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Abstract

Ticks may transmit pathogens to ruminants worldwide, creating diseases such as 
anaplasmosis, babesiosis, ehrlichiosis and theileriosis. In Europe, the most important 
tick vector is Ixodes ricinus and the most widespread tick-borne infection in animals is 
Anaplasma phagocytophilum. This infection causes tick-borne fever (TBF) in ruminants, 
a disease which may not only cause suboptimal growth, but may also have severe 
economic and welfare challenges in the sheep industry. In this review, different aspects 
of A. phagocytophilum infection in sheep will be presented. 

INTRODUCTION
Several tick-borne infections occur in ruminants, such as 

anaplasmosis, babesiosis, ehrlichiosis and theileriosis [1,2]. In 
Europe, the most widespread tick-borne infection in animals 
is the bacterium Anaplasma phagocytophilum [3], causing the 
disease tick-borne fever (TBF) in ruminants. In the UK, it has been 
estimated that more than 300 000 lambs get tick pyaemia each 
year [4], and that up to 30% of TBF-infected lambs may develop 
crippling lameness and paralysis following secondary infections. 
Most of these lambs die or have a low economic value [5]. TBF 
has also for centuries been one of the main scourges for the sheep 
industry in Norway, and it has been estimated that more than 
300 000 lambs are infected annually [6]. The review will present 
updated information on A. phagocytophilum infection in sheep.  

TICK-BORNE FEVER
Species 

Anaplasma phagocytophilum (formerly Ehrlichia 
phagocytophila) is an obligate intracellular bacteria in the 
family Anaplasmataceae that primarily infects phagocytes [7]. 
A. phagocytophilum appears to be a generalist, infecting a wide 
range of animals including humans, whereas multiple genetic 
variants of the bacterium have for instance been characterized 
in sheep [8].  

Distribution

The bacterium is widespread in areas with Ixodes ticks, 
especially in I. ricinus areas of Europe [9], whereas severe A. 
phagocytophilum infection in sheep seems to occur mainly in 
northern areas. However, TBF seems to be rare or an unnoticed 

disease on other continents, although the bacterium have been 
detected in several ticks species. The reason for this is unknown, 
but may be due to different grazing management, unawareness or 
lack of surveillance and diagnostic tools, host species, breeds and 
variants of the bacterium involved [9]. The infection in humans 
was first reported in the US in 1994 [10].

Transmission

Already in 1932, the hard-bodied tick I. ricinus was shown 
to transmit A. phagocytophilum in sheep. This tick has later been 
found to be the main vector of A. phagocytophilum in Europe 
[11,12]. Besides Ixodes sp. ticks, A. phagocytophilum has also 
been found in other ticks species, such as ticks within the genera 
Dermacentor and Rhiplicephalus [13], but the epidemiological 
importance of these findings remains to be determined. In 
addition, mechanical transmission by flies, mosquitoes or even 
needles may not be totally excluded [12]. 

Transmission of A. phagocytophilum from vector to host occurs 
generally 24 hours after tick attachment, although transmission 
can also occur before [14]. The bacteria survive through the 
moulting process of I. ricinus, i.e. transstadial transmission 
takes place [15]. However, transovarial transmission of A. 
phagocytophilum has not yet been verified. 

The possibility of co-feeding transmission in Ixodes ticks may 
occur, but has to be elucidated further [16,17], i.e. uninfected 
ticks acquiring a non-systemic infection by feeding in time 
and space with infected ticks on the same host. In general, 
transmission efficiency may be influenced by several factors, 
such as the number of feeding ticks, tick species, possible co-
feeding transmission, variants of A. phagocytophilum involved 
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and the degree of acquired anti-tick resistance [9]. 

Other transmission routes may also occur. During the acute 
phase of the infection, oral and intrauterine transmission of A. 
phagocytophilum has been demonstrated in newborn calves and 
perinatal infection in one newborn lamb [18-20]. In addition, 
intrauterine infection in sheep may occur during the persistent 
phase of the infection (Stuen, unpublished results). However, 
the epidemiological importance of these results remains to be 
evaluated.

Clinical expression

The most characteristic symptom of TBF in domestic 
ruminants is high fever (up to >42°C). Sheep exposed to infected 
ticks develop clinical signs within 3-14 days. The fever may last 
for one to two weeks, followed by a severe neutropenia (< 0.7 
neutrophils/ml) for 1-2 weeks. However, the fever reaction 
may vary according to the age of the animals, the variant of A. 
phagocytophilum involved, the host species and immunological 
status of the host [9]. It has been suggested that primary 
asymptomatic cases of A. phagocytophilum infection may be 
due either to sheep variants with low virulence or a spill over 
infection from strains not originally associated with sheep [21]. 

Other clinical signs are often absent or mild. TBF is seldom 
fatal unless complicated by other infections. However, TBF 
causes immunosuppression and makes the sheep vulnerable 
to secondary infections, such as tick pyaemia caused by 
Staphylococcus aureus infections, and Bibersteinia / Mannheimia 
septicaemia. Complications also include abortion, impaired 
spermatogenesis in rams, reduced weight gain in lambs and a 
reduced milk yield in dairy animals [4,9,15]. To the author´s 
knowledge, A. phagocytophilum has only caused clinical 
disease with secondary infections in sheep infected for the first 
time or when challenged with heterologous variants of high 
pathogenicity. Although subclinical or unrecognised infection 
may not lead to overt disease, it may however cause suboptimal 
growth and production. A chronic A. phagocytophilum infection 
has not yet been confirmed in any species. 

Persistence

Another important aspect of this bacterium is that it may 
cause persistent infection in sheep for several months or even 
years. A. phagocytophilum may therefore be carried from one 
grazing season to the next and between geographical areas 
by purchasing infected animals [9,15]. Since transovarial 
transmission of A. phagocytophilum appears to be inefficient in I. 
ricinus, mammalian hosts are presumed to play a crucial role in 
the maintenance and propagation in nature [22].

The persistence of A. phagocytophilum in infected hosts 
seems to involve a mechanism to escape the immune response. 
In one report, it was suggested that Anaplasma may reside in 
poorly vascularised connective tissue, where antibodies may 
have difficulties penetrating [23]. However, antigenic variation 
has been proposed to be the key feature of this pathogen to 
allow persistence in mammalian hosts [24,25], whereas A. 
phagocytophilum displace cyclic bacteraemia as periodic peaks 

containing genetically distinct variants of major surface proteins. 
The low level of circulating organisms detected between periods 
of bacteraemia may indicate temporary clearance of infected cells 
or possible margination of infected granulocytes to endothelial 
surface [26]. A. phagocytophilum has also been found to persist 
in several other species, such as red deer, dogs, horses and cattle 
[9,27,28]. The continuance of the infection may differ according 
to individual variation, Anaplasma variants and host species 
involved [12].  

A. phagocytophilum has been found in alveolar macrophages 
and Kupffer cells, reticuloendothelial cells and tissue macrophages 
in acutely infected sheep [29-31]. Further investigation is needed 
to clarify which cells harbour the organism in persistently 
infected sheep.

Immunity

Earlier experimental studies have shown that the immunity 
after a primary A. phagocytophilum infection varies and that 
sheep may resist homologous challenge for a period from a few 
months to more than one year. The degree of protection varies 
according to the variant of A. phagocytophilum, the type and age 
of the host, and the time and frequency of the challenge [9].

As already mentioned, A. phagocytophilum causes 
immunosuppression up to at least 6 weeks [32]. The mechanism 
by which A. phagocytophilum causes immunosuppression is 
not clearly understood. It is thought to be related to reduced 
phagocytosis and diapedesis of infected neutrophils, a reduction 
in the number of circulating neutrophils and lymphocytes, and 
the down-regulation of some of their functions [33]. 

The severe immunosuppression may also be related to the 
changes in lymphocyte populations. It is possible that reduction 
in various lymphocyte subsets and changes in the helper (CD4): 
suppressor (CD8) T cell ratio observed in peripheral blood of 
sheep infected with A. phagocytophilum may affect lymphocyte 
responses to bacterial or viral antigens [34].

Investigation has shown that some serum factors are, at least 
in part, responsible for the immunosuppression associated with 
TBF in sheep. The concentration of tumour necrosis factor–alpha 
(TNF-α) and nitrate in ovine sera were significantly increased 
during infection with A. phagocytophilum [34,35]. Recent studies 
in sheep have identified several cytokines that are induced during 
infection, such as IFN-γ, IL-β, IL-6, IL-10 and IL-12 [36].

Infection by a human isolate has been shown to prevent the 
respiratory burst reaction in neutrophils by inhibition of the 
NADPH oxidase, which also could make the host more susceptible 
to secondary infections [37]. It has also been speculated that 
the pathogenesis of anaplasmosis is not caused directly by the 
organism, but that the injury may be in part host-mediated 
[31,38,39]. 

Strains/variants

Based on different genes such as 16S rRNA, ankA, groESL, and 
msp4, several genetic variants with high degree of diversity of 
the bacterium have been found in sheep with a variable degree 
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of cross-protective immunity [8,9]. In one study, 24 msp4 gene 
variants were found in a sheep flock during one grazing season 
[40]. The reason for this huge amount of msp4-gene variants is 
unknown.

Several A. phagocytophilum enzootic cycles between ticks and 
wild animals in nature have been proposed [8,41,42]. Spillover 
infection to other hosts may occur commonly. The epidemiology 
of variants isolated from infected sheep is unknown. According 
to earlier studies, red deer (Cervus elaphus) may act as host for 
variants of A. phagocytophilum known to cause TBF in sheep [43]. 
However, it should for instance be elucidated if other mammals 
and/or tick species are involved in the natural transmission cycle 
of A. phagocytophilum variants infecting red deer and sheep. The 
potential of a vertebrate to function as a reservoir host depends 
on factors such as the host´s density in the tick habitat and the 
degree of contact with the actual vector and the host, as well as 
the level of bacteraemia in the host [12]. 

Infection with multiple variants of A. phagocytophilum in 
single sheep have been observed, which may be caused by super 
infection or simultaneous transmission from multiple infected 
ticks [40,44].

Diagnosis

The clinical diagnosis is based on a sudden onset of very high 
fever associated with haematological changes and the presence 
of typical cytoplasmatic inclusions in phagocytes, especially 
in neutrophils. Microscopy of blood smears taken in the fever 
period is normally sufficient to confirm the diagnosis. Stained 
with May-Grünwald Giemsa, the organisms appear as light-blue 
inclusions. In the acute phase of the infection up to 90% of the 
neutrophils may be infected [15].

Inoculation of infected blood into susceptible animals was also 
previously used to confirm the diagnosis. However, a PCR method 
is now commonly used to identify A. phagocytophilum in blood 
and tissue samples. In addition, cultivation of A. phagocytophilum 
in different tissue cultures has been described [9]. 

The presence of specific antibodies may support the diagnosis, 
especially an indirect immunofluorescent antibody (IFA) test is 
widely used. However, it may be difficult to use the IFA-test to 
diagnose an acute infection in lambs, since the IFA-titres persist 
for months after the primary A. phagocytophilum infection [9]. 

At port mortem, an enlarged spleen up to four to five times 
the normal size often with sub-capsular bleedings, are regarded 
as indicative of TBF in sheep [15]. No other typical pathological 
changes in sheep have been described. 

Treatment

The safest way to prevent TBF is to avoid tick-infested areas. 
However, this is often not feasible. In endemic areas, regular 
dipping or pour-on treatment with pyrethroids against ticks may 
be necessary [9]. 

In direct treatment, the drug of choice is tetracycline. However, 
a 5-day long treatment with oxytetracycline (10 mg/kg per day) 

was not enough to clear the organism from experimentally A. 
phagocytophilum infected lambs. Data suggest that quinolone 
antibiotics and rifampin may be alternative drugs for animals and 
patients with intolerance to tetracycline [9].

Control

The main disease problems associated with TBF are seen in 
lambs during the first grazing season, and in sheep purchased 
from tick-free areas and placed on tick-infested pastures for 
the first time [45]. Problems due to TBF may however differ 
significantly between neighboring pastures. One reason for this 
may be due to the variants involved with different virulence and 
protective immunity [46].  

As already mentioned, the infection causes persistence 
in sheep, and variants may therefore be carried between 
geographical areas. Ticks may become infected from these 
carriers and later transfer these variants to susceptible animals. 
Since infected sheep may show few clinical signs, TBF in flocks 
with low morbidity and mortality could stay unnoticed for years 
until severe losses due to secondary infections occur (Stuen, 
personal information). 

Current control strategies are based on the reduction of 
tick infestation by acaricides at turnout on tick pasture. This is 
mostly done be dipping or pour-on applications of pyrethroids 
[9,47]. This treatment has to be repeated several times during 
the tick season. In the UK, long-acting tetracycline is also used 
as a prophylactic measure given before animals are moved from 
tick-free environment into tick-infested pasture [5,48]. However, 
there is a growing concern about the environmental safety and 
human health, and the increasing resistance of ticks to pesticides 
[49]. 

Another strategy to reduce the losses due to TBF is to infect 
the lambs as early as possible. However, this practice is only 
feasible if the lambs are infected immediately after birth (< 2 
weeks old), since three to six week old lambs are very susceptible 
to the infection [9].  

Pasture management and habitat modification may reduce 
the density of ticks and thereafter the occurrence of TBF. The 
methods include drainage, controlled burning, herbicidal 
treatment, mechanical clearing of bushes, removal of leaf 
litter, and in some cases partial removal of the forest canopy 
[50]. Alteration of the habitat may also change the tick hosts 
availability. However, the tick abundance can only be reduced 
by these procedures for a short period, and several procedures 
have to be repeated periodically and are labour intensive. In 
addition, sufficient habitat modification is not always feasible 
and farm animals are always at risk from ticks brought in from 
surrounding areas, especially if other large animal species use 
the same pastures. 

Biological tick control is an attractive approach to tick 
management. Studies so far have concentrated of bacteria, 
entomopathogenic fungi and nematodes [49]. However, the main 
challenge is to create a sustainable biological control of ticks in 
the natural habitat. 
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As already mentioned, recent investigations indicate that 
there may be natural enzootic cycles among different strains of 
A. phagocytophilum, whereas red deer may serve as hosts for 
variants involved in TBF in sheep. However, genotyping based 
on msp4-gene sequencing indicates that a clustering of variants 
with wild ruminants appearing distinct from sheep variants. 
Management of the cervid population to protect domestic sheep 
from ticks and tick-borne infection should therefore be further 
elucidated [43].

A vaccine against A. phagocytophilum is not yet available. 
In order to develop a vaccine, the challenge is to choose the 
right antigens that are conserved among all variants of A. 
phagocytophilum [51]. The whole genome of human variants of A. 
phagocytophilum has recently been sequenced. However, several 
sheep variants of the bacterium have to be sequenced in order 
to do comparative genomics and develop proper recombinant 
vaccine antigens for future cross-infection studies [52,53]. 

Vaccines against ticks are also an alternative option. However, 
only a vaccine against the one-host cattle tick Rhipicephalus 
(Boophilus) microplus has so far been developed [54]. Control of 
ticks by vaccination have the advantages of being cost-effective, 
reducing environmental contamination and prevent the selection 
of drug-resistant ticks that may result from repeated acaricide 
applications. Development of vaccines against multiple tick 
species may be possible using highly conserved tick-protective 
antigens or by antigens showing immune cross-reaction in 
different tick species [55]. 

CONCLUSIONS    
A. phagocytophilum epidemiology involves different ecotypes 

circulating in various hosts species, especially as Ixodes ticks feed 
on a large variety of vertebrates [53]. An active surveillance for 
A. phagocytophilum is therefore necessary in order to identify the 
real distribution, since strain/variants may exist with various 
clinical and immunological characteristics between different 
small ruminant breeds. In addition to welfare aspects, the farmer 
would also benefit when unrecognised and subclinical infections 
are revealed and curative and preventive measurements 
performed. 

Climatic change will have an effect on the distribution and 
establishment of populations of ticks, since climate-warming 
models predict that several tick species are likely to establish 
more northern permanent populations [56,57]. In addition, 
millions of ticks are annually spread by migrating birds, making 
the possibility for long distance spread of ticks and pathogens, 
such as A. phagocytophilum [58,59]. 

Development of new recombinant vaccines using 
comparative genomics and proteomics will continue in progress. 
Whole genome sequencing is a promising tool to study A. 
phagocytophilum pathogenicity and epidemiology and hopefully 
in the future help to develop a vaccine for efficient control 
management. 
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