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Abstract

Dystrophin, an important protein of the dystrophin-glycoprotein complex, has been 
implicated in the pathogenesis of experimental Chagas disease. It contributes to cell 
shape, mechanical resistance, contraction and force generation in cardiomyocytes. 
Dystrophin loss has been associated with end-stage cardiomyopathies and proposed as 
a common route for myocardial dysfunction and progression to advanced heart failure. 
One of the most intriguing aspects of chronic Chagasic cardiomyopathy is the long 
delay after the initial infection to the cardiac manifestations. This has been partially 
explained by our group in previous studies demonstrating loss/reduction of dystrophin 
in mice experimentally infected with T. cruzi. The analysis of dystrophin expression 
showed significant reduction in the acute phase, with the reduction maintained up to 
the chronic phase. Inflammatory mechanisms could be involved in the dystrophin loss 
since inflammation has been shown to play a key role in the activation of proteases 
responsible for dystrophin degradation.

INTRODUCTION
Chagas disease is caused by the protozoan parasite 

Trypanosoma cruzi (T. cruzi), which is transmitted when the 
infected feces of the triatomine vector are inoculated through 
a bite site or through an intact mucous membrane of the 
mammalian host [1]. Originally confined to Latin American 
countries, it had been considered an exotic disease and received 
less attention from global health policy-makers and the scientific 
community than it could expect due to its high morbidity and 
mortality. The migration of infected persons to large urban 
cities and nonendemic countries changed the epidemiological 
profile of Chagas disease from a disease of poor rural areas to 
a globalized problem of large cities in Latin America as well as 
most of the developed world. By the early 1990s, the World 
Health Organization considered Chagas disease the most serious 
parasitic disease in Latin America and as having the greatest 
economic impact. The number of estimated infected people was 
approximately 18 million, with a further 100 million under risk. 
Now, the revised numbers are much reduced, with an estimate of 
about 10-13 million [2] or, even less, 8-10 million infected people 
[3].

Although Chagas disease was first described more than a 
century ago, the course of the disease and its clinical outcomes are 
still not totally understood. The clinical course of Chagas disease is 
usually divided into three phases: acute, indeterminate or latent, 

and chronic. In most cases, the initial infection is asymptomatic. 
However, a few cases will present acute symptoms and in some 
instances death may occur in 3%-5% of cases [4,5]. Infected 
individuals surviving the acute phase enter the indeterminate 
stage, characterized by a long asymptomatic period before the 
onset of clinical signs and symptoms. This phase can last 10-30 
years or until the end of an individual’s life [6]. Approximately 
30% of the infected individuals eventually develop late 
manifestations [5,7,8]. The symptomatic disease affects the heart 
in 94.5% of patients that are considered to have chronic Chagas 
cardiomyopathy (CCC), usually between 15 and 50 years of age. 
Congestive heart failure is the cause of death in 58% of these 
patients, whereas cardiac arrhythmias and unexpected death 
affects 36.5%. The remaining manifests as mega-syndromes 
of hollow viscera, usually megaesophagus and megacolon 
[9,10]. Different mechanisms have been proposed to explain 
the pathogenesis of CCC, such as, (1) direct tissue destruction 
by T. cruzi [11-16]; (2) autonomic abnormalities [9,17-22]; (3) 
microvascular changes [23-29] and (4) autoimmune mechanisms 
[13,31-38].

One of the most intriguing aspects of chronic Chagasic 
cardiomyopathy is the long delay after the initial infection to 
the cardiac manifestations. This has been partially explained 
by our group in previous studies demonstrating loss/reduction 
of dystrophin in mice experimentally infected with T. cruzi 
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[39,40]. Similar to CCC in humans, cardiac complications due to 
cardiomyopathy also appear later in life in Duchenne muscular 
dystrophy and Becker muscular dystrophy, the most common 
X-linked recessive disorders resulting from mutations in the 
dystrophin gene that lead to an absence of or defect in the protein 
dystrophin in striated muscles. In this way, the development 
of cardiomyopathy in both Chagas disease and congenital 
dystrophinopathies occurs decades after infection or birth in 
humans, respectively. Dystrophin and associated glycoproteins 
form the so-called dystrophin glycoprotein complex (DGC), which 
contributes to cell shape, mechanical resistance, contraction 
and force generation in cardiomyocytes [41]. Dystrophin is 
localized beneath the sarcolemma and links cytoplasmic actin 
to the extracellular matrix through the membrane spanning 
glycoproteins (Figure 1) [42]. The reduction of dystrophin has 
been linked to end-stage cardiomyopathies and proposed as 
a common route to the induction of cardiomyopathy and heart 
failure [43,44]. Furthermore, dystrophin loss has been observed 
in different experimental models of cardiomyopathies, such 
as post-viral myocarditis caused by Coxsackie virus B [45], 
myocardial infarction [46], isoproterenol [44,47] and doxorubicin 
administration [48] and septic cardiomyopathy [49]. Based on 
these facts, our group was the first to study dystrophin expression 
in the hearts of mice experimentally infected by Trypanosoma 
cruzi in both acute and chronic stages of the disease.

Dystrophin Expression in Acute and Chronic Stages of 
Experimentally-Induced T. Cruzi Infection

Prado et al. [39], tested the hypothesis that cardiac 
dystrophin levels were decreased during the earlier phases of 
the experimental infection by T. cruzi in mice and maintained 
at low levels up to development of cardiomyopathy. Infection 

with specific strains of T. cruzi leads to a cardiomyopathy that 
evolves from the acute to the chronic phase. To experimentally 
reproduce this infection, male CD1 mice were infected with 
the Brazil strain of T. cruzi. Control and infected mice were 
killed 30 days post infection (dpi) (considered acute stage) 
and 100 dpi (considered chronic stage) and heart disturbances 
characterized. Densitometric analysis of Western blotting 
showed a significant reduction of dystrophin expression in the 
mice hearts at 30 dpi, with the reduction maintained up to 100 
dpi. In addition to the quantification by Western blotting, the 
expression of dystrophin in the cardiac tissue was evaluated 
by immunofluorescence (IF). The IF revealed that dystrophin 
labeling occurred in a uniform pattern as a continuous rim at the 
periphery of most cardiomyocytes from control hearts (Figure 
2). However, dystrophin was focally reduced or completely lost 
in cardiomyocytes of infected mouse hearts. At 30 dpi there 
were foci of myocytolysis associated with loss of the dystrophin 
fluorescent signal and infiltration of interstitial cells (Figure 
2), asterisk). Additionally, foci of cardiomyocytes showing 
undamaged actin were observed with markedly reduced/loss of 
dystrophin fluorescent signal (Figure 2), arrows). The double-
stained against dystrophin x actin was to detect cardiomyocyte 
cytoskeletal actin in order to determine whether dystrophin 
loss was a consequence of cardiomyocyte death. Spread blocks 
of cardiomyocytes lacking dystrophin distinctly showed the red 
fluorescent signal for actin, indicating an absence of correlation 
between myocyte necrosis and dystrophin loss. At 100 dpi the foci 
of loss/reduction of dystrophin fluorescent signal were evident 
(Figure 2), arrows). It has been demonstrated that dystrophin 
loss destabilizes the DGC present at the sarcolemma, disrupts 
the physical linkage of the subsarcolemmal cytoskeleton with 
the sarcolemma causing alterations in calcium homeostasis and 
increases the membrane permeability, thus impairing contractile 

Figure 1 Schematic drawing of dystrophin glycoprotein complex (DGC). The complex forms a transmembrane link between the extracellular matrix 
(laminin) and the intracellular cytoskeleton (actin filaments), which is thought to mechanically stabilize the plasma membrane of muscle cells.
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transmission that results in contractile dysfunction [50].

Morphological and functional cardiac alteration: Since 
dystrophin loss has been linked to alterations of contractile force 
transmission, the next step was to characterize the morphological 
and functional alterations in these hearts.

At 30 dpi there was an intense and diffuse myocarditis 
characterized by lymphomononuclear interstitial infiltrate, 
disruption of myofibers, multiple pseudocysts of amastigotes, 
enlargement of the interstitial space and perivascular 
inflammatory infiltrate, mainly in the right ventricle (Figure 
3), H&E). By 100 dpi, the number of lymphomononuclear 
inflammatory cells was reduced and no parasites were detected 
(Figure 3), H&E). The number of interstitial mononuclear cells 
was more pronounced at 30 dpi when compared to 100 dpi, 
especially in the right ventricle (Figure 3), graph). The analysis 
of picrosirius red-stained sections revealed mild myocardial 
fibrosis manifested by an increased amount of pericellular 
collagen (endomysial matrix) and mild perivascular fibrosis. 
These findings were more evident in the right ventricle. The 
increase in the volume fraction of fibrosis was significant only at 
100 dpi in both ventricles (Figure 3), graph). 

Magnetic resonance imaging (MRI) and echocardiography 
have been used with increasing frequency in experimental Chagas 
disease. There are many advantages related to the application of 

these imaging methodologies [51-55]. They are noninvasive and 
do not require exposure to radioactivity or contrast agents. They 
also permit the serial monitoring of individual mice, without the 
necessity of sacrifice. This reduces the number of mice required 
for the validation of results since each mouse can be imaged 
several times through the course of disease progression and 
heart alterations can be evaluated at multiple time points. The 
MRI study showed no significant difference in the left ventricular 
internal diameter in infected mice compared with uninfected 
controls. However, the inner dimension of the right ventricle 
was significantly dilated from 30 to 100 dpi (Figure 4), arrow). In 
the evaluation of systolic function by echocardiography, the left 
ventricle ejection fraction, evaluated by B-mode, did not show 
any change at 15 dpi in comparison with controls. However, 
there was a 23% reduction in the left ventricle ejection fraction 
at 30 dpi, 20% at 60 dpi and 20% at 100 dpi in comparison with 
respective controls (Figure 4), graph). 

Dystrophin loss, inflammation and mortality rate: 
Although dystrophin gene mutations represent the primary 
cause in Duchenne and Becker muscular dystrophies, it has been 
demonstrated that the secondary processes, involving persistent 
inflammation with high levels of proinflammatory cytokines, 
likely sustain and exacerbate the progression of these diseases 
[56]. A previous study demonstrated that Duchenne patients with 
evidence of active myocarditis associated with myocyte damage 

Figure 2 Representative images of IF for dystrophin (green fluorescence) and actin (red fluorescence) in control and T. cruzi-infected mice and 
immunoblotting quantification. The IF study in control showed that dystrophin labeling occurred in a uniform pattern as a continuous rim at the 
periphery of most cardiomyocytes. Dystrophin was focally lost in cardiomyocytes of infected mouse hearts. At 30 dpi there were foci of myocytolysis 
associated with loss of the dystrophin fluorescent signal and infiltration of interstitial cells (asterisk). Additionally, foci of cardiomyocytes showing 
undamaged actin were observed with markedly loss of dystrophin fluorescent signal (arrows). The double-stained against dystrophin x actin was to 
detect cardiomyocyte cytoskeletal actin in order to determine whether dystrophin loss was a consequence of cardiomyocyte death. Spread blocks 
of cardiomyocytes lacking dystrophin distinctly showed the red fluorescent signal for actin, indicating an absence of correlation between myocyte 
necrosis and dystrophin loss. At 100 dpi, foci of dystrophin loss were evident (arrows). Bars=60 microns.
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Figure 3 Hematoxylin and eosin (H&E) and picrosirius red staining and picrosirius red-polarized light of right and left ventricles from control 
mice and infected at 30 and 100 dpi. At 30 dpi there was an intense and diffuse myocarditis mainly in the right ventricle. By 100 dpi, the number of 
inflammatory cells was reduced and no parasites were detected. The analysis of picrosirius red-stained sections revealed mild myocardial fibrosis 
and perivascular fibrosis, mainly in the right ventricle. Graphs show the number of interstitial cells and collagen quantification in both ventricles. 
Bars=100 μm.

Figure 4 Transverse magnectic resonance imaging (MRI) images of mice showing the short axis of the heart. The inner dimension of the right 
ventricle was significantly dilated from 30 to 100 dpi. Arrows = right ventricle.

and fibrosis had a faster progression to heart failure and death 
in comparison with Duchenne patients with evidence of healed 
myocarditis [57]. These observations indicate that inflammatory 
mechanisms could also be involved in the dystrophin changes 
observed in our studies. In addition, it has been suggested that 
inflammation plays a key role in the activation of proteases, 

mainly calpains. Many of the proteins linking the cytoskeleton 
to the plasma membrane are cleaved rapidly by the calpains, 
especially dystrophin [58,59]. To this end, tumor necrosis factor 
alpha (TNF-α), nuclear factor-kappa B (NF-kB) and calpain-1 
levels were investigated in the peak of mortality at the acute 
phase.
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The amount of TNF-α, quantified by Western blotting, 
was significantly increased, representing an increase of 110% 
in comparison with control mice. High TNF-α fluorescence 
expression was observed (Figure 5). Similarly, the amount of 
NF-KB increased 130% when compared with control animals. 
The immunofluorescence revealed that NF-kB peak was 
associated with increased number of inflammatory cells (Figure 
5). Proinflammatory cytokines have been demonstrated to 
exert their actions on NF-kB, contributing to the dystrophic 
damage progression through activation of intracellular calcium 
dependent proteases, mainly calpain [43,60].

Calpains are calcium-activated neutral cysteine proteases 
with two major isoforms besides tissue specific forms: (a) 
calpain-1 or µ that requires micromolar Ca2+ concentrations 
for activity and (b) calpain-2 or m that requires millimolar Ca2+ 
concentrations [59]. The amount of calpain-1 was significantly 
increased, representing an increase of 70% compared to control 
mice. The fluorescent signal for calpain-1 was associated with an 
increased number of inflammatory cells (Figure 5). The detection 
of significantly increased expression of intracellular calpain 
implicates this protease, activated by increased intracellular 
calcium concentration, in the mechanism of dystrophin loss and 
proteolysis. Previous study demonstrated that calpains digest 
dystrophin very rapidly when the calcium concentration is 

compatible with their activation [61]. Increased calpain activity 
has often been reported as an aggravating factor in cardiovascular 
diseases and other pathophysiological conditions [62]. The 
activation of calpains following the elevated intracellular Ca2+ 
and proteolysis of dystrophin have been shown in different 
experimental models of cardiomyopathies such as myocardial 
infarction [46], isoproterenol [44,47] and doxorubicin 
administration [48] and sepsis [63].

Since proinflammatory cytokine response is associated with 
Chagas disease, the evaluation of the association among the high 
mortality rate observed in the acute infection, inflammation and 
loss/reduction of dystrophin was done. The levels of TNF-α and 
NF-kB were increased in mice infected with T. cruzi, but increased 
mortality was observed only when cardiac dystrophin expression 
was significantly decreased, highlighting the correlation among 
inflammation, dystrophin loss and mortality (Figure 6).

In vitro studies: In order to confirm our in vivo results, in vitro 
experiments were performed using cultured neonatal mouse 
cardiomyocytes. Cardiomyocytes were isolated from neonatal 
hearts, routinerally processed and when cardiomyocytes showed 
spontaneous contractility, serum (free of parasites) from either 
T. cruzi-infected or control mice were added to the cells. This 
serum was collected in the peak of cytokine production [64,65]. 

Figure 5 Representative images of IF for calpain-1, TNF-alpha and NF-kB in control and T. cruzi-infected mice and immunoblotting quantification. 
The IF signals for calpain-1 (green fluorescence) was significantly increased and associated with an increased number of inflammatory cells revealed 
by blue fluorescence of DAPI. Graph shows the quantification of the calpain-1 by Western blotting. The TNF-alpha IF signal (green fluorescence) was 
quite weak in control mice as compared to infected mice. F-actin is showed in red. The immunoblotting quantification corroborates the IF findings. 
The same phenomenon was observed in the IF signal for NF-kB (green fluorescence). GAPDH signal was used to normalize loading differences 
between lanes in the WB quantification. Bars=80 microns.
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Figure 6 Mortality rate,quantification of inflammatory cells and dystrophin expression. Peaks of mortality, dystrophin loss and inflammation are 
coincident, highlighting the association among inflammation, dystrophin loss and mortality.

Figure 7 Representative images of IF for dystrophin (green fluorescence), calpain-1 (green fluorescence) and NF-kB (green fluorescence) and 
immunoblotting quantification in cultured newborn cardiomyocytes incubated with control and T. cruzi-infected sera. F-actin is stained with Alexa 
fluor 594 (red fluorescence) and nuclei with DAPI (blue fluorescence). Cardiomyocytes incubated with sera obtained from infected mice presented 
bleb formation and decreased expression of dystrophin. Immunoblotting quantification demonstrated that the amount of dystrophin was markedly 
decreased. The IF for calpain-1 showed increased expression of calpain-1 as compared to expression in control cardiomyocytes. Western blotting 
quantification confirms the IF findings. The IF for NF-kB showed a marked increase of fluorescence signal. Bars=50 microns.



Central
Bringing Excellence in Open Access





Prado et al. (2016)
Email:  

J Vet Med Res 3(5): 1061 (2016) 7/9

Following the experimental periods, the cardiac cells were 
processed for Western blotting and immunofluorescence labeling 
for dystrophin, calpain-1 and NF-kB.

The quantification of dystrophin by immunoblotting showed a 
reduction of 50% in cultured cardiomyocytes incubated with sera 
obtained from infected mice in comparison to those incubated 
with control sera. The IF analysis clearly showed decreased 
expression of dystrophin associated with formation of multiple 
blebs dispersed in the cytoplasm of cardiomyocytes. F-actin 
fluorescence staining revealed disruption and rearrangement of 
the filaments (Figure 7). Studies using renal tubule cells of rabbit 
and hepatocytes of rats exposed to highly toxic agents that act by 
increasing cytosolic calcium levels have shown that intracellular 
concentrations of calcium precede bleb formation. Pretreatment 
of these cells with protease inhibitor prevented bleb formation 
and decreased proteolysis rate [66-68]. The activation of calcium-
dependent proteases could be responsible for the rearrangement 
of F-actin filaments inducing the formation of bubbles [69]. 
These findings emphasize the role of proinflammatory cytokines 
present in the serum of animals experimentally infected with T. 
cruzi in the activation of calpain-1 observed in our studies.

Immunoblotting results demonstrated that the amount of 
calpain-1 was increased by 33% in cardiomyocytes incubated 
with sera obtained from infected mice. This increase was clearly 
observed in the immunofluorescence (Figure 7).

Cultured cardiomyocytes incubated with sera obtained from 
infected mice displayed a marked increased fluorescence of NF-
kB in comparison with cardiomyocytes incubated with control 
sera. In addition, disruption and rearrangement of F-actin 
associated with reduced size of cardiomyocytes were observed 
after the addition of sera obtained from infected mice (Figure 7).

DISCUSSION AND CONCLUSION
Chagas disease is one of the neglected tropical diseases 

now found in non-endemic areas of the world. In the past 100 
years since the discovery of this disease by Carlos Chagas, the 
understanding of the pathology and pathogenesis of this disease 
has grown. There are many developments that are exciting 
and require further investigation. Among these, the long delay 
after the initial infection to the chronic cardiac manifestations 
deserves attention. Based on the evidences presented in the 
present review, these processes involving the decrease of 
dystrophin expression could be initiated in the acute stage of 
the disease and perpetuated to the chronic stage contributing to 
the late development of Chagas cardiomyopathy. Further studies 
with the use of specific calpain inhibitors could provide novel 
therapeutic targets to minimize cardiac damage during Chagas 
disease. This is a continuing interest of our laboratories.
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