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Abstract

Data about the presence of Cryptosporidium species and Giardia genotypes 
in water samples from Brazil are scarce. We investigate the occurrence of these 
pathogenic protozoa in raw water samples of Atibaia and Capivari Rivers which are 
the main water supplies of Campinas city (Southeast Brazil). These rivers show high 
degree of eutrophication. All samples were subjected to membrane filtration technique 
using 45°C heated elution solution followed by immunofluorescence and nested PCR. 
Recovery efficiencies were estimated using water aliquots spiked with Color Seed®. 
Average recovery efficiencies of spiked samples in Atibaia River were 18.0% ± 
18.4 and 74.0% ± 22.1 for Cryptosporidium and Giardia, respectively. For Capivari 
River, recovery efficiencies were 29.7% ± 24.6 and 65.1% ± 33.0 for oocysts and 
cysts. Cryptosporidium oocysts were found in 42.8% samples from Atibaia River and 
in 85.7% samples from Capivari River, whereas Giardia cysts were present in 100% 
of samples in both rivers using immunofluorescence. Molecular analysis revealed the 
presence of C. hominis and C. parvum as well as G. duodenalis subgroup BIII in Atibaia 
River. All samples from Capivari River were PCR negative, probably due to inhibitors. 
These findings suggest anthroponotic and zoonotic contamination of Atibaia River. The 
occurrence of these pathogenic protozoa in both rivers highlight the potential risk for 
human and animal health. Close monitoring of water quality of these rivers is highly 
recommended.

ABBREVIATIONS
MF: Membrane Filtration Technique; IFA: 

Immunofluorescence Assay; DAPI: 4’, 6-diamidino-2-
Phenylindole Fluorescent Stain; DIC: Differential Interference 
Contrast Microscopy; SD: Standard Deviation; BSA: Bovine Serum 
Albumin; DMSO: Dimethylsulfoxide; LaCTAD: High Performance 
Technology Center Laboratory in Life Sciences/Campinas State 
University, Brazil; UT: Turbidity Unit

INTRODUCTION
Cryptosporidiosis is one of the most common food borne and 

waterborne diseases reported worldwide [1,2]. Self - limiting 

diarrhea is usually observed in immune competent people, 
whereas in young children, elderly and immune compromised 
people death can occur [3]. Cryptosporidium incidence is higher 
among children from developing countries [4]; in developed 
countries, adults are infected by ingestion of water or food 
contaminated with oocysts [5].

Thirty species and more than 40 genotypes are described 
in Cryptosporidium genus [6]. Recently, three new species were 
reported: Cryptosporidium rubeyi [7], C. proliferans [8] and C. 
avium [9]. However, not all species comprise risks to human 
health [6]. C. hominis and C. parvum are responsible for over 90% 
cases of infections in humans [10]. However, C. parvum has a 
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wider variety of hosts, including animals and is considered the 
most important zoonotic agent of cryptosporidiosis [11].

The greatest waterborne cryptosporidiosis outbreak 
occurred in Milwaukee, Wisconsin, EUA, in 1993, where over 
400,000 people were reportedly infected [12]. Filter effluents 
reached a turbidity of 2.7 UT in few days signalizing a failure 
of treatment process. The largest waterborne outbreak ever 
reported in Europe occurred in Sweden [13] affecting 27,000 
individuals.

Giardia duodenalis is a parasite of human and other 
mammals. Six species are described in the Giardia genera 
according to morphological characteristics and hosts infected 
[14]. It is currently accepted that G. duodenalis is a complex of 
eight distinct genetic groups (designated A-H). These groups 
are morphologically identical but differ in genomic mutations 
[15,16]. Humans are mainly infected by genetic groups A and B, 
which are divided into five sub - groups (named AI-III and BIII-
BIV) [17].

About 280 million people worldwide are estimated to acquire 
Giardiasis each year and an incidence of 1.2 million cases are 
annually reported in the United States [18]. Waterborne Giardiasis 
outbreaks in humans are generally caused by contamination of 
water sources intended for human consumption [19]. In addition 
to gastrointestinal disorders, this flagellate protozoan can cause 
extra intestinal symptoms [20].

While there are other Cryptosporidium and Giardia 
transmission routes to humans, water is considered as the main 
route due to the low infectious dose, chlorine tolerance and 
zoonotic potential. These factors reinforces the need of knowing 
which species and genotypes occur in water sources in order to 
evaluate the risks for human and animal health; then, proper 
control measures can be outlined [21].

Data about the presence of Cryptosporidium species and 
Giardia genotypes in water samples from Brazil are scarce. In 
Paraná state, C. parvum oocysts were detected in raw water of 
Ribeirão Cafezal watershed [22]; C. hominis and C. meleagridis 
oocysts were found in superficial water from São Paulo state [23].

Campinas is the third most populous city in the state of 
São Paulo. This city is supplied by Atibaia and Capivari Rivers 
which belong to the basin of Piracicaba, Capivari and Jundiaí 
Rivers. The region where this basin is located is one of the most 
industrialized of São Paulo state [24]. Consequently, there is a 
high eutrophication degree in these rivers.

This study aimed to investigate the occurrence of 
Cryptosporidium species and Giardia genotypes in raw water 
samples from Atibaia and Capivari Rivers at Campinas city 
through immunofluorescence and molecular methods (nested-
PCR), after membrane filtration (MF).

MATERIALS AND METHODS
All water samples 20 cm in depth were collected at the intake 

pipe of the Atibaia and Capivari Water Treatment Plants of 
Campinas city in new polystyrene bottles previously rinsed with 
Tween 80 0,1% solution. Samples were immediately transported 
to the laboratory in iceboxes at 4°C. Raw water samples were 

processed by the membrane filtration technique according 
Franco et al., (2001) [25] with the following modifications: 
organisms were eluted from filter through rinsing and scrapings 
of membrane using Tween 80 (0.1%) at 45°C and concentrated 
by 1500 x g/15 min. Cysts and oocysts were purified by immune 
magnetic separation using CGCombo Dynal® kit in accordance to 
USEPA Method 1623.1 [26] with dissociation by heat and use of 
50µL of beads for initial incubation step.

Immunofluorescence assay (IFA) was performed following 
Cellabs® kit (Cellabs Pty. Ltd., Australia) instructions with minor 
modifications. Briefly, DAPI stain was applied on slide wells 
prior to monoclonal antibodies. Samples were microscopically 
examined at 200x and 400x magnification, using epifluorescence 
and DIC microscopy. Only organisms compliant with USEPA 
Method 1623.1 were considered, with internal morphological 
characteristics assessed by DIC microscopy.

In order to evaluate the water turbidity influence on MF 
technique using heated elution solution, replicates of water 
samples were also collected. In these samples Color Seed® 
(Biotechnology Frontiers, Australia) were seeded at a level of 100 
± 1 SD per water sample (1L). Further analyses were performed 
according to the methods previously described. Estimate number 
of organisms/L and recovery efficiency were calculated according 
Franco et al., 2012 [27]. Results were compared to acceptance 
criteria of USEPA Method 1623.1.

DNA extractions were performed using the DNeasy Blood 
& Tissue® kit (Qiagen, Hilden, Germany) or PowerSoil® kit 
(MoBio) for Cryptosporidium, and ZR Fungal/Bacterial DNA 
MiniPrep® kit for Giardia according to the availability of these 
kits in our laboratory. All reactions followed the manufacturer’s 
instructions, using 300µL of the pellet obtained for each eluted 
water sample.

An 830 bp fragment of the 18S rRNA gene of Cryptosporidium 
was amplified by nested PCR using primers described by Xiao 
et al., 1999 [28] (Table 1). The mixture of first PCR reaction 
contained 1X PCR buffer, 3 mM MgCl2, 0.2 mM of each dNTP, 
2.5µL of BSA (bovine serum albumin - 0.1 g/10 mL), 2.5 U Taq, 
and 1 mM of each primer in a final reaction volume of 50µL [29]. 
The first PCR samples were subjected to initial denaturation at 
94°C for 3min, 35 cycles of 94°C for 45s, 59°C for 45s and 78°C for 
1 min. The final extension was at 72°C for 7 minutes. The second 
amplification reaction mix was identical to the first except for the 
MgCl2 concentration (1.5 mM). Forty cycles of 94°C for 30s, 58°C 
for 90s and 72°C for 2 minutes, after initial denaturation at 94°C 
for 3 minutes and final extension at 72°C for 7 minutes [29].

For Giardia DNA amplification, genetic markers SSU-rRNA 
and beta-giardin were addressed using the protocols described 
by Appelbee et al., (2003) [30] and Hopkins et al., (1997) [31], 
respectively. Primer sets of first and second reactions are 
described in Table (1). For primary amplification of SSU-rRNA 
genetic marker, a mix was prepared containing 1X PCR buffer; 
1.5 mM MgCl2; 0.2 mM of each dNTP; 2 U Taq; 2.5 µL of dimethyl 
sulfoxide (DMSO) and 0.5 µM of each primer in a final volume of 
50 µl. First PCR conditions were: initial denaturation of 96°C (2 
min.), 35 cycles of 96°C for 45s, 58°C for 30s, 72°C for 45s, and 
final extension at 72°C for 4 min. For the second amplification 
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the PCR mixture and cycling conditions were identical to the first 
[29].

Amplification of a beta - giardin gene fragment was performed 
using 12.5 µL PCR Master Mix (Promega), 0.6 mM of each primer, 
2 µL of BSA (0.1/10 mL) and 4.5 µL of nuclease - free water. 
Three micro liters of sample DNA were used in each reaction. 
The following amplification conditions were performed: initial 
denaturation step for 5 minutes at 94°C, followed by 40 cycles, 
each consisting of: 30s at 94°C, 30s at 65°C and 60s at 72°C, and 
final extension of 7 minutes at 72°C. In the nested reaction, an 
internal fragment of 511 bp was amplified [32,33]. The mixture 
was prepared with 13.5 µL PCR Master Mix (Promega), 0.6 mM 
of each primer, and 4.5 µL of nuclease - free water and 4 µL of 
sample DNA. Initial denaturation was performed at 98°C for 15 
minutes followed by 40 cycles of 30 seconds at 95°C, 55°C for 30s, 
and 60s at 72 °C. The final extension was done at 72°C for 7 min.

For all samples, IFA-DAPI-DIC visualizations were performed 
first, followed by DNA extractions for the PCR assays. PCRs for 
each sample were repeated in triplicate in order to reduce false 
positive or negative results. All gels were stained with GelRed® 
(Biotium, Hayward, USA) for visualization.

All PCR positive samples were purified using ExoSAP-IT® and 
sequenced in LaCTAD Center of Campinas State University with 
same primers used in the second PCR reaction. The sequences of 
each strand were aligned and examined with Lasergene software 
(DNASTAR), and submitted to the Basic Local Alignment Search 
Tool (BLAST) analysis to identify similarities with the GenBank 
sequences.

RESULTS
Seven water samples from each river were collected between 

September 2014 and June 2015. Water turbidity from Atibaia 
River was higher (average: 46.1 UT, SD: 34.3, minimum value: 
17.1, maximum value: 110) than Capivari River (average: 34.4 
UT, SD: 19.7, minimum value: 16.8, maximum value: 74.0) during 
this research. Overall recovery of Cryptosporidium oocysts and 
Giardia cysts from Atibaia River averaged 18.0% ± 18.4 (SD) and 
74.0% ± 22.1 (SD) respectively (Table 2). From Capivari River, 
overall oocysts and cysts recovery averaged 29.7% ± 24.6 (SD) 
and 65.1% ± 33.0 (SD), respectively (Table 2). Cryptosporidium 
recovery efficiency was lower than Giardia in both rivers. MF 
technique was less affected by turbidity considering oocyst 
recovery in Capivari river. A decline in the ability of this technique 
to detect Cryptosporidium was observed with the increase of 
turbidity of water samples from Atibaia River.

Cryptosporidium oocysts were present in 42.8% samples 
from Atibaia River and in 85.7% samples from Capivari River. 
Cryptosporidium oocysts were found in fewer numbers than 
Giardia cysts in Atibaia River (Table 2). Cryptosporidium averaged 
2.4 ± 3.5 (SD) oocysts/L and was not detected in four months of 
this study in Atibaia River. In Capivari River, Cryptosporidium 
averaged 5.2 ± 5.6 (SD) oocysts/L, and was not detected in one 
month (Table 2).

PCR amplification of genomic DNA extracted from water 
samples of Atibaia River produced a band of the expected size of 
830 bp for Cryptosporidium in three samples (3A, 4A, 5A) (Figure 
1). These samples were sequenced but one positive sample could 

Table 1: Primers sets used for PCR reactions targeting genetic markers 18S - rRNA (Cryptosporidium), SSU-rRNA and beta - giardin (Giardia) to 
analyze water samples from Atibaia and Capivari Rivers, Campinas city, Southeast Brazil.

PCR primers and Nucleotide Sequence Fragment References

Primary Amplification:

Crypto F: 5’-TTCTAGAGCTAATACATGCG-3’ 1025bp Xiao et al., 1999 [28]

Crypto R: 5’-CCCATTTCCTTCGAAACAGGA-3’

Secondary Amplification:

AL1598: 5’-AAGGAGTAAGGAACAACCTCCA-3’ 830bp

AL3032:5’-GGAAGGGTTGTATTTATTAGATAAAG-3’

Giardia (SSU rRNA):

Primary Amplification:

GiaF: 5’-AAGTGTGGTGCAGACGGACTC-3’ 500 bp Appelbee

Gia R: 5’-CTGCTGCCGTCCTTGGATGT-3’

Secondary Amplification:

RH11: 5’-CATCCGGTCGATCCTGCC-3’ 300 bp Hopkins et al.,1997 [31]

RH4: 5’-AGTCGAACCCTGATTCTCCGCCAGG-3’

Giardia (beta-giardin):

Primary Amplification:

G7: 5’AAGCCCGACGACCTCACCCGCAGTGC-3’ 753 bp Cacciò et al., 2002 [32]

G759: 5’-GAGGCCGCCCTGGATCTTCGAGACGAC-3’

Secondary Amplification:

F: 5’-GAACGAACGAGATCGAGGTCCG–3’ 511 bp Lalle et al., 2005 [33]

R: 5’-CTCGACGAGCTTCGTGTT-3’
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Table 2: Number of Cryptosporidium oocysts/L and Giardia cysts/L detected in raw water samples of Atibaia and Capivari Rivers (Campinas, Southeast 
Brazil) and recovery efficiencies of membrane filtration technique (followed by direct immunofluorescence assay using monoclonal antibodies) of 
seeded samples using ColorSeed®.

Collect Sample Cryptosporidium oocysts/L Giardia cysts/L
Number Atibaia River Capivari River Atibaia River Capivari River

I 0 1 125 21
II 9 4 56
III 3 4 48
IV 5 4 44
V 0 7 67 104
VI 0 0 73 4
VII 0 17 43 36

Average ± SD 2.4 ± 3.5 5.2 ± 5.6 65.1 ± 28.7 27.7 ± 36.1
Recovery of Spiked Samples:

Trial Number Cryptosporidium oocysts/L Giardia cysts/L
Atibaia River Capivari River Atibaia River Capivari River

I 9 31 86 81
II 41 26 61 22
III 48 6 68 18
IV 11 67 74 82
V 7 7 100 106
VI 9 12 35 66
VII 1 59 94 81

Average ± SD 18.0 ± 18.4 29.7 ± 24.6 74.0 ± 22.1 65.1 ± 33.0

Figure 1 Nested-PCR results for the beta - giardin gene visualized 
on agarose gel after electrophoresis. The C+ (positive control) and 
sample A3 showed band of approximately 511 bp. M = molecular 
weight marker.

Figure 2 Results of nested-PCR for 18S r RNA visualized on agarose gel 
after electrophoresis. Two positive controls (C+) and samples 3A, 4A, 
5A show band of approximately 830 bp. M = molecular weight marker; 
1A to 8A = water samples, C- = negative control of first reaction, N- = 
negative control.

not be identified due to insufficient sequence quality (sample 3A). 
Sample 4A was identified as C. parvum and matched the HCTX8 
isolate (97.9% of homology) described by Xiao et al., 1999 [28]. 
Sample 5A was identified as C. hominis and had 88.0% homology 
with C. hominis isolate by Araújo et al., 2013, in São Paulo city 
[23]. No DNA amplification was achieved from Capivari River 
samples.

Giardia cysts were present in 100% of samples in both 
water sources. A higher number of cysts was found in Atibaia 
River (average: 65.1 ± 28.7 (SD) cysts / L) than in Capivari River 
(average: 27.7 ± 36.1cysts / L) (Table 2).

Only one sample (A3) was PCR positive for Giardia in beta 

- giardin analysis (Figure 2). This sample had 99.8% homology 
with G. duodenalis sub - group BIII and matched the HC07 isolate 
described by Durigan et al., 2014 [16] with a different base at 
position 494 (a cytosine instead of thymine). All samples from 
Capivari River were PCR negative for Cryptosporidium and 
Giardia.

DISCUSSION
Concerns about water contamination by pathogenic protozoa 

has considerably increased during the past two decades in Brazil 
given the occurrence of two Cyclospora cayetanensis and one 
large toxoplasmosis waterborne outbreaks which affected 950 
and 496 people, respectively [34,35].

Sanitation is still far from being available to everyone in 
Brazil whereas only 48.6% of the Brazilian population is served 
by sewage collection, and just 39% of sewage is treated (www.
tratabrasil.org.br) [36]. Microbial load is a major concern 
regarding contamination of water supplies. Sato et al., (2013) 
[37] found high risks (> 1/10.000) for both Cryptosporidium and 
Giardia parasites in four metropolitan areas in São Paulo state, 

http://www.tratabrasil.org.br
http://www.tratabrasil.org.br


Central
Bringing Excellence in Open Access





Bueno Franco et al. (2016)
Email:  

J Vet Med Res 3(3): 1053 (2016) 5/7

emphasizing the need for concerted efforts to maintain higher 
water quality in catchment points [38].

In order to determine the public health threat associated 
with two main water sources in Campinas, we applied molecular 
methods to the parasitological monitoring of Cryptosporidium 
and Giardia. Parallel processing of natural and spiked samples 
allowed us to evaluate the effect of water turbidity on performance 
of chosen method to analyze the occurrence of these protozoan 
parasites. This approach was important because water turbidity 
impacts negatively both membrane filtration method as well as 
PCR.

High turbidity of water matrix is the major factor for poor 
oocysts recovery from samples concentrated after filtration 
[39]. The recovery efficiency achieved for Cryptosporidium in 
water samples from Atibaia and Capivari Rivers did not meet 
the acceptance criteria established in USEPA Method 1623.1 
(32%). According to Ongerth (2013) [40], the recovery of 
protozoa (especially Cryptosporidium ) is inversely proportional 
to the sample turbidity. The recovery of Giardia is less affected 
by the matrix effect due to the larger size of the cysts and lower 
hydrophobic behavior at neutral pH [41] as required by IMS 
purification. However, samples turbidity has also a negative 
effect on IMS [42]. The impact of water quality on recovery is still 
relatively poorly understood [43]. Several groups of constituents 
may be implicated with the matrix effect such as iron, manganese, 
and other metals as pointed by Rosen et al., (2014) [43], which 
found that cations and metals were strongly and negatively 
correlated with protozoan recoveries.

Furthermore, water sampling in this study coincides with a 
prolonged drought (“seca”) which affected São Paulo state during 
2014/2015 years [44], impacting negatively the flow of these 
rivers and the dilution of contaminants discharged in these water 
bodies. In this scenario, it is not surprising that only three samples 
were IFA and PCR - positives for Cryptosporidium regarding 
samples collected in Atibaia River, and one for Giardia by PCR. 
From Capivari River, all samples IFA - positive by microscopy 
could not be amplified by nested PCR.

Pollution industrial loads, sand and clay extractions, and 
intense agricultural activity are registered in the banks of 
these rivers and its water may contain large amounts of silt, 
decaying organic material, humic acids and metals which are PCR 
inhibitors. Such inhibitors probably were not efficiently removed 
by the DNA extraction kits used in this study. Even the use of 
additives such as DMSO for Giardia and BSA for Cryptosporidium 
in our PCR reactions in order to reduce inhibitory effects and 
increase amplification efficiency, were not sufficient [45].

Both pathogenic protozoa were detected in Atibaia and 
Capivari Rivers. These findings corroborates with previous 
studies, where oocysts were found in minor concentrations than 
Giardia cysts [37,46,47].

Besides the three Cryptosporidium species reported in human 
(C. hominis, C. parvum, and C. meleagridis), the following species 
were described in animal fecal samples in Brazil: C. bovis, C. canis, 
C. felis, C. baileyi, C. galli, C. meleagridis, [48], C. scrofarum [49], C. 
andersoni [50-52], C. varanii, C. serpentis [53]; C. ryanae [54], C. 
tyzzeri, C. muris [55]; C. ubiquitum, C. xiaoi [56]. However, only 

C. parvum, C. hominis and C. meleagridis were described in water 
samples from São Paulo city [23]. C. parvum was recently found 
in Paraná state [22].

The present finding of C. hominis and C. parvum in Atibaia 
River is very important given the multiple uses of waters from 
this river. In an event of treatment failure, Cryptosporidium is a 
primary threat to public health [40]. As observed in this research, 
more than one Cryptosporidium species are usually reported. 
This river is also used for crop irrigation which representing 
a considerable impact, as the Metropolitan Region Campinas 
has 17 municipalities with 808 small agricultural farms [57].
Regarding Giardia, the presence of sub - group BIII in Atibaia 
River suggests the risk of Zoonotic transmission [16]. It should be 
noted that genetic group B shows a higher prevalence (50%) than 
genetic group A (37%) [58] worldwide. By studying the risks of 
Giardias is infections in most populous regions of São Paulo state, 
Razzolini et al., (2016) [38] found that the annual risk for Giardia 
exceeded the risks for Cryptosporidium by at least 1 Log.

Source tracking of fecal contamination through molecular 
methods is of primary relevance for detection of associated 
health risks.

CONCLUSION
The occurrence of C. hominis, C. parvum, and the genetic group 

BIII of G. duodenalis in Atibaia raw water samples highlights 
possible events of anthroponotic and zoonotic contaminations in 
this watercourse.
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