Loading

Annals of Reproductive Medicine and Treatment

Expectant Management of Severe Preeclampsia Remote from Term: A Hospital-Based Survey

Research Article | Open Access

  • 1. Department of Surgical Sciences, Obstetrics and Gynecology, University of Turin, Italy
  • 2. Department of Neonatology, Sant’Anna University Hospital, Italy
  • 3. Department of Clinical and Biological Sciences, University of Turin, Italy
  • 4. Department of Public Health and Pediatrics, University of Turin, Italy
+ Show More - Show Less
Corresponding Authors
Luca Marozio. Department of Surgical Sciences, Sant’Anna University Hospital, Via Ventimiglia 3,10126 Turin, Italy;
Abstract

Introduction: The management of severe preeclampsia remote from term is one of the most difficult challenges in obstetrics. Delivery at a very low gestational age increases the risk for adverse neonatal outcomes, and the attempt to prolong pregnancy in order to improve neonatal outcomes is suggested in selected cases. We aimed to assess the real feasibility and effectiveness of expectant management of early onset severe preeclampsia in a routine clinical setting.

Materials and methods: The study included 194 patients with severe preeclampsia between 24-34 weeks’ gestation; the primary outcome measure was perinatal outcome according to management. Results: Sixty-four women were delivered during or immediately after stabilization and 130 patients underwent expectant management. Median gestational age at onset was significantly lower in patients who underwent expectant management (29 vs. 31 weeks; p<0.001). Median gestational age at delivery in both groups was 31 weeks’ gestation. Mean prolongation of pregnancy in the expectant management group was 7 days (range 4-19). The longest prolongation of pregnancy was recorded in patients with the lowest gestational age. The perinatal/neonatal outcomes between the two groups were similar. The most common indications for delivery in both groups were uncontrolled maternal hypertension and HELLP syndrome.

Conclusions: Expectant management of severe preeclampsia remote from term is feasible in a routine clinical setting, and it is effective particularly at the lowest gestational ages. The definition of the proper length of prolongation of pregnancy and the target gestational age to reach require further investigation.

Keywords

Severe preeclampsia, Management , Timing of delivery, Perinatal outcomes, Indications for delivery

Citation

Marozio L, Gibbone E, Polarolo G, Carbonara C, Berchialla P, et al. (2016) Expectant Management of Severe Preeclampsia Remote from Term: A Hospital-Based Survey. Ann Reprod Med Treat 1(1): 1005.

ABBREVIATIONS

HELLP: Haemolysis Elevated Liver enzymes and Low Platelets syndrome; IQR: Inter Quartile Range

INTRODUCTION

Management of severe preeclampsia remote from term remains one of the most difficult challenges in obstetric practice. Although the mother would benefit from prompt delivery to avoid severe complications, prolongation of pregnancy may be useful to reduce neonatal complications resulting from preterm birth [1-4]. According to the evidence from two randomized trials [5,6], several observational studies [3], and a metaanalysis [7], international guidelines and expert committees suggest that expectant management of early onset severe preeclampsia is appropriate in selected cases and is associated with improved neonatal outcomes [2-4, 8-13]. On the contrary, a recent randomized trial did not demonstrate neonatal benefit with expectant management of severe preeclampsia from 28 to 34 weeks, and suggested that a conservative approach may increase the risk of abruption and small for gestational age newborns [14]. There are no randomized controlled trials on expectant management of severe preeclampsia below 28 weeks gestation. The aim of this study was to assess the feasibility and effectiveness of expectant management of severe preeclampsia remote from term in a routine clinical setting and to analyze perinatal outcomes according to management.

MATERIALS AND METHODS

A retrospective cohort study was performed at the Department of Obstetrics and Gynecology, Sant’Anna University Hospital, Turin, Italy, which is a regional tertiary referral center. Data were obtained from the hospital’s computerized obstetric database. The database includes information on maternal demographics, obstetric history, pregnancy complications, labor and delivery events, and short-term maternal and neonatal outcome.

Inclusion criteria were severe preeclampsia remote from term (24-34 weeks’ gestation) and singleton pregnancy. Only patients who delivered at our hospital from January 2010 to December 2014 were included. Exclusion criteria were severe preeclampsia at less than 24 or beyond 34 weeks’ gestation and twin pregnancy. Patients with uncertain diagnosis or incomplete clinical record were also excluded. A chart review of each patient was performed and data were extracted for maternal age, gravidity, parity, gestational age at delivery, mode of delivery, birth weight, admission to the neonatal intensive care unit, and maternal and neonatal complications.

The diagnosis of severe preeclampsia and HELLP syndrome (hemolysis, elevated liver enzymes and low platelet) was made according to the definition of the American College of Obstetricians and Gynecologists [11]. The following perinatal complications were recorded: fetal growth restriction, small for gestational age, severe respiratory distress syndrome, necrotizing enterocolitis, intra ventricular hemorrhage, perinatal death, and admission in the neonatal intensive care unit. The diagnosis of respiratory distress syndrome, necrotizing enterocolitis and intra ventricular hemorrhage was made according to the Vermont Oxford Network Manual of Operations [15]. Indications for delivery and short term maternal complications were also recorded. The study was approved during the meeting of the ethical review committee on June 10th, 2011, n. 27352/c 28.2..

Under the standardized protocol at our hospital, patients with severe preeclampsia remote from term should undergo clinical stabilization (i.e., control of hypertension and intravenous magnesium sulfate administration for 24 hours to prevent eclamptic seizures), and corticosteroids prophylaxis for fetal lung maturity) before delivery, except in emergencies such as severe placental abruption. MgSO4 is repeated during labor or cesarean section and for 24 hours after delivery. After stabilization is achieved, usually within 48 hours, an attempt to prolong pregnancy should be made whenever possible (expectant management), unless maternal or fetal conditions require prompt delivery. The choice of clinical management is left to the discretion of a senior obstetrician. All patients with severe preeclampsia included in the survey underwent clinical and laboratory examination at admission (symptoms of concern, complete blood cell count with platelet count, serum creatinine, liver enzymes, serum fibrinogen, prothrombin time, partial thrombin time, serum bilirubin, lactate dehydrogenase, urine collection for diuresis quantification and 24-hours proteinuria). Fetal condition was assessed by fetal heart rate monitoring and ultrasound to evaluate fetal growth and amniotic fluid volume. Fetal-placental Doppler ultrasound was performed in growthrestricted fetuses.

Continuous data were expressed as the median with inter quartile range as a measure of variability, and categorical variables were given as counts and percentages. Comparison between treatment groups was made using the Mann-Whitney U test for continuous variables and the Chi-square test for categorical variables. The effect of treatment on several neonatal outcome variables (respiratory distress syndrome, necrotizing enterocolitis, intra ventricular hemorrhage, fetal growth restriction, small for gestational age newborn, admission in the neonatal intensive care unit, and mortality) was evaluated by logistic regression models adjusting for maternal age, parity, and gestational age at the onset of preeclampsia and at delivery. Firth’s correction was applied to reduce bias in the estimates due to the small number of events [16].All analyses were carried out using R version 2.15 [17].

 

RESULTS AND DISCUSSION

Over the 5-year study period, 521 patients were admitted to the hospital with the diagnosis of severe preeclampsia, 283 of which had late onset preeclampsia (beyond 34 weeks’ gestation) and underwent delivery immediately after stabilization. Four cases of severe preeclampsia occurred at less than 24 weeks’ gestation and underwent termination of pregnancy. Twentyeight of the 222cases of severe preeclampsia remote from term (24-34 weeks’ gestation) were twin pregnancies and were not included in the survey to avoid perinatal confounding factors due to multiples. 12 patients were excluded because of uncertain diagnosis or incomplete clinical record. In all, 194 women with severe preeclampsia remote from term and singleton pregnancy were included in the survey. In 38 patients (19.6%) preeclampsia occurred between 24 and 28 completed weeks of pregnancy. The demographic and clinical characteristics of the patients according to management are reported in (Table 1).

Sixty-four patients (32.9%) underwent prompt delivery during or immediately after stabilization. Median gestational age at onset (and delivery) was 31 weeks (interquartile range [IQR] 29-32 weeks; range 24-33).Ten patients were at less than 28 weeks’ gestation. Admission to delivery time was 0-12 hours in 21patients (32.8%), 12-24 hours in 25 (39.0%), and 24-48 hours in 18 (28.2%).The remaining 130 patients (67.1%) underwent expectant management. Twenty-eight patients were at less than 28 weeks’ gestation. Median gestational age at onset was 29 weeks (IQR 27-32 weeks; range 24-33), significantly lower than in patients who underwent prompt delivery (p<0.001). Median gestational age at delivery was 31 weeks (IQR 29-33 weeks; range 25-33). Median prolongation of pregnancy after stabilization was 7 days (IQR of prolongation 4-14 days; range: 4-19). A longer prolongation of pregnancy (range 13-19 days) was recorded in patients with the lowest gestational age at onset (24-27 completed weeks).The blood pressure levels of the two groups at admission did not differ significantly (mean + SD: 158/99 + 13/8 mmHg in the prompt delivery group; 156/98 + 14/9 mmHg in the expectant management group).

Table 2 presents the perinatal/neonatal outcomes according to management. No significant differences were observed between the two groups, after adjusting for maternal age, parity, and gestational age at onset of preeclampsia and at delivery. Twenty-two patients in the prompt delivery group were delivered before completion of the corticosteroid course for fetal lung maturity (i.e. none or only one dose of beta methasone), and the incidence of severe neonatal respiratory distress syndrome was 31.8% (7/22), p=0.037 versus 9.5% (4/42) of patients who completed the corticosteroid course.

Two intrauterine deaths were recorded, one in each management group, both involving severely growth restricted fetuses at less than 26 weeks’ gestation. Six neonatal deaths occurred (one in the prompt delivery, five in the expectant management group); all were in patients who were delivered for severe HELLP syndrome at less than 27 weeks’ gestation.

Table 3 lists the indications for delivery according to management, as reported on the clinical records. Composite indications (e.g., maternal and fetal indications) were present in some cases. Maternal indications were significantly more frequent than fetal indications in both groups (p < 0.001 in each group).

The most common maternal indications for delivery in both groups were: uncontrolled hypertension (persistent or recurrent severe hypertension despite treatment), HELLP syndrome, significant renal dysfunction (persistent oliguria, increased creatinine), and persistent warning symptoms (symptoms of impending eclampsia such as severe headache, epigastric pain, hyper reflexia, cerebral and visual symptoms). The HELLP syndrome was overt at admission in nine patients and developed during stabilization in three patients in the prompt delivery group. Of the two patients with eclampsia in the prompt delivery group, one case of eclampsia occurred at home before admission and the other during stabilization despite magnesium sulfate therapy. Pulmonary edema indicated delivery in two patients (one in each group).

No significant differences in fetal indications for delivery were observed between the two groups.

In the 46 patients who underwent prompt delivery during stabilization within 24 hours of admission, maternal indications for delivery (33/46, 71.7%) were significantly (p< 0.001) more frequent than fetal indications (13/46, 28.3%) (Table 4). The most common indications were uncontrolled hypertension and HELLP syndrome.

Two cases of HELLP syndrome and one case of pulmonary edema developed after delivery in each treatment group. Transient acute renal failure occurred after delivery in one patient in the prompt delivery group. Post-partum hemorrhage requiring blood transfusion occurred in two patients in the prompt delivery group and in three patients in the expectant management group. Two cases of placental abruption occurred in the prompt delivery group during induction of labor (one case with severe HELLP syndrome and one with intrauterine fetal death). No maternal deaths were recorded.

International guidelines, randomized trials, and observational studies on the management of preeclampsia suggest that expectant management of selected cases of early onset severe preeclampsia (<34 weeks’ gestation) can improve neonatal outcomes [2-7,11]. The criteria for patient selection and the indications for delivery are clearly defined [4,11,12]; however, clinicians often face a multifaceted situation, and in the clinical practice the decision of prolonging pregnancy may be very difficult and controversial.

One weakness of our study is its retrospective design; nonetheless, it reflects real clinical practice in a hospital setting where a specific protocol for the management of severe preeclampsia remote from term based on international guidelines has long been in place. In line with guidelines indications, our results suggest that two-thirds of patients with severe preeclampsia at 24-34 weeks’ gestation can undergo expectant management. As expected the median gestational age at onset was significantly lower in the expectant management group. It is reasonable that the efforts to prolong pregnancy were greater in the patients at very low gestational age at onset. Not surprisingly, a longer prolongation of pregnancy was achieved in patients with the lowest gestational age at onset (24-27 completed weeks). Nonetheless, randomized trials on type of management of severe preeclampsia at less than 28 weeks’ gestation are still lacking. The median gestational age at delivery in both groups was the same, 31 weeks’ gestation, which means that delivery was necessary and performed in most patients at around 31 weeks.

We did not observe significant differences in perinatal outcomes between the two groups, even after adjusting for gestational age at onset and at delivery. Since the gestational age at onset was lower in the expectant management group (29 weeks vs 31 weeks in the prompt delivery group), and the longest prolongation of pregnancy was achieved in patients with the lowest gestational age at onset (13-19 days in patients at less than 28 weeks), the finding of similar perinatal outcomes in the two groups may suggest that expectant management effectively improves outcomes. This result is in agreement with those reported by Odendaal et al. [5], and Sibai et al. [6], but it contrasts those observed by Vigil-De Gracia et al. [13], and Suzuki et al.[18]. Although our study covered a wider range of gestational age at onset (24-34 weeks) than the randomized studies mentioned above (28-33 weeks) [5,6,13], the incidence of the most severe neonatal complications according to treatment was similar. The most common complication was severe respiratory distress syndrome. A very low frequency of other adverse outcomes (necrotizing enterocolitis, intra ventricular hemorrhage, sepsis, and newborns small for gestational age) was observed. The reasons for the higher, although it is not significantly, incidence of sepsis that we observed in the newborns of the expectant management group is unknown. Corticosteroids prophylaxis seems to be the major determinant factor in preventing adverse neonatal outcomes. In our series, 22 patients in the prompt delivery group were delivered before completion of the corticosteroid course and the incidence of severe neonatal respiratory distress syndrome was three times greater than in patients who completed the course.

The indications for delivery in both groups were similar to those reported in three randomized trials [5,6,13] and two observational studies [3,18], and were mainly maternal. The most common indications were uncontrolled hypertension, HELLP syndrome, and warning symptoms (severe headache, epigastric pain, hyper reflexia, cerebral and visual disturbances). Uncontrolled hypertension was the indication for delivery in 20% of cases, with no significant difference between groups according to management. In our series, the HELLP syndrome indicated delivery in 13% of cases, with no significant difference between the two groups. The most severe maternal complications (acute pulmonary edema, acute renal failure, post-partum hemorrhage, and placental abruption) occurred in patients with the HELLP syndrome. Moreover, 6 neonatal deaths occurred in severely preterm newborns (<27 weeks’ gestation) from mothers with the HELLP syndrome. These data indicate that a conservative approach for the HELLP syndrome is still impossible. International guidelines and published evidence suggest that women with the HELLP syndrome should not be managed expectantly because of the high risk of maternal and perinatal complications [3,4,9,14]. Corticosteroids may improve maternal platelet counts and may be useful after delivery to accelerate recovery, but a recent meta-analysis found no evidence of improvements in maternal mortality, severe maternal morbidities, or perinatal deaths after corticosteroid treatment [19].

Persistent warning symptoms indicated delivery in 25% of the patients during stabilization and in 10% of patients during expectant management. This probably reflects the fear of impending life-threatening complications such as eclampsia and the HELLP syndrome. For the same reason, isolated low platelet count, elevated liver enzymes or signs of hemolysis alone indicated delivery in 9 cases of prompt delivery and in 20 cases of expectant management. It is questionable whether isolated features of the HELLP syndrome require delivery; however, they may be signs of the impending development of the HELLP syndrome. Furthermore, the risk of surgical complications in the setting of isolated thrombocytopenia not responding to corticosteroids should be considered, and decreasing low platelet count may be properly regarded as an indication for delivery [4,12].

Table 1: Demographic and clinical characteristics of the patients included in the study, stratified by prompt delivery or expectant management. The median and I quartile-III quartile for continuous variables are reported.

Characteristics of the patients Prompt
delivery
N=64
Expectant
management
N=130
P value
Age, years 33.5; 30-37 35.0; 30-38 0.271
White Caucasian, %; N 93.7%; 60 96.1%; 125 0.545
Nulliparity, %; N 64.0%; 41 71.5%; 93 0.745
Smoking, %; N 3.1%; 2 9.2%; 12 0.122
Gestational age at onset, weeks 31; 29-32 29; 27-32 <0.001
Gestational age at delivery, weeks 31; 29-32 31; 29-33 0.618
Birth weight, grams 1400; 1032-1760 1327; 1010-1629 0.515
NICU admission, %; N 70.3%; 45 71.5%; 93 0.745
P-value was calculated using Chi-square test or Fisher’s exact test (when low expected frequency was < 5) for categorical variables, and Mann-Whitney test for continuous variables. NICU: neonatal intensive care unit.

Table 2: Perinatal/neonatal outcomes according to management.

Outcomes Prompt
delivery
N=64
Expectant 
Management
N=130
P-value Adj O 95%CI
RDS 17.1%;n.11 23.8%;n.31 0382 0.48 0.17-1.32
IVH 3.1%;n.2 6.1%;n.8 0.581 1.73 0.46-9.30
SGA 3.1%;n.2 7.7%;n.10 0.353 0.38 0.08-1.82
Neonatal sepsis 3.1%;n.2 12.3%;n.16 0.070 0.24 0.05-1.08
Perinatal Death 3.1%;n.2 4.6%;n.6 0.924 1.84 0.36-18.37
P-value was calculated using Chi-square test or Fisher’s exact test (when a low expected frequency was < 5) for categorical variables, and MannWhitney test for continuous variables. Odds ratios (OR) were adjusted (Adj) for maternal age, parity, gestational age at onset of preeclampsia, and 
gestational age at delivery. CI: confidence interval. RDS: respiratory distress syndrome. 
IVH: Intra Ventricular Hemorrhage (3rd-4th degree). SGA: small for gestational age.

Table 3: Maternal and fetal indications for delivery in the two groups of subjects were according to the management. Composite indications were reported on the clinical record in some cases.

Indications Prompt
delivery
N=64
Expectant
management
N=130
P value
Maternal indications 89.1%; n.57 21.5%;n.28 0.086
Uncontrolled hypertension 17.2%;n.11 21.5%;n.28 0.605
HELLP syndrome 18.7%;n.12 10.7%;n.14 0.194
Warning symptoms 25.0%;n.16 6.1%;n.8 0.018
Persistent oliguria 17.2%;n.11 0 0.032
Eclampsia 3.1%;n.2 7.7%;n.10 n.a.
Low platelet count 7.8%;n.5 5.3%;n.7 0.790
Hemolysis 6.2%;n.4 2.3%;n.3 0.932
Increased creatinine 0 0.8%;n.1 n.a.
Pulmonary edema 7.8%;n.5 0.8%;n.1 0.026
Fetal indications 1.6%;n.1 34.6%;n.45 0.807
Abnormal FHR 21.8%;n.14 14.6%;n.19 0.099
Abnormal UA Doppler 12.5%;n.8 19.2%;n.25 0.861
FGR< 5th centile 9.3%;n.6 6.9%;n.9 0.122
P value was calculated by Chi-square test or Fisher’s exact test (when low expected frequencies were < 5%). Warning symptoms (at least one): headache, visual or cerebral disturbances, hyper reflexia, epigastric pain. N.a.: not applicable. FHR: fetal heart rate. UA: umbilical artery. FGR: fetal growth restriction

Table 4: Maternal and fetal indications for delivery in patients of prompt delivery group who underwent immediate delivery (within 24 hours from admission) before completion of stabilization and of corticosteroids course (N=46).

Maternal indications N=33*
Uncontrolled hypertension 36.4%; n.12
HELLP syndrome 27.2%; n.9
Warning symptoms 18.2%;n.6
Eclampsia 3.0%;n.1
Increased creatinine/oliguria 6.1%;n.2
Pulmonary edema 3.0%;n.1
Fetal indications N=13
Abnormal FHR 46.1%; n.6
Abnormal UA Doppler 23.1%;n.3
FGR < 5th centile 23.1%;n.3
Intrauterine fetal death 7.7%;n.1
: p < 0.001 vs. fetal indications Warning symptoms (at least one): headache, visual or cerebral disturbances, hyper reflexia, epigastric pain. FHR: fetal heart rate. UA: umbilical artery. FGR: fetal growth restriction.

 

CONCLUSION

In conclusion, our data suggest that expectant management of selected cases of early onset severe preeclampsia is feasible in a routine clinical setting, and it is effective particularly at the lowest gestational age. The proper length of prolongation of pregnancy and the target gestational age to reach are still under investigation, and randomized trials on preeclamptic patients at less than 28 weeks’ gestation are needed. Effective control of blood pressure and conservative treatment of HELLP syndrome remain two major areas of investigation and management improvement

REFERENCES

1. Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005; 365: 785-799.

2. Ganzevoort W, Sibai BM. Temporising versus interventionist management (preterm and at term). Best Pract Res Clin Obstet Gynaecol. 2011; 25: 463-476.

3. Magee LA, Yong PJ, Espinosa V, Côté AM, Chen I, von Dadelszen P, et al. Expectant management of severe preeclampsia remote from term: a structured systematic review. Hypertens Pregnancy. 2009; 28: 312- 347.

4. Publications Committee, Society for Maternal-Fetal Medicine, Sibai BM. Evaluation and management of severe preeclampsia before 34 weeks’ gestation. Am J Obstet Gynecol. 2011; 205: 191-198.

5. Odendaal HJ, Pattinson RC, Bam R, Grove D, Kotze TJ. Aggressive or expectant management for patients with severe preeclampsia between 28-34 weeks’ gestation: a randomized controlled trial. Obstet Gynecol. 1990; 76: 1070-1075.

6. Sibai BM, Mercer BM, Schiff E, Friedman SA. Aggressive versus expectant management of severe preeclampsia at 28-32 weeks ‘ gestation: a randomized controlled trial. Am J Obstet Gynecol. 1994; 171: 818-822.

7. Churchill D, Duley L, Thornton JG, Jones L. Interventionist versus expectant care for severe pre-eclampsia between 24 and 34 weeks’ gestation. Cochrane Database Syst Rev. 2013; 26: CD003106.

8. Report of the National High Blood Pressure Education Program. Working group report on high blood pressure in pregnancy. Am J Obstet Gynecol. 2000; 183: 1-22.

9. National institute of Health and Care Excellence. Clinical Guideline 107. Hypertension in pregnancy. The management of hypertensive disorders during pregnancy. 2011.

10. Lowe SA, Brown MA, Dekker GA, Gatt S, McLintock CK, McMahon LP, et al. Guidelines for the management of hypertensive disorders of pregnancy 2008. Aust N Z J Obstet Gynaecol. 2009; 49: 242-246.

11. American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013; 122: 1122-1131.

12. Sibai BM, Barton JM. Expectant management of severe preeclampsia remote from term: patients selection, treatment, and delivery indications. Am J ObstetGynecol. 2007; 196: 1-9.

13. Magee LA, Pels A, Helewa M, Rey E, von Dadelszen P, Canadian Hypertensive Disorders of Pregnancy Working Group, et al. Diagnosis, Evaluation, and Management of the Hypertensive Disorders of Pregnancy: Executive Summary. J Obstet Gynecol Can 2014; 36: 416- 441.

14. Vigil-De Gracia P, ReyesTejada O, Calle Minaca A, Tellez G, Chon VY, Herrarte E, et al. Expectant management of severe preeclampsia remote from term: the MEXPRE Latin Study, a randomized multicenter clinical trial. Am J ObstetGynecol. 2013; 209: 425.1-8. 15.Vermont Oxford Network. Manual of Operations. Vermont, US, 2013.

16. Heinze G. A comparative investigation of methods for logistic regression with separated or nearly separated data. Stat Med. 2006; 25: 4216-4226.

17. Dean CB, Nielsen JD. Generalized linear mixed models: a review and some extensions. Lifetime Data Anal. 2007; 13: 497-512.

18. Suzuki S, Shimada M, Shibata-Hiraizumi S. Clinical trial of expectant management of severe preeclampsia that develops at <32 weeks ‘ gestation at a Japanese perinatal centre. J Mat FetNeonat Med. 2014; 27: 1568 - 1571.

19. Woudstra DM, Chandra S, Hofmeyr GJ, Dowswell T. Corticosteroids for HELLP (hemolysis, elevated liver enzymes, low platelets) syndrome in pregnancy. Cochrane Database Syst Rev. 2010: CD008148.

Received : 20 Jun 2016
Accepted : 05 Oct 2016
Published : 13 Oct 2016
Journals
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
Annals of Pediatrics and Child Health
ISSN : 2373-9312
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X