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Abstract

Cryptosporidium spp. are major protozoal parasites infecting dairy cattle and cryptosporidiosis is a leading cause of morbidity in dairy calves. The 
objective of this study was to determine the prevalence and intensity of Cryptosporidium spp. infections associated with farm management risk factors and 
genotypes of Cryptosporidium spp. in preweaned dairy calves by conducting a cross-sectional study on eight dairies in the San Joaquin Valley of California. 
Fecal samples were collected from preweaned calves and evaluated for oocysts shedding load using immune fluorescent assay, and genotype using PCR and 
sequencing of a fragment of 18S rRNA gene. Information on management factors that contained categories of questions related to calf housing, feeding and 
management were also collected from the study farms. Statistical analysis of variables associated with Cryptosporidium spp. shedding was conducted using a 
multivariable logistic regression model.The overall prevalence of Cryptosporidium spp. in preweaned calves across all dairies was 56.0% [342/610]. Among 
105 isolates of Cryptosporidium spp. successfully genotyped, 86.7% were determined to be C. parvum, 12.4% as C. bovis, and 0.9% as C. ryanae respectively. 
Calves shedding Cryptosporidium spp. Oocysts had 1.6 times the odds of being 16-31 days of age on the day of sampling compared to other age groups. 
A Cryptosporidium spp. positive calf had 8.3times higher odds of exposure to milk bottles cleaned 2 to 3times/week compared to negative calves that were 
exposed to bottles cleaned at every feeding. Positive calves also had 2.4 higher odds of exposure to bottles cleaned exclusively with disinfectant compared 
to bottles cleaned with disinfectant and water than negative calves. Cleaning bottles with only hot water was found to be protective against Cryptosporidium 
spp. shedding in calves compared to bottles cleaned with both water and disinfectant. Results of this study provided updated information on Cryptosporidium 
spp. genotypes infecting preweaned calves on California dairies and approaches to reducing oocysts shedding in calves.

INTRODUCTION
Cryptosporidiosis is a diarrheal disease caused by 

Cryptosporidium spp. Diarrhea caused by cryptosporidiosisis 
a leading cause of morbidity in dairy calves [1]. Although, 
cryptosporidiosis typically causes mild, self-limiting disease 
in calves, in some cases, it can lead to fulminating diarrhea, 
severe dehydration, and death if concurrent gastrointestinal 
infections exist [2]. Many calves can be asymptomatic carriers 
that shed infective oocysts into the environment for 3-14 
days[3]. Cryptosporidiumspp. oocysts persist in moist and shaded 
environments common on most dairy settings,which can lead to 
infection in newborn calves through environmental transmission. 

Reported effective disinfectants include ammonium hydroxide, 
UV light, hydrogen peroxide and 5% ammonia solutions [4]. 
Oocysts shed into waterways by cattle grazing in riparian areas 
is also a topic of public health and marine mammal conservation 
interest [5]. The role of Cryptosporidium spp. as a waterborne 
zoonotic disease has led to restrictions on cattle grazing along 
waterways, and implementation of vegetative buffers in these 
regions to reduce concentrations of oocysts reaching the 
water[6].

Previously we have characterized age, geographic, and 
temporal distribution of fecal shedding of C. parvum oocysts in 
cow-calf herds[7] and associations of herd composition, stocking 
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rate, and duration of calving season with fecal shedding of C. 
parvum oocysts in beef herds [6] both in California. We found 
that calf shedding of C. parvum oocystsis highest in the first 30 
days of life [2,7], and peaks around 7-15 days of age in calves 
[7]. We also identified failure of passive transfer in calves and 
duration of calf contact with the dam as associated risk factors 
for C. parvum shedding [7]. Cryptosporidium spp. infection during 
the neonatal period has led many researchers to evaluate the 
role of the periparturient dam as a source of transmission of 
Cryptosporidium spp. to newborn calves [3,8] and to identify on-
farm management practices that increase or decrease the odds of 
Cryptosporidium spp. shedding which is important for improving 
calf health and decreasing zoonotic risk through environmental 
contamination [4]. In one of our earlier studies we found no 
detectable shedding of C. parvum oocysts by periparturient dairy 
cattle in three dairies in California [9]. There is a need to assess 
more detailed information on management factors associated 
with shedding of Cryptosporidium spp. oocysts in preweaned 
calves on California dairies with the typical western style of 
confinement dairy production. 

On the other hand, during the past decade the classifications 
of Cryptosporidium spp. have been consistently updated, 
including the descriptions of species/genotypes in cattle that are 
either zoonotic [human infective] or non-zoonotic [non-human 
infective] [10-15]. For example, although many of the previous 
isolations of Cryptosporidiumspp. in cattle were classified as C. 
parvum which is a zoonotic species shed by livestock, wildlife and 
humans, other species of Cryptosporidium spp., such as C. ryanae 
that are generally not infectious to humans [non-zoonotic] were 
also describedin cattle [16]. Therefore, it is necessary to update 
the prevalence of different species of Cryptosporidium spp. in 
preweaned calves on California dairies.

The objectives of this cross-sectional study were: 1] to 
determine the prevalence and intensity of Cryptosporidium spp. 
infections; 2] to update major Cryptosporidium spp. species; and 3] 
to identify key farm management risk factors that are associated 
with Cryptosporidium spp. infection in pre weaned dairy calves. 
Our hypotheses were that the prevalence of Cryptosporidium spp. 
on dairies is associated with farm management practices and that 
multiple speciesof Cryptosporidium spp. infect preweaned calves.

MATERIALS AND METHODS

Study population

A convenience sample of eight dairies located in the San 
Joaquin Valley of California was chosen for the study following 
the recommendation of local Cooperative Extension Advisors and 
voluntary participation by the farms in the region. Each of the 
eight dairies was assigned a letter ID [A through H respectively] 
to protect their location and production information. Each dairy 
was visited twice on a different day between July and September 
2012 to collect fresh fecal samples from calves housed at each 
respective dairy to analyze for Cryptosporidium spp. oocysts.A 
minimum of 15g of fresh feces was collected per rectum using 
a lubricated gloved hand by field staff at each farm. A new 
glove was used between each calf. Each sample was transferred 
into a polyethylene cup with lid and placed in a cooler prior to 
transport back to laboratory at UC Davis. Samples were then 

refrigerated at 4°C until analysis. The sampling protocol was 
approved by the UC Davis Institutional Animal Care and Use 
Committee [IACUC]. In order to collect information of farm 
management factors, a survey questionnaire was administered 
during dairy visits by asking questions to farm managers and 
farm workers directly involved in day-to-day calf care activities. 
The survey questionnaire contained closed and open-ended 
questions grouped into categories of calving and maternity area, 
and calf housing, feeding and management practices. Questions 
in the categories of calving and maternity pertained to type of 
bedding, frequency and method of cleaning. The second category, 
focusing on calf feeding and management, included questions 
regarding source of colostrum and feeding practices used at each 
dairy, along with husbandry questions. The survey also collected 
demographic information including primary breeds, rolling herd 
average, and herd size for each dairy. 

Detection of Cryptosporidium spp. oocysts

Samples were processed within 48 hours for detection of 
Cryptosporidium spp. oocysts. A 5g of feces was homogenized in 
PBS and filtered through four-layer gauze secured on a strainer 
into a 50ml tube to remove large fibrous particles, and centrifuged 
at 1000 × g for 10 minutes. The supernatant was discarded and 
the sediment re-suspended in an equal volume of deionized 
water. Then 10µl of the fecal suspension was smeared onto a 
glass slide and air-dried, then a direct immunofluorescent assay 
[DFA] was performed on each slide to detect oocysts [17,18]. 
The entire slide was examined under 400× magnifications for 
identification and quantification of Cryptosporidium spp. oocysts 
using a fluorescent microscope [Olympus BX60]. 

Genotyping of Cryptosporidium spp.

A subset of microscopic positive fecal samples from different 
farms were subjected to genotyping of Cryptosporidium spp. A 0.2 
g of feces were exposed to 5 cycles of freeze [−80°C] and thaw 
[+70°C] then used for DNA extraction by using the DNA Stool 
Mini Kit [Qiagen] according to the manufacturer’s instructions. 
A nested PCR was performed using primers and reaction 
conditions amplifying a fragment of ~ 830 bp of the 18S rRNA 
gene according to methods previously described [19,20]. A DNA 
template of C. parvum isolated from calves from a local dairy farm 
and a negative control without DNA template were included. PCR 
products were verified by electrophoresis in 2% agarose gel 
stained with ethidium bromide. Products of the secondary 
PCR were purified using a Qiaquick spin columns [Qiagen] and 
sequenced at the UC Davis DNA Sequencing Facility using an 
ABI 3730 capillary electrophoresis genetic analyzer [Applied 
Biosystems Inc., Foster City, CA]. Primers of the secondary PCR 
were used for sequencing at both forward and reverse directions. 
Consensus sequences were generated from the forward and 
reverse sequences of each sample using Vector NTI Advanced 
11 software [Invitrogen Corporation, Carlsbad, CA]. BLAST 
analyses were performed to compare the sequences to existing 
Cryptosporidiumspp. sequences in the GenBank using the default 
settings of National Center for Biotechnology Information [NCBI] 
online blasting tool [https://blast.ncbi.nlm.nih.gov/Blast.cgi].

Statistical analysis

Survey management variables: A total of 54 management 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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questions were asked in the survey. These question variables 
were organized into three blocks [calf housing, calf feeding, calf 
management] for interpretation. Analyses were performed in R 
3.3.2 [21]using the ‘tidyverse’and ‘rms’ packages. 

Univariate analysis: All open-ended questions were 
converted to categorical questions in the data cleaning stage. 
Categorical variables werelabeled as factors to create dummy 
variables in model building. The survey questions represented 
nominal categorical independent variables to be included in 
model building. Calf age was a continuous variable to start and 
assessed for normality using a basic scatterplot. Later calf age was 
converted from a continuous to a categorical variable by dividing 
it into 4 categories that represented clinically relevant intervals of 
time with regard to risk of oocysts shedding. The binary outcome 
of Cryptosporidium spp. oocysts status [Positive=1; Negative=0] 
was used as the dependent variable to calculate odds ratios using 
logistic regression. All nominal categorical variables were cross-
tabulated with Cryptosporidium spp. outcome status to evaluate 
the frequency of responses for each answer choice to ensure 
an adequate count to conduct chi-square analysis.  Levels of a 
categorical variable were collapsed to improve frequency counts 
if there were fewer than five responses for a given answer. Any 
survey question that lacked variability in the answer selection 
across dairies was excluded from further evaluation. A question 
was considered to lack variability if all dairies had the same 
response. Within each management block, a chi-square test 
for independence was conducted on all categorical variables 
cross-tabulated [one-at-a-time] with the outcome to determine 
if a relationship existed between each independent variable 
and the Cryptosporidium spp. oocysts status. Univariate logistic 
regression was used to calculate an odds ratio to measure the 
association between each categorical exposure variable and the 
outcome of Cryptosporidium spp. oocysts shedding status. 

Model building: Following univariate analysis, the list 
of candidate variables to be included in the model selection 
process was further narrowed using the following criteria: 
1] hypothesized biologic relevance to Cryptosporidium spp. 
oocystsshedding, 2] previously shown to have a statistical 
association with Cryptosporidium spp. status in prior studies, and 
3] P-value < 0.1 on univariate analysis. The remaining variables 
were then ranked from highest to lowest in significance based 
onthe p-value from univariate analysis and offered to an age-
adjusted multivariable fixed-effects logistic regression model. 
A forward-stepping algorithm was used for model building in 
which the most significant variable was offered first, the model 
was re-fitted and the remaining candidate variables evaluated for 
significance, prior to the addition of the second most significant 
variable, and so on until all significant variables were included 
in the model. The significance of the likelihood ratio test was 
used to determine goodness-of-fit between each nested model 
in addition to Akaike information criterion [AIC]. Coefficient 
estimates and 95% confidence intervals were calculated using 
the Wald’s X2 statistic. To account for significant clustering of 
independent variables at the farm level, robust standard errors 
were calculated for the final model.

Multi-collinearity: For all categorical variables in the final 
model, collinearity was assessed using the chi-square test of 

independence between all covariates. Variables with a significant 
p-value on this test [<0.05] were considered collinear, and only 
one of the two variables were retained in the model. In addition, 
the variance inflation factor [VIF] was also calculated to assess 
for multi-collinearity between age and the categorical variables. 
Any variable with a VIF higher than 10 was removed from the 
final model.

RESULTS

Overall prevalence and load of shedding of 
Cryptosporidium spp. oocysts

The average total herd sizefor the eight dairieswas1,743 
animals. In total 654 calves were sampled with an average 
number of 82 calves sampled at each farm [ranged between 
80 and 83]. Ages of all calves sampled were between 0-60 days 
except for two calves that were 64 and 87 days old respectively. 
These two calves were both negative for Cryptosporidium spp. 
oocysts in feces.The highest proportion of calves positive for 
Cryptosporidium spp. oocysts were 16-31 days old [63.5 %] 
followed by 0-15 daysold [52.0 %], 32-46 days old [50.5 %] and 
>46 days old [40.0 %] [Figure 1]. The overall point prevalence of 
Cryptosporidiumspp. shedding across all eight dairies was 56.0% 
[342/610], with DairyFhaving the highest point prevalence 
of 87.8% [65/74; 8 NAs], and Dairy A with the lowest point 
prevalence at 37.3% [31/83; 0 NAs]. Figure 2 depicts the number 
of Cryptosporidium spp. oocysts shed in feces based on calf age 
[days] across alldairies. There appears to be clustering of higher 
oocystsshedding by positive calves in the age range of 4-15 days 
old, likely due to the onset of shedding after the pre-patency 
period.

Risk factors associated with shedding of 
Cryptosporidium spp. oocysts

Of the 54 question variables collected in the survey, 11 were 
significantly associated with Cryptosporidium spp. shedding 
on univariate analysis [Table 1]. The prevalence of shedding 
oocysts varied between risk factors and across levels of a factor. 
The final multivariable fixed-effects model and odds ratios for 
all significant variables in the modelare included in Table 2. 
The variables included in the final model were chosen based on 
having a combination of the lowest AIC and being statistically 
significant on likelihood ratio test during the forward-stepping 
procedure which corresponded to an improvement in goodness-
of-fit. Calves aged 16-31 days were statistically significantly 
associated with increased odds of shedding Cryptosporidium 
spp. oocysts compared to younger [0-15 days old] or older [>46 
days old] calves. The management practices pertaining to the 
frequency of cleaning milk bottles for each calf and the method 
for disinfecting the bottles were both significantly associated 
with the odds of shedding Cryptosporidium spp.oocysts.

Genotyping of Cryptosporidium spp.

In total 105 fecal samples microscopically positive for 
Cryptosporidium spp. from the eight dairies were successfully 
genotyped by PCR and sequencing a fragment of the SS rRNA 
gene. According to BLAST analysis completed by September 20, 
2018, 86.7% [91/105] isolates were determined as C. parvum, 
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Figure 1 Proportion of calves positive and negative for Cryptosporidium spp. oocysts in each age category.

Table 1. Prevalence and intensity of Cryptosporidium spp. oocysts shedding in calf fecal samples for each significant management factor identified 
on univariate analysis.

Factor No. of positive calves/no. of 
sampled calves (% positive) OR (95% CI)

Mean no. oocysts/g in fecal 
samples a

Positive Total
Age (Days) - - - -
0-15 143/275 (52.0) 1.0 80,329 41,771
16-31 141/222 (63.5) 1.6 (1.1, 2.3) 75,920 48,220
32-46 50/99 (50.5) 0.9 (0.6, 1.5) 21,197 10,706
>46 2/5 (40.0) 0.6 (0.1, 3.7) 484 193
Type of hutch
Hutch on ground 152/309 (49.2) 1.0 105,795 52,042
      Raised hutch 99/154 (64.3) 1.8 (1.2, 2.7) 24,104 15,496
Mixture of hutch types 90/148 (60.8) 1.6 (1.0, 2.3) 57,385 34,896
Type of hutch floor
Concrete 34/79 (43.0) 1.0 28,709 12,356
Wood or dirt 307/532 (57.7) 1.9 (1.2, 3.1) 73,797 42,586
Is bedding used in the hutch?
Yes 152/309 (49.2) 1.0 105,795 52,042
No 189/302 (62.6) 1.7 (1.2, 2.3) 39,952 25,003
How many days are hutches left empty between calves?
Never empty 31/83 (37.3) 1.0 60,172 22,474
7 days 28/75 (37.3) 1.1 (0.56, 2.0) 80,081 29,897
      More than 7 days 282/453 (62.3) 2.8 (1.7, 4.5) 69,235 43,100
How frequently is milk or milk replacer fed daily?
Twice 186/307 (60.6) 1.0 54,161 32,814
More than twice 155/304 (50.9) 0.7 (0.5, 0.9) 87,470 44,598
How often are the calf milk containers cleaned?
Every feeding 276/536 (51.5) 1.0 80,513 41,458
2-3 times/week 65/75 (86.7) 6.7 (3.3, 13.8) 21,696 18,803
How are the calf milk containers cleaned? 
Rinsed with water &
disinfectant 208/376 (55.3) 1.0 51,295 28,376

Rinsed only with hot water 31/83 (37.3) 0.48 (0.3, 0.8) 60,172 22,474
Rinsed only with
disinfectant 102/152 (67.1) 1.7 (1.1, 2.5) 108,796 73,008



Central

Atwill et al. (2019)

5/10J Vet Med Res 6(1): 1171 (2019) 

How is grain starter fed?
Metal bucket 99/154 (64.3) 1.0 24,104 15,496
Plastic bucket 242/457 (53.0) 0.64 (0.4, 0.9) 87,791 46,489
What is the dairy’s source of water?
Well 101/236 (42.8) 1.0 76,796 32,866
Pond 240/375 (64.0) 2.4 (1.7, 3.3) 66,148 42,335
At what age are calves moved to the hutch?  
Less than 6 hours old 28/75 (37.3) 1.0 80,081 29,897
6-24 hours old 197/301 (65.4) 3.0 (1.8, 5.1) 51,897 33,966
> 24 hours old 116/235 (49.4) 1.5 (0.9, 2.6) 96,258 47,515
Do workers enter the hutch to treat or evaluate calves?
Yes 34/79 (41.0) 1.0 28,709 12,356
No 307/532 (57.7) 1.9 (1.2, 3.1) 73,797 42,586
a Shedding intensity is the arithmetic mean for the number of oocysts shed per gram for positive fecal samples (Positive column), or the arithmetic 
mean for the number of oocysts shed per gram for all fecal samples (Total column).
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Figure 2 Quantitative shedding of Cryptosporidium spp. oocysts in preweaned calves.

12.4% [13/105] isolates were identified as C. bovis, and 0.9% 
[1/105] isolate was identified as C. ryanae [Table 3]. C. parvum 
was the predominant species prevalent in calves in all dairies. 
The 13 isolates of C. bovis were detected in Dairy B [3 isolates], 
Dairy D [2 isolates], and Dairy H [8 isolates]. Ages of calves that 
shed C. bovis were 15, 32, and 34 days old on Dairy B; 5 and 32 
days old on Dairy D, and ranged between 20-46 days old on Dairy 
H. The isolate of C. ryanae was detected from an 18-day old calf 
on Dairy E.

DISCUSSION
Previous works have identified management risk factors 

associated with Cryptosporidium spp. infection in dairy calves in 
other states and other countries[1, 22-31]. These include calf age, 
calves housed in a cow barn, herd size, and hay bedding in dairies 
in New York state [1]; higher prevalence in summer than winter 
in dairies in New York city [22]; calf age of ≤ 30 days in dairies 
in New York state [23]; the use of calf diarrhea prophylaxis in 
pregnant cows and the type of maternity facilities in dairies in 
Ontario, Canada [24]; age, placing of young stock, routines for 
moving young stock and time calf stays with the cow in dairies 

in Sweden [25];  calf age of ≤ 20 days in dairies in Argentina 
[26]; age [15-21 days old] in dairies in Italy[27]; calf age of ≤ 2 
months and poor sanitation in dairies in Kenya [28]; dispensing 
of colostrum using a bucket and feeding with fermented milk in 
dairies in France [29]; the use of milking equipment and milking 
cooler in dairies in Brazil [30];and types of flooring and methods 
and frequency of cleaning in dairies in Spain[31]. The current 
study populations comprised calves housed in hutches on all 
participating dairies on the day of sampling. The point prevalence 
of Cryptosporidium spp. calculated for this study [56%] was 
higher than that reported in New York city [11-26%] [22]and in 
Mexico [25%][32] but similar to high prevalence [78%] reported 
in dairies in Ontario, Canada[24] and52% in dairies in Sweden 
[25]. An earlier study found that the C. parvumpoint prevalence 
was highest in 15 day old calves [32]and other studies have 
reported similar results[1-3].Our study focused on preweaned 
calves aged 0-60 days which is an age group more susceptibleto 
Cryptosporidium spp. infections compared to older calves. Age 
as a continuous variable was found not statistically associated 
with Cryptosporidium spp. shedding, but when age was divided 
into four categories, the calves in the 16-31 days old category 
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Table 2: Final multivariable fixed effects logistic regression model, including robust SE for management factors associated with shedding 
Cryptosporidium spp. oocysts by calves.

Factor Adjusted OR 95% C.I. S.E. P-value for 
factor Robust S.E. P-value for 

factor (robust)
Age (Days)

0-15 1.0 - - - - -

16-31 1.6 (1.06, 2.3) 0.1970 0.024 0.1828 0.014

32-46 0.99 (0.60, 1.6) 0.2578 0.983 0.3293 0.987

> 46 0.37 (0.06, 2.3) 0.9390       0.289             0.1157          <0.001

How often are the calf milk containers cleaned?

Every feeding 1.0 - - - - -

2-3 times/week 8.3 (3.98, 17.4) 0.3755 <0.0001 0.1516 <0.0001

How are the calf milk containers cleaned?

Rinsed with water and  disinfectant 1.0 - - - - -

Rinsed only with  hot water 0.7 (0.41, 1.1) 0.2636 0.1436 0.1402 0.006

Rinsed only with disinfectant 2.4 (1.5, 3.7) 0.2208 <0.0001 0.1182 <0.0001

Table 3: Genotypes of Cryptosporidium spp. in preweaned dairy calves in Central Valley, California

Dairy ID Prevalence %
(positive/total)

No. of isolates 
sequenced Species determined by BLAST a

A 37.3 (31/83) 12 C. parvum (12/12)

B 71.2 (52/73) 19 C. parvum (16/19)
C. bovisb (3/19)

C 41.8 (33/79) 8 C. parvum (8/8)

D 56.5 (39/69) 7 C. parvum (5/7)
C. bovis (2/7)

E 38.7 (29/75) 6 C. parvum (5/6)
C. ryanae b (1/6)

F 87.8 (65/74) 8 C. parvum (8/8)
G 53.8 (42/78) 14 C. parvum (14/14)

H 64.5 (51/79) 31 C. parvum (23/31)
C. bovis (8/31)

Total 56.0 (342/610) 105
C. parvum (91/105=86.7%)
C. bovis(13/105=12.4%)
C. ryanae (1/105=0.9%)

a Species determination based on comparison of DNA sequences of 18S rRNA gene in the GenBank by BLAST analysis
b These species are considered to be minimally infective for humans.

had statistically significantly higher odds of oocysts shedding. 
These findings agree with previous studies mentioned above.The 
lack of a statistically significant association between calves aged 
32 days and above and oocysts shedding is likely due to lower 
environmental risk and a more developed immune system. We 
observed that younger calves tended to shed higher numbers 
of oocysts in feces [Figure 2], compared to older calves. Future 
studies with a larger sample size in both the number of enrolled 
dairies and sampled calves as well as more age groups will further 
characterize the prevalence and intensities of Cryptosporidium 
spp. infection in dairy calves.

Two management factors involving calf feeding were 
found associated with oocysts shedding in the current study. 
Specifically, the highest odds of shedding oocysts were associated 
with cleaning of the milk replacer/whole milk bottles 2 to 3 times 
per week on a dairyversusdairies with daily cleaning. Infected 
calves had 8.3 times the odds of coming from a dairy that cleaned 
the milk bottles only 2-3 times per week compared to those that 

cleaned them at every feeding. These results are similarto other 
studies that have shown management factors such as housing 
[wood vs. plastic hutches], frequency of cleaning, and use of 
bedding to be associated with risk of C. parvum shedding [1, 
4,32,33].This could be due to a combination of factors related to 
C. parvum oocysts survival under different conditions on a dairy. 
Oocysts are known to be robust and to persist in the environment 
[34], especially moist environments without UV exposure. Our 
results seem to suggest that oocysts survive on contaminated 
milk bottles and may promote oocysts transmission among 
calves. In addition, infrequent cleaning means that fecal material 
which may be transferred from a calf’s mouth or muzzle onto the 
bottle during feeding is not being removed daily. A worker may 
notice when a bottle is strongly soiled with dirt/feces and choose 
to clean it, but may not consider cleaning if it is not obviously 
soiled. Oocysts can be highly concentrated in fecal material, 
and easily transferred in high concentrations even when fecal 
contamination is minimal [35]. A lack of cleanliness in-regards-
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to cleaning milk bottles could reflect overall cleanliness of calf 
hutches on some dairies. In addition to the frequency of cleaning 
milk bottles, the method for cleaning milk bottles was also 
significantly associated with oocysts shedding. Rinsing only with 
hot water was protective [OR 0.7] against C. parvum shedding 
compared to the referent [rinsing with water and a disinfectant]. 
However, infected calves had 2.4 times the odds of exposure to 
milk bottles that were cleaned with only disinfectant and this 
may be related to the thoroughness of cleaning using each of 
the methods. Perhaps farms that use high temperature water 
as their sole form of cleaning [OR 0.7] do a more thorough job 
of cleaning since disinfectant is not used compared to farms 
using only disinfectant [OR 2.4] or a combination of water and 
disinfectant [OR 1.0], which assume disinfectant will be adequate 
in killing pathogens even when debris is not entirely removed. 
Although several farm-level variables were associated with 
oocysts shedding in univariate analysis, only the three variables 
mentioned above were significant in the final model. The latter 
may be partially explained by residual collinearity between 
management variables and a lack of power in the study to detect 
other significant associations due to the small number of farms 
and animal-level variables. It has been reported that more 
enrolled farms and larger sample size per farmmay facilitate the 
detection of associations between variables and C. parvum oocysts 
shedding by reducing clustering at the farm-level [4,32]. In this 
study farm-level explanatory variables were used to predict 

an animal-level outcome [except for age of calf], andimportant 
details regarding risk may have been missed by not measuring 
more animal-level management variables. However, a major 
strength of this study was the comprehensive design of the survey 
questionnaire, which covered the predominant management 
practices pertaining to calf feeding and husbandry on dairies. We 
analyzed this dataset usingbinomial logistic regression to build 
a multivariate fixed-effects model and accounted for the strong 
influence of clustering by calculating robust standard errors 
[Table 2]. The robust standard errors were smaller than those 
calculated in the fixed effects model. The statistical significance 
of the categorical variables in the final model remained the same 
after robust standard errors were calculated, except for >46 age 
level [changed from p-value of 0.289 to <0.001] and one level 
pertaining to milk bottle hygiene [changed from p-value of 0.143 
to 0.006]. There were very few calves aged >46 days on any of the 
dairies sampled, and they may have been clustered at one dairy, 
leading to a change in significant with the robust p-value. The 
milk bottle hygiene level may have become significant because 
there were few farms that responded with this answer, indicating 
significant clustering at the farm level. 

According to a recent review, species and genotypes of 
Cryptosporidiumspp. that are considered zoonotic or potentially 
zoonotic include [major hosts in parenthesis]: C. parvum [cattle], 
C. erinacei [squirrels], C. scrofarum [pigs], C. tyzzeri [mice], C. 
cuniculus [rabbits], C. ubiquitum [cattle], C. xiaoi [sheep and goats], 

Table 4: Summary of reported species of Cryptosporidiumspp. infection in preweaned calves 

Location Cryptosporidium species % of the species Reference

Northern Ireland
C. parvum 95.1

Thompson et al., 2007(42)C. bovis 3.6
C. sp. deer-like genotype 1.3

Belgium
C. parvum 91.8

Geurden et al., 2007(43)
C. bovis 8.2

Spain 
C. parvum 98.7

Quilez et al., 2008(44)
C. bovis 1.3

England
C. parvum 92.6

Brook et al., 2009(45)C. bovis 5.5
C. sp. deer-like genotype 1.9

Sweden 
C. parvum 20.5

Silverlas et al., 2010(46)C. bovis 74.0
C. ryanae 5.5

Japan 
C. parvum 97.0

Karanis et al., 2010(47)
C. bovis 3.0

Czech Republic

C. parvum 85.1

Kvac et al., 2011(48)
C. bovis 1.9
C. andersoni 13.0
C. ryane 0

Xinjiang, China

C. parvum 59.5
Qi et al., 2015(50)C. bovis 24.3

C. ryanae 2.7
C. andersoni 5.4

Shaanxi Province, 
China

C. parvum 0
C. bovis 50.0

Qi et al., 2015(51)C. ryanae 23.1
C. andersoni 26.9
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C. fayeri [kangaroo], C. bovis [cattle], C. suis [pigs], C. canis [dogs], 
C. andersoni [cattle], C. meleagridis [turkeys], C. felis [cats], C. 
muris [mice], chipmunk genotype I [chipmunks], horse genotype 
[horses], mink genotype [minks], and skunk genotype [skunks] 
[36]. Cryptosporidiumspp. infections in cattle are primarily 
associated with C. parvum, C. andersoni, C. ryanae, and C. bovis, 
although C. suis, C. hominis, C. serpentis, C. xiaoi, C. ubiquitum, C. 
meleagridis, C. muris, and C. felis have also been reported in cattle 
[37]. Distribution of the four major species in cattle are associated 
with cattle ages: C. parvum is mostly found in preweaned calves 
with diarrhea, C. andersoni is mostly identified in asymptomatic 
adults, and C. bovis and C. ryanae are frequently found in post-
weaned calves and yearlings. Based on DNA finger printing of 105 
isolates of Cryptosporidium spp. in our study, approximately 87% 
of Cryptosporidiumspp. isolates was identified as C. parvum, 12% 
as C. bovis, and 1% as C. ryanae in these California dairies during 
the study period [Table 3]. The dominant species, C. parvum, is a 
species that mainly infects calves and other vertebrate species 
including humans[10].Both C. bovis and C. ryanae are species 
mainly infect cattle [16, 38]. Although few cases of asymptotic C. 
bovis infections in humans has been reported [39,40], its major 
host is cattle and its impacts on public health are relatively low 
compared to C. parvum [41].  

Notably, among 30% [105/341] of Cryptosporidium spp. 
positive samples that were successfully genotyped in this study, 
the dominant species in preweaned dairy calves is still C. parvum, 
a species infectious to humans and of public health significance. 
Reports of Cryptosporidium spp. species in preweaned calves from 
literature available in the PubMed database [42-50] are reported 
in Table 4. According to these studies, C. parvum continues to 
be the major species isolated in feces from preweaned calves, 
except for reports from Sweden [46] and the Shaanxi province 
China [51], although infection with C. bovis, C. ryanae, and C. 
andersoni also occur [Table 4]. One of these studies identified 
that contact with adult cattle was the primary risk factor for 
C. bovis and C. andersoni infection in preweaned calves [48]. 
Results of thepresent study of Cryptosporidium spp. infection in 
preweaned calves in California dairies are consistent with the 
overall distributions of Cryptosporidiumspp. species reported 
worldwide. C. parvum is reported as the dominant species in 
fecal samples from preweaned calves, although mixed infections 
primarily with C. bovis and C. ryanae also occur in this susceptible 
age group.

CONCLUSION
This cross-sectional study provides information on the 

prevalence of Cryptosporidium spp. in preweaned calves in 
California dairies with the typical western style of confinement 
dairy production. Our results revealed that Cryptosporidium spp. 
species in preweaned dairy calves [between 0 and 2 months old] 
in the region continue to be of zoonotic concern and public health 
significance based on Cryptosporidium spp. species [C. parvum] 
determined in this age group. Continuous and enhanced facility 
and equipment sanitation practices including thorough cleaning 
of milking bottles are recommend in order to reduce the risk of 
Cryptosporidiumspp. infection in young dairy calves. 
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