated using electrical stimulation of amygdala. 
Endosulfan significantly reduced the number of stimulations 
required to produce stage 5 generalized seizures. Endosulfan 
facilitated the development of amygdala kindling [60]. The 
mechanism of action of endosulfan is binding to γ -amino-butyric 
acid (GABA) receptor ionophore complex and inhibition of GABA-
gated chloride channel, thus inhibiting GABA-induced chloride 
flux across membranes [57,61,62]. Repeated administration 
of endosulfan tends to induce seizure by lowering seizure 

threshold [58,63,64]. Some investigations have suggested 
that endosulfansulfate, the main metabolite also contributes 
to the acute endosulfan neurotoxicity. Endosulfan has been 
reported to compete for binding of GABA at the t-butyl bicycle 
phosphothionate site (TBPS) [17,62,65,66]. 

Lindane induced kindling: Lindane (gamma-
hexachlorocyclohexane) is a chlorinated hydrocarbon pesticide 
[67]. Joy and colleagues reported the proconvulsant properties 
of lindane using an electrical kindling paradigm. In this kindling 
paradigm, repeated low doses of lindane was delivered prior to 
each daily electrical kindling stimulation resulting in accelerated 
rate, generalized seizures development and prolongation of the 
electrographic seizures accompanying each kindling stimulus 
[68]. The mechanism of action of lindane includes its binding 
to the GABA receptor ionophore complex which results in the 
disturbed effect of GABA and GABAergic neurotransmission 
[69,70]. Lindane stereospecifically binds to the t-[35S] butyl 
bicyclophosphorothionate (TBPS) site on the GABA receptor/
ionophore complex [71] and inhibits GABA induced Cl-influx [66]. 

Effect of various chemoconvulsants on GABAergic 
system

Trimethylolpropane phosphate induced kindling: 
Trimethylolpropane phosphate (TMPP) is an ethyl 
bicyclophosphate convulsant. It is produced during the partial 
pyrolysis of certain synthetic, ester-based turbine lubricants 
supplemented with phosphate-based lubricity additives. 
Repeated exposure to subconvulsive doses of TMPP results in 
facilitation of the electrical kindling of amygdale [72]. It mimics 
the responses shown by the GABAA antagonist bicuculline. The 
studies suggest that TMPP acts by a competitive antagonism of 
GABA inhibitory function. Binding assays have revealed that 
bindingof TMPP to the GABAA-benzodiazepine receptor complex 
occurs with more affinity than picrotoxin, but less affinity than 
tert-butyl-bicyclo-[2.2.2]-phosphorothionate (TBPS). The 
epileptogenic effects caused by TMPP are consistent with this 
binding [61,73-75]. Furthermore, the benzodiazepines have been 
found effective against TMPP by increasing the time of seizures 
occurrence and reducing the severity of generalized convulsions 
[61,74-76]. These effects of benzodiazepines have also been 
observed against trimethylolpropanephosphite, a structurally 
related compound. Some investigations have shown that TMPP 
blocks the Cl-current in hippocampal neurons [74,75,77]. 

Kindling induced by local anaesthetics

The use of local anaesthetics in excessive doses caused 
occurrence of convulsions in humans. Previous exposure to these 
agents or other kindling substances has been a predisposing 
factor. Thus, the local anaesthetics have been attributable to the 
kindling process Kindling seizures produced by these agents 
seems to be affected by the dose and frequency with which these 
agents are administered for kindling to occur [78]. 

Cocaine induced kindling: Cocaine (benzoylmethylecgonine) 
is a CNS stimulant and found in the leaves of Erythroxylon coca 
Erythroxylaceae., trees that are indigenous to Bolivia and Peru 
(WHO, 2004). Multiple forms of toxicity are associated with 
cocaine abuse and seizures represent one of the major fatalities 
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induced by cocaine. In chronic cocaine abusers, kindling has 
been suggested as a possible mechanism for seizures [79]. 
Cocaine induce upregulation of cortical NMDA receptors. The 
findings suggest that cocaine induced kindling is associated 
with upregulation of striatal, amygdala and hippocampal NMDA 
receptors. However, the maintenance of kindling depends 
upon the increase in NMDA receptor binding in amygdala and 
hippocampus [79]. NMDA receptors are involved in the process 
of sensitization to behavioral and convulsive effects of cocaine. 
Activation of the NMDA receptors also leads to the brain nitric 
oxide synthase (NOS) stimulation which is entailed in the induction 
and expression of cocaine kindled seizures [80]. Furthermore, 
expression and development of cocaine induced kindled seizures 
are inhibited by NMDA receptor antagonists [81]. Cocaine kindling 
also results in enhancement of the depolarization-dependent 
release of glutamate and enhanced glutamate neurotransmission 
which may play an important role in kindling process [82]. Long-
lasting increase insensitivity to convulsive effect is developed as 
a result of repeated administration of cocaine at high doses. Thus, 
cocaine induced kindling is a useful model to study sensitizing 
and epileptogenic effects of repeated cocaine administration and 
their neurochemical mechanisms [83,84]. 

Lidocaine induced kindling: Lidocaine induced seizures are 
qualitatively similar to the electrical kindling of amygdale [85]. 
It is suggested that the lidocaine induces kindled seizures inthe 
limbic system. High doses of lidocaine cause alteration of limbic 
system excitability and ultimately seizure discharges are induced. 
Limbic structures activation caused by lidocaine is selective and 
marked activation is produced particularly in hippocampus and 
amygdale [86]. In high doses, lidocaine is excitatory and induces 
generalized convulsions [87]. Some studies suggest that lidocaine 
induced seizures by binding to the GABA-ionophore receptor 
complex [88]. 

LIMITATIONS OF THE CHEMICAL KINDLING 
Although it is very beneficial to used the chemical kindling 

but there are some limitations of this model. Like as compared 
to electrical kindling chemical kindling model has the less 
experimental control on the timings of evocation of seizures. 
Delay in time occurs from the time of drug delivery to the onset of 
clinical signs of seizures. A care should be done there in between 
the interval of the stimulations so that there should be less 
accumulation of drugs. 
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