Loading

JSM Chemistry

Ground State Hydrogen Conformations and Vibrational Analysis of Isomers of Dihydroxyanthraquinone by Density Functional Theory Calculation

Research Article | Open Access | Volume 3 | Issue 1
Article DOI :

  • 1. Department of Physics, Süleyman Demirel University, Turkey
  • 2. Electrical and Electronics Engineering Department, Bart?n University, Turkey
+ Show More - Show Less
Corresponding Authors
Ucun F, Department of Physics, Faculty of Arts and Sciences, Süleyman Demirel University, Isparta, Turkey; Tel: 90-246-3274032; Fax: 90-246-2371106
Abstract

round state hydrogen conformations of 1,2- (alizarin), 1,4- (quinizarin), 1,8 -(danthron) and 2,6-(anthraflavic acid) dihydroxyanthraquinone have been investigated using density functional theory (B3LYP) method with 6-31 G (d,p) basis set. The calculations indicate that the compounds in the ground state exist with the doubly bonded O atom linked intra-molecularly by the two hydrogen bonds. The vibrational frequencies and optimized geometry parameters of all the possible conformers of alizarin isomer were given.

Keywords

Dihydroxyquinone; Hartree-fock;Density functional theory; Infrared;   Vibration

Citation

Ucun F, Sa?lam A, Delta E (2015) Ground State Hydrogen Conformations and Vibrational Analysis of Isomers of Dihydroxyanthraquinone by Density Functional Theory Calculation. JSM Chem 3(1): 1015.

INTRODUCTION

Dihydroxyquinones have important applications as a prominent family of pharmaceutically active and biologically relevant chromophores, as an analytical tool for the determination of metals, and in many aspects of electrochemistry [1]. Alizarin, quinizarin, danthron and anthraflavic acid are isomers of dihydroxyquinone. 1,2-Dihydroxyanthraquinone (alizarin) is a red coloring mordant dye, and used as an acid-base indicator in the determination of fluorine. 1,4-Dihydroxyanthraquinone (quinizarin) and 1,8-dihydroxyanthraquinone (danthron) are the simplest molecules showing the chromophore framework peculiar to several compounds of biological and pharmaceutical interest. 2,6-Dihydroxyanthraquinone (anthraflavic acid) is an isomer of the well known alizarin dye and a compound used from commercial suppliers without further purification. Danthron is present in some antitumor drugs. The structure of quinizarin has been subject of numerous spectroscopic investigations, including fluorescence studies in Shpolskii matrices [2], resonance Raman and infrared spectroscopy [3,4], laser spectroscopy in supersonic expansion [5], and X-ray crystallographic investigations [6]. For danthron also, fluorescence studies in Shpolskii matrices [7,8], resonance Raman [9] and infrared spectroscopy [10] studies have been made.

After the development by Lee and co-workers, infrared spectroscopy combined with ab initio quantum theoretical calculations has become a powerful and general method to find the ground state conformations of molecular clusters. An ab initio study of 1,4-, 1,5- and 1,8-dihydroxyanthraquinone was conducted to identify the absolute minimum [11]. Electronic structure of alizarin, two of its isomers, with different transition metal complexes and five rare-earth complexes were studied by using density functional theory (DFT) [12]. Experimental (FT-IR and Raman) and theoretical (B3LYP and B3PW91) vibrational analysis of quinizarin were studied by Xuan and et al [13]. The interaction between quinizarin and metal ions was studied by UV–Visible and fluorescence spectroscopies in solution and, the complex structures were confirmed by time-dependent density functional theory calculations [14]. In the present study we have calculated the optimized molecular geometries and vibrational analysis of isomers of dihydroxyquinone molecule using density functional theory (B3LYP) method with 6-31G (d,p) basis set to find out their ground state hydrogen conformations.

COMPUTATIONAL METHOD

The optimized conformations and vibrational frequencies of dihydroxyquinones have been calculated by using DFT/B3LYP method at 6-31 G (d,p) basis set level. All the computations were performed using Gaussian 03 program package on personal computer [15] and Gauss-View molecular visualization program [16]. The scale factor of 0.9613 was used for B3LYP with 6-31G (d,p) basis set [17]. The proposed vibrational assignments were made by inspection of each of the vibrational mode by GaussView molecular visualization program

RESULTS AND DISCUSSION

Dihydroxyquinones are molecules having 26 atoms, and belong to the point group CS . The three Cartesian displacements of the 26 atoms provide 78 internal modes, namely;

Γ er. = + A A .

From the character table for the CS point group, since

Γ = + trans. 2A' A" and root.

Γ = + 2A' A", we get vib. 39 .

rot. - 49A' 23A"

normal modes of vibration. All the vibrations are active both in infrared (IR) and Raman (R). For an N-atomic molecule, 2N-3 of all vibrations is in plane and N-3 is out of plane [18]. Thus, for dihydroxyquinone molecules, 49 of all the 72 vibrations are in plane and 23 out of plane. Since the molecules belong to the CS group all the vibrations being anti-symmetric through the mirror plane of symmetry σ h will belong to the species A′′ and the others being symmetric through σ h belong to the species A′. Thus, since the compounds are planer all the vibrations of the A′ species will be in plane and those of the A′′ species will be out of plane.

The ab initio optimized structures of all the possible hydrogen conformers of the isomers of dihydroxyquinone are illustrated in (Table 1-4).

Table 1: Sum of electronic and zero point energies, relative energies and correlation factors for the possible conformations of alizarin, calculated at B3LYP [6-31G (d,p)].

Conformation

 

 

 

 

                I

 

II

 

 

III

Sum  of  electronic  and  zero

point energy  (Hartree/particle)

-839.061304

-839.052911

-839.038278

Relative energy (kcal/mol)

0.0

5.26

14.44

Vibrational deviation  

0.0

7.46

24.93

Correlation factor

 

 

Frequencies

0.9885

0.9899

0.9976

Bond lengths

0.9676

0.9652

0.9803

Bond angles

0.9134

0.5047

0.4558

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Sum of electronic and zero point energies, relative energies and correlation factors for the possible conformers of quinizarin, calculated at B3LYP [6-31G (d,p)].

 

 

 

Conformation

 

 

 

                I

II

III

 

Sum  of  electronic  and  zero point energy  (Hartree/particle)

-839.069404

-839.046979

-839.02363

 

Relative energy (kcal/mol)

0

14.06

28.70

 

Vibrational deviation  

0

21.38

21.85

 

Correlation factor

 

 

Frequencies

0.9878

0.9996

0.9995

 

Bond lengths

0.9733

0.9682

0.9737

 

Bond angles

0.8300

0.7420

0.6499

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformation

 

 

 

                                          

                I

II

III

Sum  of  electronic  and  zero

point energy  (Hartree/particle)

-839.068724

-839.049242

-839.026133

Relative energy (kcal/mol)

0

12.22

26.71

Vibrational deviation  

0

19.11

36.04

Correlation factor

 

 

Frequencies

0.9846

0.9976

0.9975

Bond lengths

0.9878

0.9817

0.9681

Bond angles

0.9175

0.8652

0.7630

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Sum of electronic and zero point energies, relative energies and correlation factors for the possible conformers of dantron, calculated at B3LYP [6-31G (d,p)].  

Conformation

                     I

II

III

 

 

 

 

Sum  of  electronic  and  zero

point energy  (Hartree/particle)

-839.048803

-839.047633

-839.046533

Relative energy (kcal/mol)

0

0.734

1.423

Vibrational deviation  

0

3.04

5.88

Correlation factor

 

 

Frequencies

0.9803

0.9818

0.9816

Bond lengths

0.9817

0.9813

0.9814

Bond angles

0.8886

0.8684

0.8459

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Sum of electronic and zero point energies, relative energies and correlation factors for the possible conformers of anthraflavic acid, calculated at B3LYP [6-31G (d,p)].

The tables also show the correlation factors for the experimental and calculated geometrical parameters (bond lengths and bond angles) and vibrational frequencies. The experimental vibration values of the compounds are taken from the web page of Rio-Db Spectral Database for Organic Compounds [19], and the experimental parameters form the literature [20- 24]. The correlation graphic at DFT 6-31G (d,p) level for alizarin are drawn in (Figure 1).


Figure 1: Correlation graphics between experimental and calculated vibration frequencies and geometric parameters for the ground state conformer of alizarin

In (Table 1- 4) are also given the sum of electronic and zero-point energies. As seen from these tables the correlation factors for the conformers with minimum energy of all the isomers are almost best. So, for all the compounds the preferential conformer in the ground state is the conformer with the doubly bonded O atom linked intramolecularly by the two hydrogen bonds. The tables also show the relative energies and the mean vibrational deviations ( ave ν? ) between the calculated

vibrational frequency values of the conformers. The relative energy values and vibrational deviations are respect to the conformer with minimum energy. As seen, the mean vibrational deviation increases while the relative energy increases. This is an expected result since the more different the molecular structure of the conformer is the higher the relative energy is between them, and so a bigger mean vibrational deviation occurs. This comment has also been given for pyridine carboxaldehyde and difluorobenzaldehyde molecules in our previous studies [25,26].

The resulting vibrational frequencies and proposed vibrational assignments for all the possible conformers of alizarin are given in (Table 5).

Table 5: Experimental and calculated vibration frequencies of the possible conformers of alizarin.

Sym.

 

Assignments

 

 

B3LYP 6-31G (d,p)

Exp.*

freq.(cm-1)

I

II

III

IR

ν(OH)

 

3602

3670

3692

ν(CH)

3371

3104

3129

3609

ν(CH)

 

3100

3104

3105

ν(CH)

 

3194

3101

3099

ν(CH) + ν(OH)

2955

3089

3098

3096

ν(OH) + ν(CH)

2925

3083

3081

3078

ν(CH) + ν(OH)

2864

3081

3067

3064

ν(CH)

2731

3068

3048

3052

ν(C=O)

1664

1677

1676

1686

ν(C=O) + δ(OH) + ν(C-OH)

1633

1629

1633

1675

ν(ring) + δ(CH) + δ(OH)

1588

1585

1585

1585

ν(ring) + δ(CH) + δ(OH)

 

1580

1579

1582

ν(ring) + δ(CH) + δ(OH)

 

1577

1569

1574

ν(ring) + δ(CH)

 

1560

1561

1566

ν(ring) + δ(CH) + δ(OH) + ν(C=O)

1462

1468

1468

1471

δ(CH) + ν(ring) + δ(OH)

 

1457

1462

1461

δ(OH) + ν(ring) + δ(CH)

 

1450

4561

1447

ν(ring) + δ(CH)

 

1437

1436

1434

ν(ring) + δ(OH) + δ(CH)

1377

1396

1374

1361

ν(ring) + δ(CH) + δ(OH)

1350

1346

1350

1324

ν(ring) + δ(CH) + δ(OH)

1331

1324

1327

1296

ν(C-OH) + δ(OH) + δ(CH) + δ(ring)

 

1316

1324

1294

ν(C-OH) + δ(CH) + δ(ring) + δ(OH) 

1298

1286

1282

1269

δ(CH) + δ(OH) + ν(ring)

1271

1271

1277

1261

δ(OH) + δ(CH)

 

1245

1246

1235

δ(OH) + δ(CH)

1199

1209

1204

1178

δ(CH) + δ(OH)

1185

1177

1173

1164

δ(CH) + δ(OH)

 

1165

1148

1139

δ(CH)

 

1140

1139

1131

δ(CH)

 

1130

1135

1123

δ(CH) + δ(ring)

1047

1073

1074

1074

δ(CH)

1033

1031

1029

1026

δ(CH) + δ(ring)

1013

1014

1016

1001

δ(CH) + δ(ring) + δ(C-OH)

 

996

998

989

γ(CH)

 

979

978

977

γ(CH)

 

958

958

959

γ(CH)

 

938

921

923

γ(CH)

 

888

887

887

δ(ring) + δ(C=O)

896

873

875

873

γ(CH) + γ(OH)

848

832

826

806

δ(ring) + γ(C=O)

829

818

813

802

γ(OH) + γ(CH)

 

812

809

783

Table 5: Continued.

γ(CH) + γ(OH) + γ(ring)

763

780

779

769

γ(CH) + γ(ring)

757

759

760

733

δ(ring)

749

737

736

711

γ(CH) + γ(ring) 

714

706

707

686

γ(ring)

676

676

686

668

δ(ring) + δ(C=O) + δ(C-OH)

661

670

668

648

γ(ring)

 

649

656

646

δ(ring)

 

647

647

601

δ(ring) + δ(C-OH)

621

604

603

560

δ(ring)

582

562

559

559

γ(ring)

 

557

559

492

γ(OH)

487

495

484

481

γ(OH) + γ(ring)

 

474

473

467

δ(ring) + δ(OH)

 

469

457

447

δ(ring) + δ(C-OH)

 

458

441

436

γ(ring)

 

439

414

412

γ(ring)

 

412

411

381

δ(C=O) + δ(ring)

 

410

380

371

δ(ring) + δ(C-OH) 

 

381

380

341

δ(C-OH) + δ( C=O)

 

335

336

328

γ(ring) + γ(C-OH)

 

327

325

313

δ(ring)

 

316

316

279

ρ(OH) + ρ(C=O) + ρ(ring) in the plane

 

278

284

264

w(ring) + w(OH)

 

248

245

233

ρ(ring) in the plane

 

187

191

184

w(ring) + w(C=O) + w(C-OH)

 

177

173

172

ρ(ring) out of plane + w(C-OH) + w(C=O)

 

140

138

121

ρ(ring) + w(C-OH) + w(C=O)

 

122

121

114

ρ(ring) out of plane

 

92

91

73

w(ring)

 

48

46

35

    ν: stretching; δ: bending; γ: out of plane bending; ρ: rocking; w: wagging.

     *Taken from Ref. [15].

The table also shows the experimental vibrations of the compounds. The proposed vibrational assignments in the table well correspond to the assignments given in [27]. The calculated vibrations are scaled and their symmetry species are written in the first column of the table. As we said before, the vibrations in plane belong to the A′ species and the ones out of plane to the A′′ species. This was corrected by means of the visual inspection of all the vibrations.

Table 6, 7

Table 6: Experimental and calculated bond lengths of the possible conformers of alizarin.

 

Bond lengths ()

Exp.*

B3LYP 6-31G (d,p)

I

II

III

C1-C2

1.399

1.416

1.423

1.415

C1-O1

1.343

1.347

1.334

1.349

O1-H1

 

0.998

0.995

0.971

C1-C11

 

1.403

1.411

1.407

C2-O2

 

1.352

1.356

1.371

O2-H2

 

0.972

0.967

0.965

C2-C3

1.397

1.390

1.390

1.387

C3-H3

 

1.085

1.088

1.088

C3-C4

1.365

1.399

1.399

1.394

C4-H4

 

1.084

1.084

1.084

C4-C12

1.379

1.392

1.388

1.393

C12-C11

 

1.421

1.422

1.422

C12-C10

1.495

1.481

1.483

1.490

C10-O10

1.214

1.228

1.228

1.228

C10-C14

1.469

1.497

1.494

1.487

C14-C13

 

1.410

1.409

1.406

C14-C5

 

1.398

1.398

1.400

C5-H5

 

1.085

1.085

1.085

C5-C6

1.399

1.393

1.393

1.391

C6-H6

 

1.086

1.066

1.086

C6-C7

1.397

1.399

1.400

1.400

C7-H7

 

1.086

1.086

1.086

C7-C8

1.365

1.392

1.392

1.392

C8-H8

 

1.084

1.084

1.085

C8-C13

 

1.400

1.400

1.400

C13-C9

1.495

1.481

1.484

1.499

C9-O9

1.214

1.248

1.247

1.224

C9-C11

1.469

1.465

1.466

1.491

*Taken from Ref. [16].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7: Experimental and calculated bond angles of the possible conformers of alizarin.

Bond angles (o)

Exp.*

B3LYP 6-31G(d,p)

I

II

III

C1-O1-H1

 

105.7

105.8

107.3

O1-C1- C11

 

123.8

123.3

122.3

C2-C1-C11

120.1

120.1

119.0

119.3

C2-C1-O1

 

116.1

117.7

118.3

C1-C2-C3

119.4

119.8

119.8

121.5

C1-C2-O2

 

119.2

116.2

114.4

C2-O2-H2

 

107.3

109.2

110.3

O2-C2-C3

 

120.9

124.0

124.4

C2-C3-C4

 

120.2

121.0

119.4

C2-C3-H3

 

118.6

119.1

119.9

C4-C3-H3

 

121.2

119.9

120.7

C3-C4-C12

 

120.8

120.3

120.4

C3-C4-H4

 

120.8

121.1

121.3

C12-C4-H4

 

118.3

118.6

118.3

C4-C12-C10

 

119.8

119.1

117.3

C4-C12-C11

 

119.6

119.7

121.0

C10-C12-C11

119.6

120.6

121.1

121.8

C12-C10-C14

 

117.3

117.3

117.7

C12-C10-O10

 

122.0

121.8

121.2

C14-C10-O10

 

120.7

120.9

121.1

C10-C14-C13

121.0

121.5

121.2

120.8

C10-C14-C5

 

119.0

119.1

119.2

C5-C14-C13

119.1

119.5

119.6

120.0

C14-C5-C6

 

120.2

120.2

120.1

C14-C5-H5

 

118.1

118.1

118.2

C6-C5-H5

 

121.7

121.7

121.7

C5-C6-C7

119.4

120.2

120.2

120.0

C5-C6-H6

 

119.8

119.9

120.0

C7-C6-H6

 

119.9

119.9

120.0

C6-C7-C8

 

120.1

120.1

120.2

C6-C7-H7

 

120.0

120.0

119.9

C8-C7-H7

 

119.9

119.9

119.9

C7-C8-C13

119.1

120.0

120.0

120.2

C7-C8-H8

 

121.5

121.5

121.7

C13-C8-H8

 

118.5

118.5

118.1

C8-C13-C9

 

119.4

119.3

118.4

C8-C13-C14

 

120.0

119.9

119.5

C9-C13-C14

119.6

120.6

120.9

122.0

C13-C9-C11

116.6

116.2

118.4

117.3

C13-C9-O9

 

120.7

120.2

119.9

C11-C9-O9

121.1

121.1

120.4

122.7

C9-C11-C12

121.0

121.8

121.1

120.4

C9-C11-C1

 

118.8

118.8

121.1

C1-C11-C12

119.1

119.4

120.1

118.5

* Taken from Ref. [16].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shows the calculated optimized structure parameters (bond lengths and bond angles, respectively) for all the possible conformers of alizarin isomer of the title molecule, in corresponding to the atom numberings in (Figure 2).


Figure 2 :Atom numberings of the ground state hydrogen conformer of alizarin

As seen the parameters in the tables are close to their corresponding experimental values.

CONCLUSION

In this study the ground state hydrogen conformers of the isomers of dihydroxyquinone were investigated using density functional theory (B3LYP) method with 6-31G (d,p) basis set. As expected for the conformers with minimum energy of all the isomers the best correlation factors between the experimental and calculated geometrical parameters (bond lengths and bond angles) and vibrational frequencies were obtained. It was concluded that all the isomers exist with the doubly bonded O atom linked intramolecularly by the two hydrogen bonds in the ground state. The vibrational analysis of the conformers of all the isomers of the compound was made. The proposed vibrational assignments and their symmetry species and optimized geometry parameters for all the possible conformers of alizarin were written. It was also seen that the mean vibrational deviation between the calculated vibrational frequency values of all the conformers of the isomers increases while the relative energy increases. Therefore it was emphasized that the more different the molecular structure of the conformers is the higher the relative energy is between them, and so, a bigger mean vibrational deviation arises.

REFERENCES

 1. Thomson RH. Naturally Occurring Quinones. Academic Press, New York, 1971.

2. Carter TP, Gillisple GD, Connolly A. Intramolecular hydrogen bonding probed by laser- induced fluorescence. 1. 1,4-Dihydroxyanthraquinone (Quinizarin). J Phys Chem. 1982; 86: 192-196.

3. Smulevich G, Angeloni L, Giovannardi S, Marzocchi MP. Resonance Raman and polarized light infrared spectra of 1.4- dihydroxyanthraquinone. Vibrational studies of the ground and excited states. Chem. Phys. 1982; 65: 313-322.

4. Dutta PK, Lee BS. Optical spectroscopic studies of the polymorphic forms of 1,4 dihydroxy anthraquinone. J. Raman Spectrosc. 1988; 19: 175-178.

5. Smulevich G, Amirav A, Even U, Jortner J. Electronic-vibrational excitations of a hydrogen-bonded molecule in supersonic expansions: 1.4-dihydroxyanthraquinone and its deuterated derivatives. J Chem Phys. 1982; 73: 1-18.

6. Nigam GD, Deppisch BZ. Redetermination of the structure of 1,4-dihydroxyanthraquinone (C14H8O4). Kristallogr. 1980; 151: 185- 191.

7. Smulevich G, Foggi P, Feis A, Marzocchi MP. Fluorescence excitation and emission spectra of 1.8-dihydroxyanthraquinone-d0 and -d2 in n.octane at 10 K. J Chem Phys. 1987; 87: 5664-5669.

8. Gillispie GD, Balakrishnan N, Vangsness M. Intramolecular hydrogen bonding. X. Comparison of free jet and Shpol’skii matrix electronic spectra of 1,8-dihydroxyanthraquinone. Chem Phys. 1989; 136: 259- 269.

9. Smulevich G, Marzocchi MP. Raman excitation profiles of 1.8-dihydroxyanthraquinone at 8K. Chem Phys. 1986; 105: 159-171.

10.Smulevich G, Marzocchi MP. Single crystal and polarized infrared spectra of two forms of 1.8- dihydroxyanthraquinone. Vibrational assignment and crystal structures. Chem Phys. 1985; 94: 99-108.

11.Ferreiro ML, Rodriguez-Otero J. Ab initio studies of the intramolecular proton transfer in dihydroxyanthraquinones. J Mol Struct. (Theochem). 2001; 542: 63-77.

12.Komiha N, Kabbaj OK, Chraibi M. A density functional study of alizarin two of its isomers and its transition metals and rare-earth complexes. J Mol Struct. (Theochem). 2002; 594: 135-145.

13.Xuan X, Wang X, Wang N. Theoretical study of molecular structure and vibrational spectra of 1,4-dihydroxyanthraquinone. Spectrochim Acta. 2011; 79: 1091-1098.

14.Yin C, Zhang J, Huo F. Combined spectral, experiment and theoretical calculation to study the interaction of 1,4-dihydroxyanthraquinone for metal ions in solution. Spectrochim Acta. 2013; 115A: 772-777. 15.Frisch MJ, et al. GAUSSIAN 03, Revision C.02, Gaussian Inc., Pittsburgh, PA, 2003.

16.Frish A, Nielsen AB, Holder AJ. Gauss View User Manual, Gaussian Inc.Pittsburg, PA, 2001.

17.Young DC. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems, (Electronics), John Wiley & Sons, Inc., New York 2001.

18.Wilson EB, Decius JC, Cross PC. Molecular Vibrations, Dover Pub. Inc., New York 1980.

19.Rio-Db Spectral Database for Organic Compounds, Web Page, Japan 2001.

20.Hall D, Nobbs CL. The crystal and molecular structure of 1.5- dihydroxyanthraquinone. Acta Cryst. 1966;

21: 927-934. 21.Johnson O, Jones DW, Hazell RG, Sheldrick B. Structure of 1,4-dihydroxy-2-(1-hydroxy-2,3:4,5-di-O-isopropylidene-Darabinityl)-9,10-anthraquinone. Acta Cryst. 1989; 45: 123-126.

22.Marasinghe PAB, Gillispe GD. Structure of 1,5-dihydroxyanthraquinone: a redetermination. Acta Crys. 1993; 49: 113-114.

23.Zain SM, Ng SW. 1,8-Dihydroxyanthraquinone. Acta Cryst. 2005; E61: 2921-2923.

24.Adaboh RK, Kashino S. Disordered structure of 2-methylanthraquinone. Acta Cryst. 1995; 51: 2094-2096.

25.Sa?lam A, Ucun F, Güçlü V. Molecular structures and vibrational frequencies of 2-, 3- and 4-pyridine carboxaldehydes by ab initio Hartree-Fock and density functional theory calculations. Spectrochim. Acta 2007; 67A: 465-471.

26.Sa?lam A, Ucun F. Conformational and vibrational analysis of 2, 4-, 5- and 6-difluorobenzaldehydes by ab initio Hartree-Fock and density functional theory calculations. Z Naturforsch. 2008; 61: 175-182. 27.Fabriciova G, Garcia-Ramos JV, Miskovsky P, Sanchez-Cortes S. Adsorption and acidic behavior of anthraquinone drugs quinizarin and danthron on Ag nanoparticles studied by Raman spectroscopy. Vib Spect. 2004; 34: 273-281.

 

Ucun F, Sa?lam A, Delta E (2015) Ground State Hydrogen Conformations and Vibrational Analysis of Isomers of Dihydroxyanthraquinone by Density Functional Theory Calculation. JSM Chem 3(1): 1015.

Received : 19 Nov 2014
Accepted : 12 Jan 2015
Published : 15 Jan 2015
Journals
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
Annals of Pediatrics and Child Health
ISSN : 2373-9312
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X