Loading

Annals of Pediatrics and Child Health

ACL Tears in Pediatric and Adolescent Population, Specifically Focusing on the Natural History, Nonoperative Management, Operative Management including Complications, and Prevention of These Injuries: A Review of the Literature and an Expert Opinion

Review Article | Open Access

  • 1. Department of Orthopaedic and Trauma Surgery, Ambulatorio di Ortopedia, via della Conciliazione, Italy
+ Show More - Show Less
Corresponding Authors
Saccomanni Bernardino, Department of Orthopaedic and Trauma Surgery, Ambulatorio di Ortopedia, via della Conciliazione, ASL Bari, Viale Regina Margherita, Altamura ( Bari), Italy, Tel: 3208007854; Fax: 0998297857
ABSTRACT

Background: Managing ACL tears in the skeletally immature patient is a complicated and at times challenging undertaking. As such, it should be undertaken only by a surgeon with experience treating pediatric and adolescent injuries of this nature.

Methods: Two basic choices exist: (1) conservative management with or without delayed reconstruction or (2) early reconstruction. While data can be found to support both modes of care, an overwhelming preponderance of the literature supports early operative intervention for complete ACL tears in this population.

Results and Conclusions: Operative intervention has consistently been shown to increase knee stability and decrease the risk of further damage to the meniscus and articular cartilage with minimal risk of growth disturbance. Conservative or delayed operative care should only be considered in the most compliant patients with uncomplicated injuries. As there is little data supporting one surgical technique as superior, patient age and surgeon familiarity and comfort should guide the choice.

This paper aims to address the natural course of ACL injuries in the skeletally immature patient, treatment options with associated complications, and current preventative strategies.

CITATION

Bernardino S (2020) ACL Tears in Pediatric and Adolescent Population, Specifically Focusing on the Natural History, Nonoperative Management, Operative Management including Complications, and Prevention of These Injuries: A Review of the Literature and an Expert OpinionChild Health 8(2): 1175.

KEYWORDS
  • Managing
  • ACL Tears
  • Pediatric and Adolescent Population
  • Review of Literature
INTRODUCTION

The treatment of anterior cruciate ligament (ACL), injuries has spawned a great deal of research. However, the majority of the literature on the topic deals with adults. Far fewer studies have focused on the management of this condition in the pediatric and adolescent patient. Consequently, the management strategy for ACL injuries in this population is not as clearly elucidated as it is for their skeletally mature counterparts.

Children are sustaining injuries to the ACL at an increasing frequency. Shea et al. [1], looked at insurance claims over a fiveyear period for soccer players aged 5 to 18 years and noted knee injuries constituted 22% of all injuries, while ACL injuries accounted for 31% of the total knee injury claims. The risk for complete ACL tears rises as children mature secondary to increased skeletal rigidity [2]. Conversely, tibial spine avulsions and partial ACL tears constitute a greater percentage of total ACL injuries in preadolescents than in older children, due to the ability of the immature skeleton to absorb force at this age. Nonetheless, complete ACL tears comprise a major portion of ACL injuries in younger children [1-3]. Kellenberger and Von Laer [4], similarly noted in a review of 330 patients with knee injuries that 80% with tibial eminence avulsions were less than 12 years old, whereas 90% of the patients with nonosseous ACL lesions were over 12. From a gender standpoint, it has been shown that as females approach skeletal maturity, and certainly upon reaching it, they have a higher risk of ACL rupture (two to eight times) than do males. However, while still skeletally immature, the reverse is true with boys having the higher incidence of the two sexes [2,5].

Historically, significant debate regarding the proper management of ACL injury in the skeletally immature patient has existed. Two basic options are available, surgical reconstruction and conservative management, each with their own potential sequelae. Theoretically, there has been concern that operative management would violate the growth plate resulting in concomitant growth disturbance and angular or rotational deformity of the limb [6-10]. Consequently, many patients have been treated conservatively via activity modification and bracing with postponement of surgery until skeletal maturity [11-13]. Yet conservative treatment is not without risk. It has been shown that 21–100% of children sustaining ACL injuries will have coexistent meniscal damage [11,14-18]. Additionally, this age group is poorly compliant with activity restrictions leading to a significant risk of further meniscal injury or articular cartilage damage [11,15,18,19]. In a recent systematic literature review, Vavken and Murray [20], identified only 1 study with level II evidence and 10 with level III evidence on this topic. This understates the need for further prospective studies on the subject.

The number of anterior cruciate ligament (ACL), injuries reported in athletes younger than 18 years has increased over the past 2 decades. Reasons for the increasing ACL injury rate include the growing number of children and adolescents participating in organized sports, intensive sports training at an earlier age, and greater rate of diagnosis because of increased awareness and greater use of advanced medical imaging. ACL injury rates are low in young children and increase sharply during puberty, especially for girls, who have higher rates of noncontact ACL injuries than boys do in similar sports. Intrinsic risk factors for ACL injury include higher BMI, subtalar joint overpronation, generalized ligamentous laxity, and decreased neuromuscular control of knee motion. ACL injuries often require surgery and/or many months of rehabilitation and substantial time lost from school and sports participation. Unfortunately, regardless of treatment, athletes with ACL injuries are up to 10 times more likely to develop degenerative arthritis of the knee. Safe and effective surgical techniques for children and adolescents continue to evolve. Neuromuscular training can reduce risk of ACL injury in adolescent girls. This report outlines the current state of knowledge on epidemiology, diagnosis, treatment, and prevention of ACL injuries in children and adolescents (56).

Although initially considered rare, anterior cruciate ligament (ACL), ruptures in pediatric patients recently have increased substantially as a result of greater awareness of the injury and increased participation in youth sports. Although pediatric patients with an ACL injury and a clinically stable joint may handle the injury well and return to sports activity without requiring surgical reconstruction, young, active patients with an ACL rupture and an unstable joint may be good candidates for ACL reconstruction to prevent ongoing instability and additional joint damage. ACL reconstruction techniques have been developed to prevent physeal injury in skeletally immature patients. The surgical treatment of skeletally immature patients with an ACL rupture may differ from that of adults with an ACL rupture and presents unique challenges with regard to reconstruction technique selection, graft preparation, rehabilitation, and return to sports activity. Orthopaedic surgeons should understand various physealsparingACL reconstruction techniques and the general challenges associated with the surgical management of ACL ruptures in pediatric patients (57).

This paper aims to discuss ACL tears in the skeletally immature patient, specifically focusing on the natural history, nonoperative management, operative management including complications, and prevention of these injuries.

NATURAL HISTORY/NONOPERATIVE MANAGEMENT

In the pediatric and adolescent patient, the location of the ACL injury is an important determinant of management. Common in this population, tibial spine avulsion injuries, if nondisplaced, can be treated nonoperatively with satisfactory outcomes. However, displaced avulsion injuries require arthroscopic reduction and internal fixation [21,22]. Similarly the extent of the ACL tear is important to differentiate. Nonsurgical management of partial tears may yield acceptable results in this population when paired with a structured rehabilitation program. However, children and adolescents with greater than 50% tears of the ACL have been shown to have poor outcomes if not surgically reconstructed and may progress to a complete tear [23].

For complete tears of the ACL, nonoperative treatment generally carries an unfavorable prognosis. It has been shown in numerous studies to lead to increased intra-articular damage in the form of meniscal tears and damage to the cartilage [11, 12, 15, 16, 24]. In a study of 39 pediatric and adolescent patients with an average age of 13.6 years at injury, Millett et al. retrospectively compared acute surgical reconstruction (less than 6 weeks from time of injury), to chronic reconstruction (more than 6 weeks after injury). A highly significant relationship was found between time to surgery and medial meniscal tears. 36% of patients in the chronic group sustained medial meniscal tears versus only 11% of acute group, which led the authors to support early operative intervention [18]. Henry et al. [19], retrospectively looked at 56 patients who sustained an ACL tear while skeletally immature and compared those who had open physes at reconstruction with those whose reconstruction was delayed until skeletal maturity. Mean time to surgery was 13.5 and 30 months, respectively. A higher rate of medial meniscal tears in the delayed group, (41%), compared to the open physes group (16%) was noted. In addition, a higher rate of meniscectomy and lower subjective outcome scores were noted in the delayed group. No growth disturbances were found in either group. Also, in a recent comparative study, Streich et al. [25], compared 28 children with intraligamentous tears of the ACL, of which 12 were treated nonoperatively and 16 operatively. All were Tanner stage 1 or 2 with a mean age of 11 years at time of treatment. Interestingly, the surgery group was selected to include only patients who had concomitant damage to the meniscus or articular cartilage. The nonoperative group included only isolated ACL ruptures. At a mean follow-up time of 70 months, the patients had grown an average of 20.3 cm with no evidence of leg length inequality or angular deformity in either group. However, the surgical group had significantly better clinical and functional results than did the nonoperative group. Additionally, 58% of the nonoperatively managed patients went on to require surgical intervention due to persistent instability.

Few studies have shown conservative management to be a viable treatment option. A recent systematic review found only 1 study that showed no increase in secondary intra-articular injury in conservatively treated patients in whom surgery was delayed until skeletal maturity [20]. The identified study by Woods and O’Connor [13], retrospectively compared two groups of adolescents with ACL rupture. One group of 13 adolescents with a mean age of 13.8 years at time of injury, presented with open physes. Surgery was delayed until skeletal maturity and performed at a mean of 70 weeks following injury. The other group of 116 adolescents had a mean age of 15.0 years at time of injury, presented at various time intervals after ACL rupture, and were skeletally mature on presentation. The skeletally mature group was not intentionally delayed and had a mean time interval from injury to surgery of 14.1 (0.3–355.1) weeks. No significant difference with respect to overall additional knee injuries, meniscal injuries, and articular cartilage injuries was noted between the delayed patients and the skeletally mature patients. The authors attributed the lack of additional knee injuries in the delayed group to strict adherence to nonoperative treatment including, complete abstention from sports activities and daily use of an ACL brace. One self-described limitation of this study was a lack of statistical power due to small sample size.

Another study by Moksnes et al. [26], examined ACL rupture in children 12 years of age and younger comparing 20 nonoperatively treated patients to 6 delayed reconstruction patients at a minimum of 2-year postinjury or postoperative followup respectively. Patients were classified as “copers,” if they had returned to preinjury activity level and performed above 90% in all hop tests, or as “noncopers.” Of the nonoperative group 65% returned to preinjury activity level and 50% were classified as “copers” at followup. Only 9.5% of the nonoperative group suffered secondary meniscal injury. Based on the large number of “copers” in the nonoperative group and relatively low number of meniscal injuries, a treatment algorithm based on functional and patient subjective measures was suggested that could identify patients who could be allowed to participate in their desired activities until skeletal maturity when ACL reconstruction could be considered.

Due to the substantial amount of literature showing risk of further damage to the joint and recurrent instability requiring surgical intervention, prolonged nonoperative therapy for complete ACL rupture remains controversial. In addition, from a compliance standpoint, the pediatric and adolescent population will likely have significant difficulty with stringent activity restrictions. However, if nonoperative treatment is chosen, the protocol should include bracing of the affected knee, restriction of sports participation and other activities involving jumping and pivoting, and structured physical therapy and rehabilitation [27].

OPERATIVE MANAGEMENT

Surgical Anatomy

The ACL functions as the primary restraint to anterior tibial translation. It traces a course from its proximal attachment on the posteromedial portion of the lateral femoral condyle and travels distally and medially to attach in front of and lateral to the tibial spine on the anterior tibia [28,29]. Though the ACL is proportionally smaller in the pediatric and adolescent populations compared to the adult population, the anatomic landmarks remain the same [30]. ACL reconstruction aims to restore stability and functionality to the knee by recreating the native anatomy.

The primary concern with ACL reconstruction in the skeletally immature patient is disruption of the tibial or femoral physis with resultant growth disturbance and deformity of the joint. Approximately two-thirds of the length of the lower extremity is derived from growth at the knee joint, specifically from the distal femoral and proximal tibial physes. The distal femoral growth plate is actually the largest and fastest growing physis in the human body accounting for roughly 70% of the length of the femur and 40% of the length of the entire lower limb [31]. Similarly the proximal tibial growth plate contributes 55% of tibial length and 25% of leg length. On average, the two growth plates add approximately 1 cm and 0.6 cm of length, respectively, to the lower extremity per year. They do so until final skeletal maturation takes place, usually between age 14–16 years in girls and 16–18 years in boys [31,32].

Transphyseal Reconstruction

The transphyseal technique for ACL reconstruction is the standard operative method for treating adult patients. Consequently, when adolescents are nearing skeletal maturity, it is commonly accepted that they may be managed as adults. McCarroll et al. [33], reported good to excellent results in a cohort of 60 athletes with a mean age of 14.2 years, using transphyseal ACL reconstruction with bone-patellar tendon-bone (BTB) graft. Of note, BTB grafts are typically avoided in the skeletally immature patient as growth arrest can be induced from bone bridges resulting from insertion of the bony portion of the graft across the physis. For this reason, Kocher et al. [34], advocated the use of soft-tissue grafts in ACL reconstruction of skeletally immature pubescent adolescents. In their study of 59 patients with a mean age of 14.7 years, excellent functional results were reported with a low revision rate and minimal growth disturbance using transphyseal ACL reconstruction with autogenous hamstring grafts.

Transphyseal techniques have shown satisfactory results even in less mature patients. Mcintosh et al. described good clinical results and return to previous activity level in patients with wide open physes who had undergone transphyseal reconstruction. Even in Tanner stage 1 or 2 patients, two studies have shown satisfactory results with transphyseal procedures in patients with a mean age of 12.1 years and 11 years, respectively [25,35]. No growth disturbance was noted in either study, and only one patient was noted to have an angular deformity, which was not deemed to cause any functional impairment. When utilizing transphyseal techniques in these patients, of paramount importance is the avoidance of fixation devices or hardware crossing the physis.

Physeal Sparing Reconstruction

As an alternative to the transphyseal approach, a number of physeal sparing techniques, both intra-articular and extra-articular, have been described. Theoretically, these techniques should minimize the risk of growth disturbance or angular deformity by avoiding violation of the physis. Though a number of retrospective studies exist with the majority achieving excellent results, there is a scarcity of prospective or comparative data that would advocate the superiority of one method over the other. One of the first to use a physeal sparing approach, Macintosh and Darby [36], in 1976 described good results using a portion of the iliotibial band looped around the lateral femoral condyle, through the knee and attached to the proximal tibial metaphysis distally to reconstruct the ACL. This technique has been modified by others for use in the skeletally immature patient. A recent systematic review identified 6 studies using modifications of this physeal sparing, extraosseous reconstruction technique, and showed no growth deformity at an average 47.3 month followup in patients with a mean age of 12.1 years [20].

An all-epiphyseal technique was described by Guzzanti et al. [37], in which the tunnels were drilled through the distal femoral and proximal tibial epiphyses. 5 preadolescents (Tanner stage 1) at a minimum of 4-year followup demonstrated excellent stability and no leg length discrepancy or angular deformity. Other studies have also shown all-epiphyseal techniques to be safe and efficacious [38,39]. A hybrid of physeal sparing and transphyseal approaches, partial transphyseal techniques utilize only one tunnel through the physes thereby limiting, in theory, the possibility for growth disturbance. Several studies utilize this method, which has been described both with tunnels drilled only through the femoral epiphyses and with tunnels drilled only in the tibia. Both techniques have demonstrated satisfactory results [14,17,40,41].

COMPLICATIONS OF OPERATIVE MANAGEMENT

Growth disturbance and angular deformity after ACL reconstruction in the skeletally immature patient have been a primary area of concern for surgeons treating patients in this demographic. In animal studies, various technical factors have been associated with physeal injury and subsequent growth disturbance, including fixation of the graft near or across the physis [6], increased tunnel diameter in relation to physeal diameter [7,9], overtensioning of the graft [6,42,43], placement of bone blocks across the physis [44], inadequate filling of the tunnels with graft material [45,46], and tunnel malposition [47]. An extensive discussion of these technical aspects is beyond the scope of this review. In a survey of The Herodicus Society and The ACL Study Group, Kocher et al. [8], identified 15 reported cases of growth disturbance/angular deformity in human patients. The main factors associated with these cases were hardware fixation across the physis and spanning the physis with graft bone plugs. Large tunnel size was also associated with these undesirable outcomes. Though growth deformities have been clearly demonstrated in scientific studies using animal models, the vast majority of these reports in skeletally immature humans are from case studies and survey data [8,48,49]. Vavken and Murray [20], in their recent systematic review of ACL tears in the skeletally immature patient identified 31 studies (479 total patients) of ACL reconstruction with at least 1 transphyseal tunnel and noted only 3 angular deformities and 2 limb-length discrepancies. They identified 6 reports (106 total patients) of extraphyseal reconstruction with no growth deformities described. In comparison, the same systematic review identified 12 articles (476 total patients) reporting nonoperative management with a mean of 50.2% of patients who required later surgical stabilization due to unstable knees with severe meniscal and cartilage damage.

When comparing operative techniques, few studies actually contrast the various operative procedures. In a recent review, Kaeding et al. [50], identified 13 case series of various ACL reconstruction methods in 187 Tanner stage I, II, and III patients. They concluded that there was no clinical difference between transphyseal and physeal sparing techniques as both produced excellent clinical results in Tanner stage II and III patients with a very low incidence of growth abnormalities in either group. Due to a lack of studies in Tanner stage I patients, no firm conclusions could be reached regarding this patient subset. Frosch et al. [51], recently performed a meta-analysis of operative treatment in the skeletally immature patient. This included 55 studies and 935 patients with a mean age of 13 years, and a mean followup of 40 months. They determined the rate of leg-length discrepancy or axis deviation to be 1.8% (95% confidence interval [CI], 0% to 3.9%). Also of note, transphyseal techniques were associated with a lower risk of leg-length discrepancy or axis deviation than were physeal sparing procedures (1.9% versus 5.8%; relative risk, 0.34; 95% CI, 0.14 to 0.81). The authors theorized that this phenomenon may have resulted from drilling close to the growth plate in the physeal sparing techniques potentially leading to heat damage and early closure.

PREVENTION

Though there may be little that can be done to prevent traumatic (contact) ACL injuries, discrete risk factors do exist for noncontact ACL tears [52]. Specifically, neuromuscular, anatomical, hormonal, shoe-surface interaction, and environmental causes have been identified as potential risk factors for ACL rupture [53]. Many current preventative strategies center around neuromuscular training programs. Mandelbaum et al. [54], conducted a prospective non-randomized controlled trial over the course of two years in female soccer players aged 14-18 years. They examined the effectiveness of a neuromuscular and proprioceptive training program, including education, stretching, strengthening, plyometrics, and sports-specific agility drills, on the incidence of ACL injuries and noted a significant decrease in the treatment group over the two year period. Interestingly, Distefano et al. [55], conducted an ACL prevention study on 65 soccer athletes with a mean age of 10 years. They compared pediatric specific and traditional training programs to nontrained controls with the hypothesis that the age specific program would produce the best results. However, the youth athletes saw no significant improvement versus the controls in the pediatric program, whereas significant improvements in balance and vertical jump height were noted with the traditional program.

From a training standpoint, multicomponent prevention programs have shown better noncontact injury reduction results [52]. Specific training areas include balance, lower extremity strength and stretching, body awareness, and core strength and control. These facets of a neuromuscular program work to reduce risk factors such as landing force and knee valgus moments as well as increasing advantageous, protective muscle activation [52]. However, further research is required in order to validate the effectiveness of any proposed intervention program.

CONCLUSION

The incidence of ACL tears is rising in the pediatric and adolescent populations as these individuals succumb to traumatic and nontraumatic athletic injuries. Management of this condition in the skeletally immature patient poses a challenge and is controversial. Operative reconstruction carries the concern for damage to the physis with resultant limb length inequality and angular joint deformity but provides stability to the knee and allows return of function in most patients. On the other hand, nonoperative treatment has been shown to carry an increased risk of meniscal and articular cartilage damage and is difficult from a compliance standpoint in this demographic. For the majority of skeletally immature patients, operative treatment is recommended as it has shown good clinical and functional results with minimal risk of growth disturbance. This paper aims to address the natural course of ACL injuries in the skeletally immature patient, treatment options with associated complications, and current preventative strategies.

REFERENCES

1. Shea KG, Pfeiffer R, Jo HW, Curtin M, Apel PJ. Anterior cruciate ligament injury in pediatric and adolescent soccer players: an analysis of insurance data. J Pediatr Orthopaedics. 2004; 24: 623-628.

2. Prince JS, Laor T, Bean JA. MRI of anterior cruciate ligament injuries and associated findings in the pediatric knee: changes with skeletal maturation. Am J Roentgenol. 2005; 185: 756-762.

3. Stanitski CL, Harvell JC, Fu F. Observations on acute knee hemarthrosis in children and adolescents. J Pediatr Orthop. 1993; 13: 506-510.

4. Kellenberger R, von Laer L. Nonosseous lesions of the anterior cruciate ligaments in childhood and adolescence. Progress Pediatr Surg. 1990; 25: 123-131.

5. Harmon KG, Ireland ML Gender differences in noncontact anterior cruciate ligament injuries. Clin Sports Med. 2000; 19: 287-302.

6. Chudik S, Beasley L, Potter H, Wickiewicz T, Warren R, Rodeo S. The influence of femoral technique for graft placement on anterior cruciate ligament reconstruction using a skeletally immature canine model with a rapidly growing physis. Arthroscopy. 2007; 23: 1309-1319.

7. Guzzanti V, Falciglia F, Gigante A, Fabbriciani C. The effect of intra-articular ACL reconstruction on the growth plates of rabbits. J Bone Joint Surg. 1994; 76: 960-963.

8. Kocher MS, Saxon HS, Hovis WD, Hawkins RJ. Management and complications of anterior cruciate ligament injuries in skeletally immature patients: survey of The Herodicus Society and The ACL Study Group. J Pediatr Orthop. 2002; 22: 452-457.

9. Mäkelä EA, Vainionpää S, Vihtonen K, Mero M, Rokkanen P. The effect of trauma to the lower femoral epiphyseal plate. An expermimental study in rabbits. J Bone Joint Surg. 1988; 70: 187-191.

10. Robert HE, Casin C. Valgus and flexion deformity after reconstruction of the anterior cruciate ligament in a skeletally immature patient. Knee Surg Sports Traumatol Arthrosc. 2010; 18: 1369-1373.

11. Aichroth PM, Patel DV, Zorrilla P. The natural history and treatment of rupture of the anterior cruciate ligament in children and adolescents. A prospective review. J Bone Joint Surg. 2002; 84: 38-41.

12. Mizuta H, Kubota K, Shiraishi M, Otsuka Y, Nagamoto N, Takagi K. The conservative treatment of complete tears of the anterior cruciate ligament in skeletally immature patients. J Bone Joint Surg. 1995; 6: 890-894.

13. Woods GW, O’Connor DP. Delayed anterior cruciate ligament reconstruction in adolescents with open physes. Am J Sports Medicine. 2004; 32: 201-210.

14. Andrews M, Noyes FR, Barber-Westin SD. Anterior cruciate ligament allograft reconstruction in the skeletally immature athlete. Am J Sports Med. 1994; 22: 48-54.

15. Graf BK, Lange RH, Fujisaki CK, Landry GL, Saluja RK. Anterior cruciate ligament tears in skeletally immature patients: meniscal pathology at presentation and after attempted conservative treatment. Arthroscopy. 1992; 8: 229-233.

16. Janarv PM, Nyström A, Werner S, Hirsch G. Anterior cruciate ligament injuries in skeletally immature patients. J Pediatr Orthop. 1996; 16: 673-677.

17. Lo IK, Kirkley A, Fowler PJ, Miniaci A. The outcome of operatively treated anterior cruciate ligament disruptions in the skeletally immature child. Arthroscopy. 1997; 13: 627-634.

18. Millett PJ, Willis AA, Warren RF. Associated injuries in pediatric and adolescent anterior cruciate ligament tears: does a delay in treatment increase the risk of meniscal tear? Arthroscopy. 2002; 18: 955-959.

19. Henry J, Chotel F, Chouteau J, Fessy MH, Bérard J, Moyen B. Rupture of the anterior cruciate ligament in children: early reconstruction with open physes or delayed reconstruction to skeletal maturity Knee Surg Sports Traumatol Arthrosc. 2009; 17: 748-755.

20. Vavken P, Murray MM. Treating anterior cruciate ligament tears in skeletally immature patients. Arthroscopy. 2011; 27: 704-716.

21. Kocher MS, Foreman ES, Micheli LJ. Laxity and functional outcome after arthroscopic reduction and internal fixation of displaced tibial spine fractures in children. Arthroscopy. 2003; 19: 1085-1090.

22. Song EK, Seon JK, Park SJ, Yoon TR. Clinical outcome of avulsion fracture of the anterior cruciate ligament between children and adults. J Pediatr Orthop. 2009; 18: 335-338.

23. Kocher MS, Micheli LJ, Zurakowski D, Luke A. Partial tears of the anterior cruciate ligament in children and adolescents. Am J Sports Med. 2002; 30: 697-703.

24. McCarroll JR, Rettig AC, Shelbourne KD. Anterior cruciate ligament in the young athlete with open physes. Am J Sports Med. 1988; 16: 44-47.

25. Streich NA, Barié A, Gotterbarm T, Keil M, Schmitt H. Transphyseal reconstruction of the anterior cruciate ligament in prepubescent athletes. Knee Surg Sports Traumatol Arthrosc. 2010; 18: 1481-1486.

26. Moksnes H, Engebretsen L, Risberg MA. Performance-based functional outcome for children 12 years or younger following anterior cruciate ligament injury: a two to nine-year follow-up study. Knee Surg Sports Traumatol Arthrosc. 2008; 16: 214-223.

27. Schub D, Saluan P. Anterior cruciate ligament injuries in the young athlete: evaluation and treatment. Sports Med Arthrosc Rev. 2011; 19: 34-43.

28. Arnoczky SP. Anatomy of the anterior cruciate ligament Clin Orthop Relat Res. 1983; 19-25.

29. Frank RM, Seroyer ST, Lewis PB, Bach BR Jr, Verma NN. MRI analysis of tibial position of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 2010; 18: 1607-1611

30. Shea KG, Apel PJ, Pfeiffer RP, Showalter LD, Traughber PD. The tibial attachment of the anterior cruciate ligament in children and adolescents: analysis of magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc. 2002; 10: 102-108.

31. Beaty JH, Kumar A. Fractures about the knee in children. J Bone Joint Surg. 1994; 76: 1870-1881.

32. Pritchett JW. Longitudinal growth and growth-plate activity in the lower extremity. Clin Orthop Relat Res. 1992; 275: 274-279.

33. McCarroll JR, Shelbourne KD, Porter DA, Rettig AC, Murray S. Patellar tendon graft reconstruction for midsubstance anterior cruciate ligament rupture in junior high school athletes. An algorithm for management. Am J Sports Med. 1994; 22: 478-484.

34. Kocher MS, Smith JT, Zoric BJ, Lee B, Micheli LJ. Transphyseal anterior cruciate ligament reconstruction in skeletally immature pubescent adolescents. J Bone Joint Surg Am. 2007; 89: 2632-2639.

35. Liddle AD, Imbuldeniya AM, Hunt DM. Transphyseal reconstruction of the anterior cruciate ligament in prepubescent children. J Bone Joint Surg. 2008; 90: 1317-1322.

36. Macintosh DL, Darby TA. Lateral substitution reconstruction. J Bone Joint Surg. 1976; 58: 142.

37. Guzzanti V, Falciglia F, Stanitski CL. Physeal-sparing intraarticular anterior cruciate ligament reconstruction in preadolescents. Am J Sports Med. 2003; 31: 949-953.

38. Anderson AF. Transepiphyseal replacement of the anterior cruciate ligament in skeletally immature patients a preliminary report. J Bone Surg. 2003; 85: 1255-1263.

39. Lawrence JT, Bowers AL, Belding J, Cody SR, Ganley TJ. All-epiphyseal anterior cruciate ligament reconstruction in skeletally immature patients. Clin Orthop Relat Res. 2010; 468: 1971-1977.

40. 40 Bisson LJ, Wickiewicz T, Levinson M, Warren R. ACL reconstruction in children with open physes. Orthopedics. 1998; 21: 659-663.

41. Guzzanti V, Falciglia F, Stanitski CL. Preoperative evaluation and anterior cruciate ligament reconstruction technique for skeletally immature patients in Tanner stages 2 and 3. Am J Sports Med. 2003; 31: 941-948.

42. Edwards PH, Grana WA. Anterior cruciate ligament reconstruction in the immature athlete: long-term results of intra-articular reconstruction. Am J Knee Surg. 2001; 14: 232-237.

43. Ono T, Wada Y, Takahashi K, Tsuchida T, Minamide M, Moriya H. Tibial deformities and failures of anterior cruciate ligament reconstruction in immature rabbits. J Orthop Sci. 1998; 3: 150-155.

44. Janarv PM, Wikström B, Hirsch G.The influence of transphyseal drilling and tendon grafting on bone growth: an experimental study in the rabbit. J Pediatr Orthop. 1998; 18: 149-154.

45. Seil R, Pape D, Kohn D. The risk of growth changes during transphyseal drilling in sheep with open physes. Arthroscopy. 2008; 24: 824-833.

46. Stadelmaier DM, Arnoczky SP, Dodds J, Ross H. The effect of drilling and soft tissue grafting across open growth plates. A histologic study. Am J Sports Med. 1995; 23: 431-435.

47. Shea KG, Apel PJ, Pfeiffer RP. Anterior cruciate ligament injury in paediatric and adolescent patients: a review of basic science and clinical research. Sports Med. 2003; 6: 455-471.

48. Bonnard C, Chotel F. Knee ligament and meniscal injury in children and adolescents. Rev Chir Orthop Reparatrice Appar Mot. 2007; 93: 95-139.

49. Koman JD, Sanders JO. Valgus deformity after reconstruction of the anterior cruciate ligament in a skeletally immature patient: a case report. J Bone Joint Surg Am. 1999; 81: 711-715.

50. Kaeding CC, Flanigan D, Donaldson C. Surgical techniques and outcomes after anterior cruciate ligament reconstruction in preadolescent patients. Arthroscopy. 2010; 26: 1530-1538.

51. Frosch KH, Stengel D, Brodhun T, Stietencron I, Holsten D, Jung C, et al. Outcomes and risks of operative treatment of rupture of the anterior cruciate ligament in children and adolescents. Arthroscopy. 2010; 26: 1539-1550.

52. Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lázaro-Haro C, et al. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 2: a review of prevention programs aimed to modify risk factors and to reduce injury rates. Knee Surg Sports Traumatol Arthrosc. 2009; 17: 859-879.

53. Brophy RH, Silvers HJ, Mandelbaum BR. Anterior cruciate ligament injuries: etiology and prevention. Sports Med Arthrosc Rev. 2010; 18: 2-11.

54. Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr JF, Thomas SD, Griffin LY, et al. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-Year follow-up. Am J Sports Med. 2005; 33: 1003-1010.

55. DiStefano LJ, Padua DA, Blackburn JT, Garrett WE, Guskiewicz KM, Marshall SW. Integrated injury prevention program improves balance and vertical jump height in children. J Strength Cond Res. 2010; 24: 332-342.

56. LaBella CR, Hennrikus W, Hewett TE; Council on Sports Medicine and Fitness, and Section on Orthopaedics.

57. Anterior cruciate ligament injuries: diagnosis, treatment, and prevention. Pediatrics. 2014; 133: e1437-1450.

58. DeFrancesco CJ, Storey EP, Shea KG, Kocher MS, Ganley TJ. Challenges in the Management of Anterior Cruciate Ligament Ruptures in Skeletally Immature Patients. J Am Acad Orthop Surg. 2018; 26: e50-e61.

Bernardino S (2020) ACL Tears in Pediatric and Adolescent Population, Specifically Focusing on the Natural History, Nonoperative Management, Operative Management including Complications, and Prevention of These Injuries: A Review of the Literature and an Expert OpinionChild Health 8(2): 1175.

Received : 08 Apr 2020
Accepted : 23 Apr 2020
Published : 25 Apr 2020
Journals
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X