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Abstract

Climate change has far-reaching consequences on several sectors of agriculture. Cattle production within animal agriculture is one of the most susceptible 
sectors for the devastating effects of climate change. Climate change associated heat stress negatively impacts cattle production both directly and indirectly. 
Heat stress reduces the feed intake which ultimately reduces the body weight, average daily gain and body condition scoring in cattle. Further, heat stress 
associated reduced feed intake also affects the milk production, meat production and reproduction in cattle. The high producing cattle are more vulnerable 
to heat stress than the low producing animals. Livestock exhibits a wide range of adaptive mechanisms to cope with environmental challenges. The classical 
adaptive mechanisms include morphological, behavioral, physiological, neuroendocrine, blood biochemical and cellular responses that act in coordination to 
promote the welfare and favour their survival in a specific environment. The detailed studies on these adaptive mechanisms have identified respiration rate, 
rectal temperature, Hb, PCV, cortisol, thyroid hormones to be reliable phenotypic markers and HSP70 as a confirmatory genotypic biomarker to assess the 
impact of heat stress in dairy cattle. 

INTRODUCTION
Climate change is an unprecedented challenge faced by all the 

species on earth and this enduring effect hampers the balance of 
the ecosystem. Most of the developing countries would end up 
in severe poverty due to the devastating effects of the climate 
change on the agriculture and food production systems. Like 
other agricultural sectors, climate change also adversely impact 
the livestock sector. Among the livestock sector, cattle production 
is one of the most susceptible sectors for the devastating effects 
of climate change.  

There are different climatic variables that influence the 
production aspects in livestock and among them, heat stress 
was considered the most detrimental factor which jeopardizes 
the cattle production [1]. The negative impacts of heat stress 
will become more severe in the future, as a consequence of ever 
progressing global warming and genetic selection for higher 
production continues.  Moreover, even a minute increase in 
upper critical temperature may severely hamper the cattle 
production subjecting the farmers to be highly vulnerable to 
cope with the challenge Furthermore, The economic decline 
in the dairy industry is primarily associated with, lowered 
milk production, reduced reproduction, increased metabolic 
disorders and poor immune function warranting research efforts 
involving appropriate amelioration strategies to reverse the 
condition [2]. However, the animals themselves possess some 
of the inherent capabilities to withstand climate associated risks 

through the process of adaptation. This review is therefore, an 
attempt to collate and synthesis information pertaining to heat 
stress impact on cattle production. Efforts were also been made 
to highlight the significance of cattle adaptation pathways and 
different strategies to cope them to the adverse environmental 
condition. 

Climate change and cattle production

Climate change negatively impacts cattle production both 
directly and indirectly. The direct effects comprise of rising 
temperature, variations in photoperiod as well as precipitation 
and, indirect effects include reduced feed quality as well as 
quantity, less water availability and higher disease susceptibility. 
Higher temperature along with humidity causes heat stress in 
cattle, which has a wide range of detrimental impacts such as 
reduced growth, lowered milk as well as meat production and 
impaired reproduction. Figure 1 describes the adverse impacts 
of climate change on various production aspects as well as the 
different adaptive mechanisms by which cattle counters heat 
stress.

Impact on growth

Growth is the increase in live body mass or cell multiplication 
which is controlled genetically and environmentally. Heat stress 
reduces the body weight, average daily gain and body condition 
scoring of animal [3].  The vulnerability of livestock to thermal 
stress decreases the dry matter intake that may negatively 

Review Article

Climate Change and Cattle 
Production: Impact and 
Adaptation
SP Angel1,2, JP Amitha1,2, VP Rashamol1,2, GD Vandana1,2,  ST 
Savitha3, A Afsal1,2, M Bagath1, G Krishnan1, and V Sejian1*
1ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, India
2Academy of Climate Change Education and Research, Kerala Agricultural University, 
India
3Veterinary College, Hebbal, Karnataka Veterinary Animal and Fishery Sciences University, 
India



Central
Bringing Excellence in Open Access





Sejian et al. (2018)
Email: 

J Vet Med Res 5(4): 1134 (2018) 2/10

influence the growth performance of the animal [4]. In addition, it 
also decreases both the productive and reproductive performance 
of the heat stressed animal.  According to NRCC, 2007 [5], the 
effect of heat stress on the crossbred was more than indigenous 
species. Increases in temperature to the tune of 2-6 °C associated 
with global warming negatively affect growth, puberty and 
maturity of animal apart from delaying the attainment of puberty 
[6]. Further, the animal exposed to chronic stress may undergo 
metabolic adaptation to cope with the stressful condition. 
Metabolic adaptation includes changes in the endocrine function, 
basal metabolism, metabolism of water and electrolytes, acid-
base balance and alteration in rumen fermentation [6]. In 
addition to affecting the body weight, heat stress was also 
found to negatively influence the allometric measurements and 
body condition scoring [7]. Since circulating growth hormones 
characteristics appear to change very little during heat stress, and 
the hepatic growth hormones responsiveness was altered with 
increased temperature by measuring early signaling molecules in 
the growth hormone signal transduction cascade [8]. Hence, heat 
stress abatement practices such as shade, cooling and ventilation 
would assist in reducing the impact of heat stress on the animal 
[4].

Impact on milk production

One of the most significant factors affecting the milk 
production during heat stress is the unavailability of feed [9]. 
Environmental temperature above 35°C instigates stress response 
mechanisms in lactating dairy cows [10]. High producing dairy 
cows generates high metabolic heat than low producing animals. 
Therefore, high producing dairy cattle are more sensitive to heat 
stress [10]. Further, the increased metabolic heat production 
during heat stress reduces the milk production in livestock 
[1112]. Increasing air temperature, temperature-humidity index 

(THI) and rising rectal temperature above the critical threshold 
levels are related to decrease dry matter intake (DMI) and 
reduced milk yield [6]. Further, mechanisms preventing water 
loss are activated during heat stress so as to reduce the water 
loss through urine in favors of milk production [13]. In addition, 
the selective forage intake during heat stress with alternative 
rumen fermentation causes a decrease in acetate and alters the 
acetate: propionate ratio which causes reduction in milk fat yield 
[14]. The heat stressed animals exhibit shade seeking behavior, 
increased respiration rate (RR) and dilation of the blood vessels 
to reduce the effect on milk yield. During moderate and severe 
heat stress exposure, both saliva production and RR increases 
which were associated with a marked decline in milk production 
[15]. Further, the reduction in feed intake and increased water 
consumption along with increased body temperature declines 
the milk production performance of the dairy cattle. The 
maintenance energy requirement may increase by 20-30% 
in animals during heat stress [16]. This decreases the energy 
availability for productive functions mainly the milk production. 
This decrease in milk production can be transitory or long term 
depending on the length and severity of heat stress.  If heat stress 
lowers milk production in early lactation dairy cows, potential 
milk production for the lactation will be decreased. Dairy animals 
drop 50% of milk production due to reduced feed intake and 
metabolic adaptation to heat stress and markedly changes post-
absorptive nutrient metabolism [17]. 

The hot and humid climate affects the quantity and quality 
of milk. During the dry period, heat stress reduces mammary 
cell proliferation resulting in decreased milk production. 
Moreover, heat stress during the dry period negatively affects 
the function of the immune cell in lactating cows facing calving 
and also extended to the following lactation [18]. On comparing 
milk production during summer and spring in a dairy herd, it 

Figure 1 Impact of climate change on production and adaptation of cattle.
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was found that lower milk yield (-10%), and also lower casein 
percentages were recorded in summer (2.18 vs. 2.58% and 
72.4 vs. 77.7% respectively) [19]. Further, it was established 
that the fall in casein was due to the reduction in both α-casein 
and β-casein percentages. Additionally, only half of the loss in 
milk yield to thermal stress can be accounted for by a decrease 
in feed intake while the remaining loss could be due to altered 
carbohydrate and fat metabolism or direct effects on milk 
synthesis and secretion. 

Impact on meat production

Climate change threatens both the meat quality as well as 
organoleptic characteristics [20]. The environmental factors 
determine the quality of meat during on farm, pre-slaughter and 
post-slaughter processing. In beef cattle, weight, thickness and 
colour of coat are the major determinants of meat production 
during heat stress condition [12]. These authors observed the 
impacts of heat stress on body weight, body size, carcass weight 
and fat thickness of animals. Pre and post slaughter environment 
has a greater influence on the tenderness of meat [21]. Another 
constraint of climate change in processing quality meat is the 
microbial attack. Microbial attacks are often on carcasses and 
meat especially when animals carry enteric pathogens in their 
gut.

Extreme heat stress results in the increased pH and darker 
meat colour [22]. These changes are due to the constant exposure 
of beef cattle to high ambient temperature until pre-slaughter. 
This result in adrenergic stress response is activated in which 
peripheral vasodilation and muscle glycogenolysis are induced 
as a result of the activity of adrenaline [23]. Hyperthermic 
condition and excessive exercise prior to slaughter results in 
tougher meat and this is attributed to the heat shortening effect. 
But in contrast, findings of Nardone et al. [7] reveal that high 
environmental temperature favours the marbling of muscle and 
also fat deposition in subcutaneous regions. 

Impact on cattle reproduction 

It has been reported that the ambient temperature associated 
infertility and reproductive problems in cattle has drawn the 
attention all over the world including tropics, subtropics and 
temperate regions [24,25]. The heat stress compromises the 
intrauterine environment by decreasing the blood flow towards 
the uterus and subsequently increasing the uterine temperature 
[26]. Several environmental factors play a crucial role in 
maintaining the reproductive functions of the dairy cow. Among 
these factors, heat stress was identified to be the critical cause of 
reduced fertility in dairy cattle [27]. It has also been emphasized 
that the thermal stress has a pertinent impact on the fetus and 
postpartum performance in Holstein heifer [28]. Further, studies 
reported that highly productive cattle are more susceptible to 
the changes in the environment which imparts alterations in the 
sexual cyclicity as well as the activity of ovaries [29]. 

Although the cattle are not directly exposed to heat stress, 
summer season related low fertility problems are the usual 
constraints faced by the farmers throughout the world [30]. 
This persisting effect of summer on fertility of cow results in 
altering the development of antral follicles during severe hot 
months [31]. Even minor changes in the core body temperature 

were established to be sensitive enough to induce changes in 
the estrous cyclicity in dairy cows [32]. The altered estrus cycle 
and behavior during exposure to heat stress results in the late 
manifestation of estrus and a lengthened estrus interval which 
leads to a high incidence of silent ovulation and anestrus in dairy 
cows [33]. The poor estrus expression during the heat stress 
usually reflects the reduced production level of gonadotropin 
releasing hormone (GnRH) as well as both the gonadotropins 
the follicle stimulating hormone (FSH) and leutinizing hormone 
(LH) in cows [34]. The altered LH secretion provides an ovarian 
environment wherein the dominant follicles grow in a low LH 
environment resulting in declined estradiol production which 
culminates in poor estrus expression reducing the fertility [35]. 

The effect of heat stress is prominent on the follicular 
development as the follicles require substantial time (40-
50 days) to grow from immature follicles to antral follicles 
and consequently, the heat stress decreases the diameter of 
follicles and induces biochemical changes in the follicular fluid 
[36]. The higher ambient temperature reduces the possibilities 
of superovulation and also leads to a higher compromised 
embryonic development [37]. The heat stress compromised 
ovarian follicles leads to reduced production of blood inhibin 
which further reduces the FSH concentration in blood [35]. 
Moreover, the prolonged impact of heat stress (up to the final 
stage of follicular development) may culminate in the lower 
levels of androstenedione produced from thecal cells and a 
decline in the estradiol concentration in the follicular fluid [38]. 
Therefore, exposing the early follicular stages to heat stress may 
result in impaired pre-ovulatory follicular functions during the 
autumn season. Additionally, the conception rates were reported 
to decline during the summer season in comparison with winter 
months [39]. 

The embryo survival is threatened when the cattle are exposed 
to a constant heat stress. In addition, several reports described 
on the reduction of steroid concentration in the follicular fluid 
contained in the larger matured follicles especially during the 
summer season and it indicates a compromised aromatase 
activity [40,41,42]. This further leads to early embryonic loss 
and reduction in the rate of successful insemination [43]. Apart 
from the direct consequences of heat stress, the reproductive 
performances of dairy cattle are influenced indirectly through 
the reduced dry matter intake (DMI), nutrient utilization, estrus 
period and milk production. A substantial decline in dry matter 
intake results in low fertility during the postpartum period [44].

Adaptation of cattle to climate change

Livestock possesses a wide range of adaptive mechanisms 
to cope with environmental challenges. These include 
morphological, behavioral, physiological, neuroendocrine, blood 
biochemical and cellular responses that act in coordination to 
promote the welfare and favors them to survive in a specific 
environment [45]. Adaptive responses help the animals to 
maintain their internal milieu and help them to sustain their 
productivity under the prevailing climatic conditions. 

Morphological adaptation

Animals evolve morphological characteristics according to 
the temperature prevailing in their agro-ecological zones. As per 
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Khalifa [46], morphological adaptation includes coat, fur depth, 
hair type, hair density, fat storage in hump or tail especially 
under desert conditions, skin colour and body size. In addition, 
Silanikove [47] also reported that during heat stress animals 
possess some of the morphological characteristics such as larger 
salivary glands, higher surface area of absorptive mucosa and the 
ability to increase the considerable volume of the foregut when 
fed with high fibrous food.

Dairy cattle from hot and arid conditions have light coloured 
hair coat with white, light red, red or a combination of these 
colours so as to protect the animal from the solar radiation 
[48]. Moreover, animals having light coloured coats absorb less 
heat compared to those having darker skin tone [49]. Further, 
smooth, light, short and thin hairs are seen in cows at arid 
conditions in order to enhance maximum heat dissipation during 
stress conditions [48]. For instance, black and white spots in 
Holstein Friesian cows make them adaptable to both cold and 
hot environment. The black skin absorbs more solar radiation 
while white reflects the radiation which helps them to maintain 
their body temperature [48]. For cattle to maintain their thermo-
neutral zone they tend to dissipate heat through the sweat glands 
by the evaporative cooling mechanism. Therefore, by improving 
their sweat glands heat tolerance can be enhanced [50].  Further, 
there are several morphological adaptations that have evolved 
time immemorial in animals belonging to arid regions like short 
and thin hair, pigmented skin, short ears with tiny hair, movable 
and slender [51]. Hansen [52] observed that low metabolic 
rate lowered resistance to the flow of heat from the core to the 
periphery of the body. Consequently, the features of hair coat 
ensured heat dissipation and made Zebu cattle superior for heat 
tolerance. Research findings indicated that slick gene induced 
in the animal can regulate the body temperature affecting hair 
length [53,54]. Despite these, Dikmen et al. [54] conducted a 
study inducing slick hair gene to Holstein cows that rendered its 
carrier with a silk hair coat and improved their heat forbearance. 

Behavioural adaptation

Changes in the environmental condition influence the 
performance and productivity of the animals. In an effort to 
adapt to varying environmental conditions, the animals exhibit 
several behavioural responses. The most important behavioural 
responses studied in dairy cattle include: shade seeking 
behaviour, standing time, feeding, defecating and urinating 
frequency, water intake, lying time, and increased frequency of 
drinking [55].

Shade seeing is a common behavioural response which helps 
the animals avoid exposing themselves to direct solar radiation. 
Generally, dairy farms comprise of shading structures that 
alleviate heat stress [56]. Studies have proved that cattle mostly 
preferred tree shades rather than shaded structures due to high 
evaporative cooling from tree leaves [57]. However, farmers 
widely go for shaded structures with light colour and iron material 
roofs [58].  When heat load increases, cows tend to reduce lying 
time and increase the standing time [59].  These activities increase 
their body surface area which promotes evaporative heat loss 
and also could circumvent radiative and convective heat from 
the ground [60]. However, a study conducted by Vijayakumar et 
al. [61] proved that sprinklers and fans in farms could effectively 
reduce the heat load thus increasing their lying time.

Generally, the defecation and urination frequency decreases 
as the heat load increases. This frequency relies mainly on the 
availability of feed, water and, environmental temperature [55]. 
Correspondingly, reports suggest that heat stressed cows showed 
a drastic decrease in urine frequency [62]. Cattle reduce the 
feed intake when exposed to extreme environmental conditions 
[63]. Feeding during the heat stress generally increases the 
metabolic heat increment in ruminants thus they tend to reduce 
their feed intake [16]. However, this may reduce both the body 
weight and body condition scoring which reflects the productive 
performance of cattle [64]. Water consumption increases during 
severe environmental conditions. Water is vital under heat stress 
condition and a cow usually prefers water with a moderate 
temperature that is neither too cold nor too hot [65]. Mostly, 
experts have recommended providing cold water during hot 
conditions or water below the body temperature which helps in 
maintaining body temperature. 

Physiological Adaptation

Physiological adaption is another important adaptive 
mechanism exhibited by heat stressed cattle which helps to 
maintain homeostasis during exposure to adverse environmental 
condition [66]. The adaptability of the animal to heat stress 
was attained by altering the physiological responses such as 
respiration rate, rectal temperature, pulse rate, body temperature 
and sweating rate [67]. Further, the physiological modifications 
are needed to sustain the normal body temperature and to 
prevent hyperthermia [68]. Respiration rate is one of the 
primary physiological mechanism by which heat stressed cattle 
dissipate the body heat through respiratory evaporative cooling 
mechanisms [1]. During the exposure to hot environment, 
the animal increases the respiration rate to avoid the extra 
heat load in the body and thereby maintain homeothermy 
[67]. Higher respiration rate and sweating rate was observed 
in an animal exposed to high ambient temperature [69]. The 
increased rectal temperature in heat stressed animal is a natural 
mechanism for dissipating the additional heat load to maintain 
the thermal status of the livestock [70]. Further, the greater 
rectal temperature during summer also indicates the inability of 
the animals in maintaining the normal body temperature [45]. 
Increased pulse rate and rectal temperature were reported in 
farm animals during summer season [71,72]. Similarly, Katiyatiya 
et al. [73] also reported higher rectal temperature when animals 
were exposed to heat stress for six hours during daytime. The 
higher pulse rate enables the stressed animals to dissipate 
more heat to its surroundings by increasing the blood flow to 
their body surfaces [69]. Further, exposure of the animal to hot 
environment also increases the skin temperature. The increased 
skin temperature of the animal due to high ambient temperature 
alters the blood flow to the skin and redistributes the blood flow 
to the surface of the skin [74]. A study was conducted in both 
Nguni and Boran cattle breeds showed higher skin temperature 
during summer season [73]. Further, a comparative study in 
the indigenous zebu breeds (Gir, Sindhi, Indubrasil) showed 
higher magnitude for physiological parameters such as rectal 
temperature and heart rate during the afternoon (35.90C) [75].

Neuro-endocrine adaptation

Endocrine responses are one of the principal regulators of 

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=heat+stress


Central
Bringing Excellence in Open Access





Sejian et al. (2018)
Email: 

J Vet Med Res 5(4): 1134 (2018) 5/10

the animal adaptation. Both adrenal and thyroid glands have a 
significant role in thermoregulatory mechanism in the animal 
during stress [76]. The stress results to induce changes in the 
secretion of pituitary hormones, leading to altered metabolism, 
immune competence and behavior, as well as failures in 
reproduction [77]. The hormones associated with adaptation to 
heat stress include glucocorticoids, catecholamines, antidiuretic 
hormone (ADH), thyroid hormones, mineralocorticoids, growth 
hormone (GH) and prolactin (PRL), [78]. Minton [76] stated 
that environmental stressors have the potential to activate 
the hypothalamic-pituitary adrenocortical axis (HPA) and 
sympatho–adrenal medullary axis (SAM). When the animals 
are exposed to stress the body receives sensory information, 
the sympathetic nervous system sends the signal and activates 
adrenal medulla through acetylcholine. Finally, epinephrine 
and norepinephrine are released into the blood and act as a 
bodily mechanism for fight or flight response to overcome the 
stressful condition [79]. The HPA axis acts as another principal 
endocrine system involved in regulation of the stress response 
in livestock [80]. The HPA axis controls the enhanced production 
of glucocorticoids which act as the stress relieving hormone in 
heat stressed animals [80,81]. The animal exposed to acute stress 
results in high level of plasma cortisol production however, the 
level comes down during chronic stress [81]. Further, several 
studies clearly show the higher level of cortisol during heat stress 
and also identified as an indicator for heat stressed animal [82]. 
Increased production of cortisol also assists the stressed animals 
to meet the additional energy requirements for the adaptive 
mechanisms through the pathway of hepatic gluconeogenesis 
[83]. In addition, the increased glucocorticoid concentration 
indicates the severity of heat stress during exposure to hot 
environment. Aldosterone is a steroid hormone released from 
the cortex of the adrenal glands and involves in the regulation 
of water and mineral balance in the animal body [49]. During 
heat stress conditions the animals undergo severe dehydration 
and which results in the activation of the renin-angiotensin-
aldosterone pathway to restore the water and electrolyte 
balance [84]. Several studies were conducted and reported 
the higher level of aldosterone in heat stressed livestock [84]. 
Further, thyroid hormones play an important role in regulating 
the thermogenesis and are identified as an indicator for assessing 
the thermo-tolerance of the farm animals. Significant reduction 
in concentration of triiodothyronine (T3) and thyroxine (T4) 
in plasma and in milk of lactating cows were reported and it 
is considered as another adaptive mechanism to avoid extra 
heat load as a result of increased metabolic activity [85]. The 
compromised pituitary thyroid axis activity was reported in 
steers with a reduction of approximately 40, 45.4 and 25.9% in 
TSH, T4 and T3 levels during heat stress reflecting their ability to 
produce less metabolic heat in an effort to adapt to heat stress 
exposure [86].

Blood biochemical response

The blood biochemical composition considerably reflects the 
health status of the cattle. There are several factors that determine 
the composition of blood and that especially include nutrition, 
management, stress and diseases [87]. Even moderate changes 
in the environmental condition bring significant variations in the 
blood biochemical composition. Since heat stress is the major 

effect of climate change, it has a large influence on the blood 
biochemical composition consisting of packed cell volume (PCV), 
hemoglobin (Hb), plasma glucose, albumin, total protein, total 
cholesterol, non esterified fatty acid (NEFA) in animals. 

The heat stress in cattle leads to a significant decline in the 
red blood corpuscles (RBC) and Hb count and this decrease can 
be correlated to their adaptive capability [88]. The exposure of 
high temperature leads to high consumption of oxygen as a result 
of increased RR. This further increases the partial pressure of 
oxygen in blood reducing erythropoiesis and declined RBC and 
Hb values [89].                                                                       

Similarly, it was emphasized that the heat stress related 
decline in PCV can be related to the excess requirement of water 
in the circulatory system in order to dissipate the heat through 
haemodilution effect [90]. 

On contrary to the trend of PCV and Hb, plasma albumin level 
in blood shows a positive trend (significant increase) during heat 
stress period in cattle [91]. In Holstein heifer, the plasma albumin 
concentration was found to be increased during the summer 
season in comparison with the winter season. This is attributed 
to the activity of plasma albumin as antioxidants to scavenge the 
free radicals during heat stress [92].  

Additionally, Koubkova et al. [93], suggested that total protein 
increases significantly during heat stress and gradually reduces 
as a result of gluconeogenesis.  Also, there are reports describing 
the relationship of increased total protein and albumin during 
the spring season. This could be due to the plenty feed availability 
during this period [94].

The glucose concentration in the serum has been derived 
from the process of gluconeogenesis. Therefore, summer season 
induced reduction in the glucose level could be due to the reduced 
gluconeogenesis [94]. However, Koubkova et al. [93], reported an 
increase in the glucose level during stress in cattle. 

The metabolic activities are supported by the mobilization 
and utilization of non-esterified fatty acid (NEFA) during the 
testing condition [95]. The stress influences NEFA concentration 
that helps in determining the energy status of the animal [96]. 
The plasma level of NEFA decreases as a result of continuous 
exposure to heat stress in dairy cattle. This is due to the high 
requirement of NEFA in the liver and peripheral tissues as a 
source of energy [97]. Similar findings of reduced NEFA were 
reported by Baumgard and Rhoads [17] during heat stress in 
order to burn the glucose so as to reduce the metabolic heat 
production. Contrarily, Shehab-El-Deen et al. [36], opined that 
the NEFA production increases with the exposure in summer 
and this can be related to the adaptive capability of the cattle to 
maintain a constant energy throughout the summer season.  

Further, the total serum cholesterol level shows considerable 
alterations during heat stress relative to normal condition. Ocak 
et al. [98], describes the total serum cholesterol to be reduced 
as an impact of thermal stress. Likewise, Alberghina et al. [94], 
also reported reduced total serum cholesterol in heat stressed 
dairy cows. Metabolic activities in stressed cows are controlled 
by the level of various enzymes in the blood. Findings of Mazzullo 
et al. [88], revealed that aspartate aminotransferase (AST) and 

https://en.wikipedia.org/wiki/Epinephrine
https://en.wikipedia.org/wiki/Norepinephrine
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alanine amino transferase (ALT) increases during the winter 
season in the cow. The alterations in the activity of these enzymes 
reflect the poor functioning of the liver.  Similar results of ALT 
were established by Alameen and Abdelatif [99] in cross bred 
dairy cows. Hooda and Singh [100], reported decreased alkaline 
phosphatase (ALP) activity in buffaloe heifer during heat stress 
exposure. 

Haptaglobin is an essential component in the lipid metabolic 
pathway. There are several contradictory findings pertaining 
to the haptaglobin concentration in heat stressed cows. The 
haptaglobin was established to be higher in heat stressed cows 
[94]. Similarly, Wenz et al. [101] also postulated the increasing 
trend of haptaglobin in dairy cows which is in par with the findings 
of Alberghina et al. [94]. In contrast, Chan et al. [102] reported no 
influence of heat stress on the haptaglobin concentration in dairy 
cows.  

Cellular and molecular adaptation

The cellular level of adaptation is one of the acute systemic 
responses to heat stress and it plays a significant role in imparting 
thermo-tolerance to animals. Gene networks within and across 
the cells respond to a higher temperature through both intra- and 
extracellular signals that result in cellular adaptation. Further, 
when an animal subjected to single, severe but non-lethal heat 
exposure, the cellular thermo-tolerance develops and that 
facilitate the organism to endure the ensuing lethal heat stress. 
Cattles evolved in hot climates such as Senepol, Bostaurusindicus 
and Romosinuano had acquired different thermo-tolerant genes 
when exposed to a higher temperature [52]. Moreover, the 
cellular adaption of an animal achieved by the synthesis of heat 
shock proteins (HSPs) and other thermo-tolerant genes which are 
involved in anti-stress mechanisms during heat stress condition 
[103]. Cells reduce their DNA synthesis, transcription and 
translation process, alter the protein activity and increases HSPs 
production on exposure to heat stress [104]. Gene expression 
alters on exposure to heat stress and the classical example of 
activation of heat shock transcription factor 1 (HSF1) culminates 
in increased expression of HSPs, decreased expression of other 
proteins, increased glucose and amino acid oxidation, reduced 
fatty acid metabolism, activation of endocrine system of the 
stress response and activation of immune system [105]. The 
HSPs are molecular chaperones that help in protein folding, 
refolding and transportation. Further, they also prevent protein 
denaturation and aggregation during heat stress condition. When 
cells are exposed to high ambient temperatures the expression 
of many HSPs such as HSP32, HSP40, HSP60, HSP70, HSP90, and 
HSP110 were found to be increased [106]. In addition, the genes 
associated with HSP synthesis can be used as potential biomarkers 
for cattle adaptation under harsh environmental stresses [107]. 
Identification of the genes facilitating cellular thermo-tolerance 
may be helpful for developing heat tolerant cattle breeds through 
marker assisted selection breeding program. 

The slick hair gene is responsible for producing a very short, 
sleek hair coat. Moreover, cattle with slick hair were observed 
to retain lower rectal temperatures (RTs) [54]. The impact 
of the slick hair gene on RT depended on the quantum of heat 
stress, age and lactation status of the animal. Approximately 0.18 
to 0.4 decreased RT was observed for slick-haired crossbred 

calves in comparison with normal haired calves [108]. Natural 
resistance associated macrophage protein 1 (Nramp1) has been 
recognized as a major gene in many species. The Nramp1 gene 
is expressed in late endosomes coordinates the antimicrobial 
activity of macrophages. The genetic polymorphisms in the 
bovine HSP90AB1 and ATP1A1 genes were associated with 
heat tolerance in cattle. According to Littlejohn et al. [109], 
mutations in prolactin receptor genes (PRLR) offer additional 
thermo-tolerance to cattle other than its effects on short hair 
coat. In addition, the gene IGF-1 confers cellular resistance to 
heat stress in Nellore and Holstein cattle [110]. Muller et al. 
[111], established that the Fibroblast growth factors (FGFs) have 
important roles in cell repair in response to heat stress and it also 
protects the cells from injury. Furthermore, the interleukins (ILs) 
and toll-like receptors (TLRs) have a vital role in heat tolerance 
in Tharparkar cattle when they are exposed heat stress condition 
[112]. The NADH dehydrogenase, Tick resistance genes, 
Collagen, type IV, Kinesin family, Selenium binding protein, 
Annexin, glycosyltransferase, protein kinase C, transcription 
factor, thyroid hormone receptor, mitochondrial inositol protein, 
isocitrate dehydrogenase and butyrophilin, hosphofructo kinase 
are the additional genes associated with thermo-tolerance to 
warm climates in livestock [106].

CONCLUSION
This review highlighted the salient findings on the various 

impacts of climate change on cattle production. Climate change 
associated heat stress was identified to be the principal factor 
which adversely impacted all production aspects in cattle. Among 
the different categories of bovine, dairy cattle were found to be 
more sensitive for the temperature changes. Heat stress was 
established to reduce both the growth and milk production 
in dairy cattle. Further, heat stress also was found to have a 
profound influence on beef cattle production by altering both 
the quality and quantity of meat. In addition, all reproductive 
functions of cattle have been adversely affected by heat stress. All 
these adverse impacts have severe consequences on the economic 
return in cattle farms and this enormously affected the livelihood 
securities of poor and marginal cattle farmers. The second part 
of review addressed the various adaptive mechanisms exhibited 
by cattle to cope with heat stress challenges by maintaining 
homeostasis. The detailed studies on these adaptive mechanisms 
have identified respiration rate, rectal temperature, Hb, PCV, 
cortisol, thyroid hormones to be reliable phenotypic markers 
to quantify heat stress response in cattle. Further, HSP70 has 
been identified to be the confirmatory genotypic biomarker to 
assess the impact of heat stress in dairy cattle. However, breed 
differences were also established for the adaptive capabilities of 
cattle to heat stress challenges. 
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