Loading

International Journal of Plant Biology & Research

Influence of Substrate pH and Watering Frequency on the Growth of Oyster Mushroom

Research Article | Open Access

  • 1. Department of Horticulture, Sher-e-Bangla Agricultural University, Bangladesh
  • 2. Bangladesh Agricultural Research Council, Bangladesh
  • 3. Department of Entomology, Sher-e-Bangla Agricultural University, Bangladesh
  • 4. Department of Agronomy, Sher-e-Bangla Agricultural University, Bangladesh
+ Show More - Show Less
Corresponding Authors
Rajesh Chakraborty, Department of Agronomy, Sher-e-Bangla Agricultural University, Bangladesh, Tel: 88-01741-340-270
Abstract

Experiment was carried out in mushroom research shade house of Olericulture Division, HRC (Horticulture Research Centre), Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, during the period from July, 2015 to December, 2015 to evaluate the effect of pH levels of substrates and frequency of watering on the growth traits of oyster mushroom. Spawn of Pleurotus ostreatus (Jacquin ex Fr.) was used as test crop. The experiment consisted of two factors i.e., pH level of substrates [P0 : Control (5.5), P1 : 5.0, P2 : 5.3, P3 : 5.8, P4 : 6.1 and P5 : 6.4] and frequency of watering [W0 : Control (No immersion in water and no further watering), W1 : Im + 12h, W2 : Im + 18h, W3 : Im + 24h, W4 : Im + 30h and W5 : Im + 36h]. The experiment was laid out in Completely Randomized Design (CRD) with three replications. Results revealed that most of the parameters showed the significant response due to different pH levels of substrate and watering frequency. For pH level of substrate, the treatment P0 (5.5) exhibited the better performance on the growth characters of mushroom. In case of watering frequency, the treatment W1 (Im + 12h) showed higher number of fruiting bodies and higher number of harvest of mushroom. Statistically, the highest number of fruiting bodies was obtained from the combined treatment P0 × W1 i.e., pH of substrate 5.5 in combination with watering frequency Im + 12 h. So, this combination may be used for higher yield of mushroom.

Citation

Sultana R, Ismail Hossain MD, Saifullah MD, Amin R, Chakraborty R (2018) Influence of Substrate pH and Watering Frequency on the Growth of Oyster Mushroom. Int J Plant Biol Res 6(4): 1097.

Keywords

•    pH level of substrates; Frequency of watering; Pin 
head; Fruiting body; Mushroom

INTRODUCTION

Pleurotus spp.; popularly known as Oyster mushrooms under the class Basidiomycetes is cultivated and consumed by 97%, of which Pleurotus ostreatus alone accounts for 61%. The remaining 3% which belongs to Agaricus sp.; Calocybe sp.; Volvareilla sp. and Auricularia sp. are generally called Button, Milky, Paddy straw and Jew’s ear or Ear mushrooms, respectively. It was also evident that available carbon source of the substrates for the cultivation of Pleurotus spp.was 76%of sawdustwhere frequencies offlashes were recorded more than five times in 84% cases [1]. Cultivation of oyster mushroom has increased tremendously throughout the world because of their abilities to grow at a wide range of temperature and harvested all over the year [2]. The commercial yield was obtained namely from Oyster mushrooms. On an average, 240 g from each of the spawn-packets which contained 400-500 g of substrate and subsequently on an average 264963 spawn-packets were produced per month, which accounts for 620-675 tons of edible mushrooms production in Bangladesh per annum [1]. Pleurotus ostreatus is one of the most popular oyster mushroom species that can grow on different agricultural wastes. Pleurotus have the ability to excrete hydrolyzing and oxidizing enzymes [3], which have capable of utilizing complex organic compounds that occurred agricultural wastes and industrial by-products [4], with broad adaptability varied agro-climatic conditions [5].

It requires a short growth time in comparison to other edible mushrooms [6]. The availability of growth promoting substances in the substrates of oyster mushroom depends on the pH concentration. The pH concentration influences the proper growth and development of mushroom under different substrates. The mushroom choice slightly acidic to slightly basic pH of substrates [7]. The pH has great response on nutrition and morphological development of mushrooms [8]. Hong et al. [9], reported that, the optimum range of pH for mycelium growth is about 5.5 and 6.5. Chung [10], reported that, the optimum range of pH was different in different strains of Pleurotus spp. Proper moisture condition of substrates verifies the performance of oyster mushroom and watering on mushroom spawn can create different moist condition per day at different frequencies [11]. Mushroom cultivation has a special relevance to Bangladesh, because sawdust and other materials are available to the farmers. So, mushroom production could keep great importance on our economy as a whole. However, the research on the effects of pH of substrates and frequency of watering on the production of oyster mushroom had not been well established.Therefore, the present experiment was undertaken to determine the most suitable pH concentration to assess the most promising combination of pH of substrates and frequency of watering for better growth of mushroom.

MATERIALS AND METHODS

Site of experimentation

The present study was carried out in the mushroom research shade house of Olericulture Division, HRC (Horticulture Research Centre), Bangladesh Agricultural Research Institute, Joydebpur, Gazipur during the period from July, 2015 to December, 2015. The geo position of Gazipur district is 23°53’ to 24°20’ N latitudes and between 90°9’ to 90°42’ E longitude and it also situated under Madhupur tract (AEZ-28).

Planting materials

Spawn of Pleurotusostreatus (Jacquin ex Fr.) in a bottle was collected from Savar farm and used to inoculate the substrate with 5% of spawn for each bag. Oyster mushrooms are characterized by the rapidity of the mycelial growth and high saprophytic colonization activity on cellulosic substrates. Their fruiting bodies are shell or spatula shaped white color. If the temperature increases above 32°C, its production markedly decreases.

Experimental treatment and design

The experiment consisted of two factors i.e., pH level of substrates [P0 : Control (5.5), P1 : 5.0, P2 : 5.3, P3 : 5.8, P4 : 6.1 and P5 : 6.4], and frequency of watering [W0 : Control (No immersion in water and no further watering), W1 : Im + 12h, W2 : Im + 18h, W3 : Im + 24h, W4 : Im + 30h and W5 : Im + 36h]. The experiment was laid out in Completely Randomized Design (CRD) with three replications. A total of 108 plastic bags were used under study as sample for data collection.

Preparation and adjustment pH of substrates

Spawn packets was prepared with waste paper amended with wheat bran at 2:1 ratio and 0.57% calcium carbonate in polypropylene bags. The mushroom house was provided with well ventilation for easy flow of natural air. Six different levels of pH viz., Control (5.5), 5.0, 5.30, 5.80, 6.10 and 6.40 were tested to determine the best levels of pH for Oyster Mushroom cultivation. For the control treatment, just pH value was measured and found it 5.5. Rest levels of pH in substrates were adjusted by using 2% (w/w) CaCO3 and 1N HCl. The pH of substrate was determined using water extract of the materials with a pH meter (HORIBA M. 8L ). The substrates did not need to be chopped.They were soaked overnight in water and boiled for 5-10 minutes. The excess water was removed by drying the substrate, until the moisture content was around 60% for homogenous condition for pH adjustment.

Preparation of spawn packets

Themixedsubstrateswerefilledinto7×11inchpolypropylene bag at 500g. The filled polypropylene bags were prepared by using plastic neck and plugged the neck with cotton and covered with brown paper placing rubber band to hold it tightly in place.

Managing the frequency of watering

Method ofwater applicationwas as follows: firstly, immersion in water for 15 minutes and secondly, water was sprayed on the spawn packets placed on the shelves of mushroom house. Spawn packets was immersed in a bucket of water after scraping and opening at every harvest. Water was sprayed to the spawn packets once at 12, 18, 24, 30 and 36 hours intervals and water was not applied on control treatments.

Cultivation of spawn packets

Therefore the packets were sterilized about 1 hour and then these were kept for cooling. After cooling, 5 g mother spawn was inoculated into the packets in the laminar airflow cabinet and the packets were kept at 20-22°C temperature until the packets become white with the mushroom mycelium. After completion of the mycelium running the rubber band, brown paper, cotton plug and plastic neck of the mouth of spawn packet were removed and the mouth was wrapped tightly with rubber band. Then these spawn packets were transferred to the culture house. Two ends, opposite to each other of the upper position of plastic bag were cut in “D” shape with a blade and opened by removing the plastic sheet after which the opened surface of substrate was scraped slightly with a tea spoon for removing the thin whitish mycelial layer. Then the spawn packets were soaked in water for 15 minutes and invested to remove excess water for another 15 minutes. The packets of each type were placed separately on the floor of culture room and covered with newspaper. The moisture of the culture room was maintained 80-85% relative humidity by spraying water 3 times a day. The light around 300-500 lux and ventilation of culture house was maintained uniformly. The temperature of culture house was maintained 22°C to 25°C. The first primordia appeared 2-4 days after scribing depending upon the type of substrate. The harvesting time also varied depending upon the type of substrate.

Data recorded

Oyster mushrooms matured within 2-3 days after primordia initiation. The matured fruiting body was identified by curial margin of the cap. Mushrooms were harvested by twisting to uproot from the base. The data on days required for development of pin head, days required from pin head to first harvest, number of fruiting bodies produced/packet and number of harvest/ packet.

Statistics used

The data obtained for different characters were statistically analyzed following the analysis of variance techniques by using MSTAT-C computer package and the treatment means were compared by Least Significant Difference (LSD) at 5% level of probability [12].

RESULTS AND DISCUSSION

Days required for development of pin head

In respect of days required for the development of pin head due to different levels of pH was found statistically significant. A gradual decreasing trend was found with the increasing of pH level. The longest (30.52 days) period was required by the mushroom produced from P0 . The shortest (29.83 days) period was required from P2 which was statistically similar to P1 , P3 , P4 and P5 (Table 1). The increasing of pH from moderate acidic to slightly basic has lengthening the period of pinning on mushroom [13]. In respect of days required for the development of pin head due to different frequency of watering was found statistically significant. A gradual increasing trend was found with the increasing of frequency of watering. The longest (31.50 days) period required for development of pin head was found from W5 and the shortest (27.91 days) was from W2 (Table 2). Gislerod [14], pointed out that, the lower non intermittent application of water decreased the pin formation times from spawn packet. This result is in agreement with findings of present study. Significant variation was found due to different combinations of pH of substrates and frequency of watering on days required for development of pin head of mushroom from seed in packets. Results showed that, the longest (32.66 days) period required for development of pin head of mushroom from seed in packets was found from P0 × W5which was statistically similar to P0 × W4 (32.00 days) and P3 × W5 (32.00 days) while, the shortest (27.36 days)was found from P1 × W2 (Table 3).

Days required from pin head to first harvest

A day required from pin head to first harvest due to different levels of pH was found statistically significant. Results showed that, the maximum (4.47 days)required from pin head to first harvest was found from P5 which was statistically similar to P4 (4.20 days) and P1 (4.22 days) while, the minimum (4.11 days) was found from P0 (Table 1). Gislerod [14], said that, the pH near about basic condition had lengthening the period of harvest of spawn. This result is in agreement with findings of present study. Days required from pin head to first harvest due to different frequency of watering were found statistically significant. A gradual increasing trend was found with the increasing of frequency of watering.

The maximum (4.58 days) required from pin head to first harvest was found from W5which was statistically similar to W4 (4.52 days) and W0 (4.41 days). The minimum (3.61 days) was found from W0 (Table 2). Gislerod [14], also said that, the long interval application of water on spawn packets has increased the duration of first harvest of spawn from packets. No significant variation was found due to different combinations of pH of substrates and frequency of watering on days required from pin head to first harvest of oyster mushroom. But numerically, the maximum (5.20 days) required from pin head to first harvest was found from P4 × W5 and the minimum (3.16 days and 3.16 days) was found from P0 × W1 and P4 × W1 , respectively, (Table 3). Result was also supported by [15].

Number of fruiting bodies produced/packet

In case of number of fruiting bodies produced due to different levels of pH was found statistically significant. A gradual decreasing trend was found with the increasing of pH level from P0 up to P3 and thereafter increased as similar to P0 . Results showed that, the maximum (43.27) number of fruiting bodies produced/ packet from P4which was statistically similar to P0 (42.66) while, the minimum (33.33) was from P2 (Table 1). In case of number of fruiting bodies produced due to different frequency of watering was found statistically significant. A gradual decreasing trend was found with the increasing of frequency of watering. The maximum (43.90) number of fruiting bodies produced/packet was found from W1 and the minimum (34.50) was from W5 (Table 2). Significant variation was found due to different combinations of pH of substrates and frequency of watering on number of fruiting bodies produced/packet of oyster mushroom. Results showed that, the maximum (52.33) number of fruiting bodies produced/packet was found from P0 × W2which was statistically similar to P0 × W1 (51.66) and the minimum (30.66) was found from P3 × W5 (Table 3).

Number of harvest/packet

In respect of number of harvest due to different levels of pH was found statistically significant. Results showed that, the maximum (4.36) number of harvest/packet from P3 which was statistically similar to P0 (4.35), P1 (4.33) and P4 (4.23) while, the minimum (4.02) was from P2 (Table 1). Litar et al. [16], said that, the acidic condition (above 5.4) has increased the duration and frequency of harvest of Nigerian edible fungi. This result is in agreement with findings of present study.In respect of number of harvest due to different frequency of watering was found statistically significant. A gradual increasing trend was found with the increasing the frequency of watering from W0 up to W2 and thereafter decreased towards W5 . Results showed that, the maximum (4.63) number of harvest/packet from W1 which was statistically similar to W2 (4.49) while, the minimum (3.80) was found from W5 (Table 2). Ismail et al. [17], also observed that, increases in spawn harvest number with higher daily irrigation frequency compared to once-a-day irrigation when plants were grown in soil conditions. This result is in agreement with findings of present study.Significant variation was found among different combinations of pH of substrates and frequency of watering on number of harvest/packetof oyster mushroom.

Results showed that, the maximum (5.13) number of harvest/ packet was found from P3 × W1 which was statistically similar to P4 × W1 (5.00), P3 × W2 (4.90) and P1 × W1 (4.83) while, the minimum (3.00) was found from P3 × W5 (Table 3).

CONCLUSIONS

From the present study it was revealed that most of the parameters showed the significant response due to different pH levels of substrate and watering frequency. For pH level of substrate, the control treatment P0 (5.5) exhibited the better performance on the growth characters of mushroom.In case of watering frequency, the treatment W1 (Im + 12h) showed higher number of fruiting bodies and higher number of harvest of mushroom. Statistically, the highest number of fruiting bodies was obtained from the combined treatment P0 × W1 i.e., pH of substrate 5.5 in combination with watering frequency Im + 12h. So, this combination may be used for higher yield of mushroom.

ACKNOWLEDGEMENTS

The first author would like to give her special thanks to Ministry of Science and Technology for NST fellowship during the research work.

REFERENCES

1. Kamal AS, Begum F, Khair A. Mushroom production in Bangladesh: present scenario and potentialities, Cab Direct Abstract. 2009; 7: 91- 105.

2. Amin SM, Nirod C, Moonmoon SM, Khandaker J, Rahman M. Officer’s Training Manual, National Mushroom Development and Extension Centre, Savar, Dhaka, Bangladesh. 2007; 7-17.

3. Pathmashini L, Arulnandh VR, Wijerathan SW. Efficancy of different spawn types on sawdust media. Tropicl J Agril Res Exten. 2008; 11: 55-59.

4. Zadrazil F, Brunnert F. Investigation of physical parameters important for the solid state fermentation of straw by white rot fungi. Eurupean J Appl Microbiol Biotechnol. 1981; 11: 183-188.

5. Jandaik CL, Goyal SP. Farm and farming of oyster mushroom (Pleurotus spp.). In: Singh, Chaube, editors. Mushroom Production Technology. 1995; 72-78.

6. Kausar T. Cultivation of mushrooms using crop residues as substrate. 1988; 89.

7. Chang ST. Mushroom cultivation using the “ZERI” principle: potential for application in Brazil. Malaysian J Biol. 2007; 19: 33-34.

8. Chang ST, Miles PG. Pleurotus A mushroom of broad adaptability. In: Edible mushroom and their cultivation. Florida: CRC Press Online. 1988; 265-275.

9. Hong JS,Kwon YJ,JungKT. Studies on basidiomycetes (2) production of mushroom mycelium (Pleurotus ostreatus and Auricularia auricular) in shaking culture. Korean J Mycol. 1983; 11: 1-7.

10. Chung HC, Park YH, Kim YS. Basic information on the characteristics of strain of oyster mushroom. Korean J Mycol. 1981; 9: 129-132.

11. Rahman MM, Ahmed KU, Miah MN, Khatoon S, Hossain A. Effect of watering frequency on proximate analysis of pink oyster mushroom. Biores Comm. 2015; 1: 36-39.

12. Gomez KA, Gomez AA. Statistical procedure of agricultural research. 2nd edn. New York: John Willey and Sons. 1984.

13. Hoa HT, Wang CL, Wang CH. The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiol. 2015; 43: 423-434.

14. Gislerod HR. Effects of watering frequency on growth of cut chrysanthemums. Symp Hortic Substrates Anal. 1987; 221: 36-43.

15. Sarker NC, Hossain MM, Sultana N, Mian IH, Sirajul KA, Ruhul AS. Effect of frequency of watering on the growth and yield of oyster mushroom (Pleurotus ostreatus (Jacquin ex Fr.) Kummer). Bangladesh J Mushroom. 2007; 1: 29-37.

16. Litar GM, Ruxex TJ, Lonar RY. The variation of growing condition with acidic and basic condition on edible Nigerian fungi. South African J Fungi. 2000; 4: 5-13.

17. IsmailAR,HossainKU,Alom MN,Khanom S,AkbarA. Effect ofwatering frequency on growth of oyster mushroom. J Agril Sci. 2008; 7: 25-29.

Received : 18 Jun 2018
Accepted : 30 Jun 2018
Published : 02 Jul 2018
Journals
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
Annals of Pediatrics and Child Health
ISSN : 2373-9312
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X