Dasatinib: Effects on the Macrophage Phospho Proteome with a Focus on SAMHD1 and HIV-1 Infection - Abstract
Macrophages are one of the main cellular targets of human immunodeficiency virus type 1 (HIV-1). Macrophage infection by HIV-1 is inefficient due to the presence of the viral restriction factor sterile alpha motif and histidine aspartic acid domain containing protein 1 (SAMHD1). Ex vivo, human monocyte- erived macrophages (MDMs) express SAMHD1 in an equilibrium between active (un-phosphorylated) and inactive (phosphorylated) states. Others and we have shown that treatment of MDMs with the FDA approved tyrosine kinase inhibitor, dasatinib, ablates SAMHD1 phosphorylation, thus skewing the balance towards a cellular state that is refractory to HIV-1 infection. We hypothesized that dasatinib inhibits a putative tyrosine kinase that is upstream of SAMHD1. In the search for this tyrosine kinase, we probed several candidates and were unable to identify a single target that, when inhibited, was sufficient to explain the dephosphorylating of SAMHD1 we observe upon treatment with dasatinib. On the other hand, we probed the ability of dasatinib to directly inhibit the serine/threonine cyclin dependent kinases 1, 2, 4 and 6 and confirmed that dasatinib directly inhibits these kinases. Therefore, our results show that inhibition of the proximal CDKs 1, 2, 4 and 6 by dasatinib is clearly detectable, leads to blockade of infection by HIV-1, and may be sufficient to explain the activity of dasatinib against SAMHD1 phosphorylation.