Genetic Perspective of Corneal Endothelial Dystrophies

Review Article | Open Access | Volume 5 | Issue 1

  • 1. Department of Genetics, Dr G Venkataswamy Eye Research Institute, India
  • 2. Cornea and Refractive Surgeries, Aravind Eye Hospital, India
+ Show More - Show Less
Corresponding Authors
Sundaresan P, Department of Genetics, Aravind Medical Research Foundation, Madurai, Tamilnadu, India, Tel: 91-452-4356100

The corneal endothelium serves primarily in maintaining stromal deturgescence which is essential for transparency of cornea. Any disturbance in its function leads to stromal edema which in turn reduces vision. The genetically heterogeneous nature of four different kinds of corneal endothelial dystrophies represents the involvement of diverse set of genes. Until now, only few genes were identified for a subclass of corneal endothelial dystrophy. Therefore, in this review, elucidated genes and their function involved in different corneal endothelial dystrophies were described to understand the pathogenesis of the disorder.


•    Corneal endothelial dystrophy
•    Mutations
•    X-linked inheritence


Hemadevi B, Prajna NV, Srinivasan M, Sundaresan P (2017) Genetic Perspective of Corneal Endothelial Dystrophies. JSM Genet Genomics 4(2): 1026.


Corneal dystrophies are defined as primary, inherited, bilateral disorders affecting corneal transparency and refraction, leading to varying degrees of visual disturbances. They are generally said to be of early onset, axial, symmetric, slowly progressive, free from vascularization, and not associated with other systemic conditions. The dystrophies have been traditionally classified according to the layer of involvement into anterior membrane dystrophies (epithelium, epithelial basement membrane, and Bowman layer dystrophies), stromal dystrophies, and endothelial dystrophies (endothelium and Descemet’s membrane (DM)). Corneal endothelial dystrophies include congenital hereditary endothelial dystrophy (CHED; MIM# 217700), Fuchs endothelial corneal dystrophy (FECD; MIM# 613267 and 610158), posterior polymorphous dystrophy (PPCD; MIM# 122000), and X- linked endothelial corneal dystrophy (XECD; MIM# 300779). These endothelial dystrophies share many features including, corneal decompensation, altered morphology of endothelial cell, and secretion of an abnormal posterior collagenous layer in the posterior zone of Descemet’s membrane, the endothelial basement membrane. Genetics underlying these diseases are being studied, although clinically distinct, corneal endothelial dystrophies share clinical features suggesting that genes implicated in one corneal dystrophy may also harbor mutations liable for other dystrophies (Table 1).

Table 1: Genetic/allelic heterogeneity of corneal endothelial dystrophies.

Corneal dystrophy Inheritance Locus Location Gene Reference MIM*
Congenital hereditary endothelial dystrophy (CHED) AD CHED1 20p11-q11 Not known Toma et al., 1995 121 700
AR CHED2 20p13-p12 SLC4A11 Hand et al., 1999;
Vithana et al., 2006
217 700
Fuchs endothelial corneal dystrophy (FECD) AD FECD1 1p34.3–p32.3 COL8A2 Biswas et al., 2001; Kobayashi 
et al., 2004
136 800
AD FECD2 13pter– q12.13 Not known Sundin et al., 2006 610 158
AD FECD3 18q21.2–q21.3 TCF4 Baratz et al., 2010 613 267
AD ? 18q12–q21 LOXHD1 Riazuddin et al., 2012 613 072
Complex FECD4 20p13–p12 SLC4A11 Riazuddin et al., 2010 613 268
AD FECD5 5q33.1–q35.2 unknown Riazuddin et al., 2009 613 269
AD FECD6 10p11.2 ZEB1 Riazuddin et al., 2010 613 270
AD FECD7 9p24.1–p22.1 unknown Riazuddin et al., 2010 613 271
Complex FECD8 15q25.3 AGBL1 Riazuddin et al., 2013 615 523
AD SVD 2q37.1 KCNJ13 Hejtmancik et al., 2008 193 230
Posterior polymorphous corneal dystrophy (PPCD) AD PPCD 20p12.1-20p11.23 unknown Liskova et al., 2012 122 000
AD PPCD1 20p11.2 VSX1 Heon et al., 2002 1220 000
AD PPCD2 1p34.3–p32.3 COL8A2 Biswas et al., 2001 609 140
AD PPCD3 10p11.2 ZEB1 Krafchak et al., 2005 609 141
  Other 2q36–q37 COL4A3 Krafchak et al., 2005 120 070
X-linked endothelial dystrophy (XECD) X-linked XECD Xq25 Not known Schmid et al., 2006 3009
*MIM - Mendelian inheritance in man
AGBL1 - ATP/GTP-Binding protein –Like1; COL4A3 - collagen, type IV, alpha 3; COL8A2, collagen, type VIII, alpha 2; KCNJ13 - potassium inwardly rectifying channel, subfamily J, member 13; LOXHD1 - lipoxygenase homology domains 1; SLC4A11 - solute carrier family 4, sodium borate transporter, 
member 11; SVD - snowflake vitreoretinal degeneration; TCF4 - transcription factor 4; VSX1 - visual system homeobox 1; ZEB1 - zinc finger E-box 
binding homeodomain 1.

This review focuses on the current knowledge of the genetics of corneal endothelial dystrophies.


CHED manifests as bilateral, symmetric, noninflammatory corneal clouding involving degeneration of the corneal endothelium without other anterior segment abnormalities, usually evident at birth or in the early postnatal period. It is characterized by diffuse ground glass opacification of the cornea, markedly thickened cornea due to edema, and a thickened DM. CHED has both autosomal dominant (CHED1; OMIM# 121700) as well as autosomal recessive (CHED2; OMIM# 217700) modes of transmission the latter more severe and usually more common. The only difference between clinical features of the dominant and recessive forms of CHED is that the recessive form may manifest earlier and is associated with nystagmus [1]. However, a careful examination of the literature indicated that CHED1 is not sufficiently distinguishable from PPCD1 to consider it a separate corneal endothelial dystrophy [2].

Hand and coworkers localized CHED2 to the short arm of chromosome 20 at 20p13 by homozygosity mapping [3]. Mutations in the sodium bicarbonate transporter-like solute carrier family 4 member 11 (SLC4A11, MIM610206) gene present in this locus were found to cause CHED2 [4]. Since the first description of SLC4A11 mutations, several case reports and small case series have been published [5-17].

The SLC4A11 gene belongs to a super family of bicarbonate transporters. The gene has 19 exons spanning 11, 774 bp of genomic DNA, which codes for a protein of 891 amino acids with a calculated molecular mass of 100 kDa. The SLC4A11 protein has 13 transmembrane domains and intracellular N and C termini. It contains multiple intracellular phosphorylation sites and 2 extracellular N-glycosylation sites [18]. SLC4A11 is also known as BTR1 (bicarbonate transporter related protein-1) or NaBC1 (sodium-coupled borate co-transporter).

Expression of BTR1/SLC4A11 gene is seen in several organs and tissues, including the eye, blood, lung, ovary, colon, mouth, embryonic tissue, pancreas, kidney, skin, cranial nerve, ascites, prostate, and brain. Vithana and coworkers by in situhybridization showed its expression in the mouse cornea at embryonic day 8, which is equivalent to human gestational month 5, the time at which CHED2 pathology develops in humans [4]. BTR1 is homologous to BOR1, a borate transporter in plants [18]. It functions as a ubiquitous electrogenic sodium-coupled borate transporter in the presence of borate, while in the absence of borate it conducts Na+ and H+ . In view of the requirement for borate in growth and development, BTR1 may be a mediator for these processes [19]. It is shown that SLC4A11 prevents severe morphological changes of the cornea caused by increased sodium chloride concentrations in the stroma [20]. However it is established that in corneal endothelium SLC4A11 acts as a Na+ - dependent pHi modulator transporting OH- with no significant affinity to B(OH)4- or HCO3- anions [21]. SLC4A11 also facilitates water movement at a rate similar to AQP proteins and corneal fluid accumulation found in genetic diseases of SLC4A11 arises at least in part from defective water movement by SLC4A11 [22].

Mutations in SLC4A11 have also been described in Harboyan syndrome (corneal dystrophy with perceptive deafness; CDPD) which is characterized phenotypically as CHED2 with sensorineural hearing loss appearing in about the second decade of life [6]. The SlC4A11 knockout model by [23] had a more pronounced phenotype in the ear (i.e., sensorineural deafness) similar to Harboyan syndrome while there were no phenotypic changes in the cornea. However SlC4A11 KO mouse model by [20] revealed morphological alterations in all layers of the cornea of 12-month-old mice. SLC4A11 KO mouse model by [24] also successfully represented clinical manifestations of human CHED as well as renal abnormalities. An in vitro study revealed that SLC4A11 knockdown in human corneal endothelial cells led to suppressed cell growth and reduced cell viability by activating the apoptotic pathway [25].

To date 76 mutations in 17 of the 19 coding exons of SLC4A11 have been identified indicating the high degree of allelic heterogeneity. Among the 76 mutations 74 are listed in publication by Kodaganur et al. [15], and rest two are in Park et al. [16], & Siddiqui et al. [17], publications. Although 32 of the 136 pedigrees screened to date do not demonstrate coding region mutations in SLC4A11 [7, 10-12, 14]. Screening of the putative SLC4A11 promoter region in 20 of these 32 families failed to demonstrate any presumed pathogenic variants [12,14]. Thus, it is possible that locus heterogeneity exists for CHED2.



FECD is an adult-onset corneal disorder, which begins at 5th decade. It is a commonly occurring, progressive, bilateral, but often asymmetric, corneal dystrophy. It is characterized by the presence of guttae, which are excrescences in the Descemet’s membrane described as a ‘focal, refractile accumulation of collagen posterior to the DM [26]. In later stages of the disease, corneal edema develops due to degeneration of the corneal endothelium, with consequent loss of vision. The prevalence of FECD varies markedly across the world. It affects ~4% of the USA population over the age of 40 years [27] but is less frequent in Asian [28], and Middle-Eastern populations [29]. In Australia, corneal grafting for FECD accounts for ~6% of all corneal grafts performed annually [30].

FECD is a genetically heterogeneous disease. There are two forms defined by the age of onset. Early-onset FECD is rare [31] and is typically inherited as an autosomal dominant disease with high penetrance and almost uniform expressivity [32]. The more common late-onset FECD can either be familial or sporadic, with onset typically after the age of 40 years [33]. The risk of developing the late-onset form increases with age and female sex. Familial late onset FECD shows an autosomal dominant inheritance with high penetrance, but variable expressivity [27].

FECD loci identified by genetic linkage analysis, Genome wide association studies (GWAS), Next generation sequencing & causative genes are shown in Table 1. Linkage analysis of early onset form of FECD identified a 6-7 cM interval on chromosome 1p34.3-p32. Screening of COL8A2 (collagen, type VIII, alpha 2) gene in this interval revealed a missense mutation p.Q455K [31]. COL8A2 is an extracellular matrix protein and is a major component of DM [34]. Similarly, Gottsch et al., identified a novel point mutation in the COL8A2 gene with p.L450W substitution [35]. In addition, Mok et al., also identified the p.Q455V mutation in COL8A2 in Korean Patients with FECD [36]. However COL8A2 mutations do not play a role in the phenotypically distinct late onset form of FECD [35].

Mutations in the ZEB1 (zinc-finger E-box binding homoebox 1) gene also known as TCF8 can cause both sporadic and familial late-onset FECD [37,38]. ZEB1 is expressed in the corneal endothelium [39]. It regulates cell proliferation and differentiation by inducing epithelial– mesenchymal transition [40]. Mehta and colleagues screened ZEB1 in 74 FECD probands including 8 familial and 66 sporadic cases and found two coding region variants one of which was a synonymous substitution and a novel variant, p.N696S. Riazuddin and colleagues reported five presumed causative ZEB1 missense mutations in 7 of 384 unrelated individuals with FECD. Three of these mutations (p.Q810P, p.Q840P and p.A905T) occurred at sites that are highly evolutionarily conserved in vertebrates, while the remaining two occur at moderately conserved sites.

The SLC4A11 (solute carrier family 4, sodium borate transporter, member 11) mutations cause sporadic and familial late-onset FECD [41, 42]. Vithana et al., showed that heterozygous mutation in SLC4A11 is associated with late-onset FECD by analyzing 89 unrelated patients of Chinese and Indian decent [41]. Approximately 5% of FECD in Chinese patients and 4% of FECD in Indian patients attributed to mutations in the SLC4A11 gene. Four previously unreported mutations were identified, p.S33SfsX18 in a Chinese sporadic case, p.E399K in an Indian sporadic case, p.G709E in a Chinese familial case, and p.T754M in a Chinese sporadic case. The mutations in CHED were inherited in an autosomal recessive fashion [4], the alleles that caused FECD acted in an autosomal dominant pattern [41]. Additional mutations were identified in an American cohort by Riazuddin et al., after sequencing all coding regions of SLC4A11 in 192 FECD cases [42]. Sorting Intolerant From Tolerant (SIFT) and PolyPhen predicted that among the seven missense mutations p.E167D, p.R282P, p.Y526C, p.V575M, p.G583D, p.G742R and p.G834S identified five of the mutations were pathogenic; p.E176D and p.Y526C were predicted to be benign.

Single-nucleotide polymorphisms (SNPs) in the TCF4 (transcription factor 4) gene, encoding the E2-2 protein, were reported to be significantly associated with late-onset FECD in Caucasian Americans [43]. Independent replication studies have confirmed association of TCF4 variants with FECD [44-46]. In particular, the TGC trinucleotide repeat expansion (rs613872) in TCF4 is strongly associated with FECD and a repeat length >50 are highly specific for the disease [47] and a predictor of disease risk. Further studies have strengthened the association of TCF4 polymorphisms in the FECD disease process [48,49] and also suggest a role for clusterin and TGFBI polymorphisms [49]. A mutation R162W in the gene potassium inwardly-rectifying channel, subfamily J, member 13 (KCNJ13) is described in one family with snowflake vitreoretinal degeneration in which FECD was part of the ocular phenotype [50].

Next-generation sequencing of a FECD family identified a missense mutation, p.R547C in the lipoxygenase homology domains 1 (LOXHD1) gene [51]. LOXHD1 is an evolutionarily conserved protein predicted to consist of 15 PLAT (polycystin-1, lipoxygenase, alpha-toxin) domains. The biological function of PLAT domains is not well established, but it is predicted that they target proteins to the plasma membrane [52]. A further cohort of over 200 sporadic FECD patients were sequenced, and a further 15 missense changes identified in this gene [51].

Next-generation sequencing also identified a nonsense mutation (p.R1028*) in AGBL1 (ATP/GTP-Binding protein – Like1) in the 15q locus [53]. Further sequencing identified a heterozygous missense variant, c.2969G>C that results in nonconserved amino acid substitution (p.C990S). AGBL1 encodes a glutamate decarboxylase previously identified in serial analysis of gene expression of corneal endothelium, a finding confirmed by immunohistochemical staining [54].

The c.-61G>T (rs1801321) and c.-98G> C (rs1801320) polymorphisms of the RAD51 gene have a role in the FECD pathogenesis [55]. The RAD51 protein is the central protein involved in homologous recombination and repair of DNA single and double strand breaks (DSBs) in humans [56].


PPCD is an autosomal dominant, uncommon, inherited corneal dystrophy which shares some similarities with CHED1. It is characterized by the presence of abnormal corneal endothelial cells which display epithelial features including microvilli and inappropriate cytokeratin expression [57-59]. The age at onset of symptoms is variable and may be in early childhood in severe cases or in adulthood. Clinical outcomes vary from minimal visual impairment to an aggressive course, with development of retrocorneal membranes and corneal opacification requiring keratoplasty [60,61].

PPCD has been associated with a number of other ocular disorders, including primary open angle and secondary angleclosure glaucoma [62], as well as non-keratoconic corneal steepening [63] and keratoconus [64,65]. A number of associated extraocular manifestations, including abdominal hernia and hydrocele formation, distinguish PPCD from the majority of the other corneal dystrophies, which are traditionally considered isolated corneal disorders [66, 67].

To date three genes have been identified as causing PPCD (Table 1). Haplotype analysis in the Czech population points to an as yet unidentified gene at the PPCD1 locus [68]. A locus for PPCD (PPCD1) has been identified in the pericentromeric region of chromosome 20 through linkage analysis [69-71]. Mutation of the visual system homeobox gene 1 (VSX1) within this locus was reported as disease-causing in a few PPCD cases [72,73] but this was not replicated in other studies [70,74]. The PPCD1 locus was further reduced to 2.4 cM [75] and subsequently probed with Sanger and next-generation sequencing [76]. The underlying genetic cause within this locus appears to remain elusive. Liskova et al., further explored this locus demonstrating a founder haplotype in the Czech population, but no causative mutation was identified [68]. However recently in the VSX1 gene a novel change c.173C>T (p.P58L) was found in a patient with PPCD, predicted to be pathogenic, and not seen in 200 ethnically matched control alleles [77].

PPCD2 is caused by mutation of the alpha-2 chain of type VIII collagen gene located on 1p34.3-p32.3. Biswas et al., identified mutations in this gene in two affected members of a single PPCD family [31]. In addition a carrier of L450W mutation in COL8A2 in an early-onset FECD family was reported to have a phenotype of PPCD [35]. The involvement of COL8A2 in PPCD has not been substantiated further since no pathogenic mutations were found in additional families screened for mutations [78,79] suggesting this association is questionable or of a low frequency.

The largest percentage of PPCD (approximately one third) is associated with mutations in ZEB1, at the PPCD3 locus [67]. Aldave et al., confirmed the role of ZEB1 in PPCD3 by reporting eight additional frameshift mutations in 32 probands [66]. A study by Liskova et al., also identified ZEB1 mutations in four out of 10 PPCD families [80]. Further studies increased the number of ZEB1 mutations associated with PPCD to 24 [81-83].

ZEB1 binds to DNA at a conserved sequence (CACCTG) that is known as an E2 box. In the presence of a truncating mutation in ZEB1, COL4A3 expression has been demonstrated in the corneal endothelium of an individual affected with PPCD3 [67]. These findings, and the identification of six E2 boxes in the 5 kb upstream of the COL4A3 transcription initiation site, suggest that ZEB1 participates in the negative regulation of COL4A3 transcription. Yellore and colleagues tested this hypothesis and found that when ZEB1 is mutated, there is alteration of either the amount of expression or the temporal expression of the COL4A3 protein. This in turn may influence the endothelial cell to manifest a different phenotype [84].


X-linked endothelial dystrophy remains the least common of the corneal endothelial dystrophies, reported in only a single family to date [85]. In a 7-generation Austrian family 35 trait carriers were identified in 4 generations. Twenty-two female and 13 male patients demonstrated a wide range of phenotypic features, ranging from ‘moon-crater like’ changes in the endothelium to congenital corneal edema with variable presence of visual loss ranging from no change in visual acuity to moderate or severe loss of vision. No male-to-male transmission was observed. Given apparent X-linked inheritance pattern, linkage analysis was performed for the X-chromosome, revealing evidence of significant linkage to a 14.79Mb region on Xq25 between markers DXS8057 and DXS1047, although the genetic basis remains unknown [85].

Taken together, studying the various corneal dystrophies and their pathways might be more complex because of genetic heterogeneity. Therefore, bridging the gaps using the highthroughput technique such as next generation sequencing (NGS) helps to identify and unravel the disease causing novel genes. Consequently, understanding the genetics of corneal dystrophies is essential which can provide insights into the various pathways involved in its molecular mechanisms.


1. Kirkness CM, Mc Cartney A, Rice NS, Garner A, Steele AD. Congenital hereditary corneal oedema of Maumenee: its clinical features, management, and pathology. Br J Ophthalmol. 1987; 71: 130-144.

2. Aldave AJ, Han J, Frausto RF. Genetics of the corneal endothelial dystrophies: an evidence-based review. Clin Genet. 2013; 84: 109-119.

3. Hand CK, Harmon DL, Kennedy SM, Fitz Simon JS, Collum LM, Parfrey NA. Localization of the gene for autosomal recessive congenital hereditary endothelial dystrophy (CHED2) to chromosome 20 by homozygosity mapping. Genomics. 1999; 61: 1-4.

4. Vithana EN, Morgan P, Sundaresan P, Ebenezer ND, Tan DT, Mohamed MD, et al. Mutations in sodium-borate cotransporter SLC4A11 cause recessive congenital hereditary endothelial dystrophy (CHED2). Nat Genet. 2006; 38: 755-757.

5. Aldave AJ, Yellore VS, Bourla N, Momi RS, Khan MA, Salem AK, et al. Autosomal recessive CHED associated with novel compound heterozygous mutations in SLC4A11. Cornea. 2007; 26: 896-900.

6. Desir J, Moya G, Reish O, Van Regemorter N, Deconinck H, David KL, et al. Borate transporter SLC4A11 mutations cause both Harboyan syndrome and non-syndromic corneal endothelial dystrophy. J Med Genet. 2007; 44: 322-326.

7. Sultana A, Garg P, Ramamurthy B, Vemuganti GK, Kannabiran C. Mutational spectrum of the SLC4A11 gene in autosomal recessive congenital hereditary endothelial dystrophy. Mol Vis. 2007; 13: 1327- 1332.

8. Ramprasad VL, Ebenezer ND, Aung T, Rajagopal R, Yong VH, Tuft SJ, et al. Novel SLC4A11 mutations in patients with recessive congenital hereditary endothelial dystrophy (CHED2). Mutation in brief #958. Online. Hum Mutat. 2007; 28: 522-523.

9. Kumar A, Bhattacharjee S, Ravi Prakash D, Sadanand CS. Genetic analysis of two Indian families affected with congenital hereditary endothelial dystrophy: two novel mutations in SLC4A11. Mol Vis. 2007; 13: 39-46.

10. Jiao X, Sultana A, Garg P, Ramamurthy B, Vemuganti GK, Gangopadhyay N, et al. Autosomal recessive corneal endothelial dystrophy (CHED2) is associated with mutations in SLC4A11. J Med Genet. 2007; 44: 64- 68.

11. Shah SS, Al-Rajhi A, Brandt JD, Mannis MJ, Roos B, Sheffield VC, et al. Mutation in the SLC4A11 gene associated with autosomal recessive congenital hereditary endothelial dystrophy in a large Saudi family. Ophthalmic Genet. 2008; 29: 41-45.

12. Hemadevi B, Veitia RA, Srinivasan M, Arunkumar J, Prajna NV, Lesaffre C, et al. Identification of mutations in the SLC4A11 gene in patients with recessive congenital hereditary endothelial dystrophy. Arch Ophthalmol. 2008; 126: 700-708.

13. Aldahmesh MA, Khan AO, Meyer BF, Alkuraya FS. Mutational spectrum of SLC4A11 in autosomal recessive CHED in Saudi Arabia. Invest Ophthalmol Vis Sci. 2009; 50: 4142-4145.

14. Paliwal P, Sharma A, Tandon R, Sharma N, Titiyal JS, Sen S, et al. Congenital hereditary endothelial dystrophy-mutation analysis of SLC4A11 and genotype-phenotype correlation in a North Indian patient cohort. Mol Vis. 2010; 16: 2955-2963.

15. Kodaganur SG, Kapoor S, Veerappa AM, Tontanahal SJ, Sarda A, Yathish S, et al. Mutation analysis of the SLC4A11 gene in Indian families with congenital hereditary endothelial dystrophy 2 and a review of the literature. Mol Vis. 2013; 19: 1694-1706.

16. Park SH, Jeong HJ, Kim M, Kim MS. A novel nonsense mutation of the SLC4A11 gene in a Korean patient with autosomal recessive congenital hereditary endothelial dystrophy. Cornea. 2013; 32: 181-182.

17. Siddiqui S, Zenteno JC, Rice A, Chacon-Camacho O, Naylor SG, Riverade la Parra D, et al. Congenital hereditary endothelial dystrophy caused by SLC4A11 mutations progresses to Harboyan syndrome. Cornea. 2014; 33: 247-251.

18. Parker MD, Ourmozdi EP, Tanner MJ. Human BTR, a new bicarbonate transporter superfamily member and human AE4 from kidney. Biochem Biophys Res Commun. 2001; 282: 1103-1109.

19. Park M1, Li Q, Shcheynikov N, Zeng W, Muallem S. NaBC1 is a ubiquitous electrogenic Na+ -coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol Cell. 2004; 16: 331-341.

20. Groger N, Frohlich H, Maier H, Olbrich A, Kostin S, Braun T, et al. SLC4A11 prevents osmotic imbalance leading to corneal endothelial dystrophy, deafness, and polyuria. J Biol Chem. 2010; 285: 14467- 14474.

21. Jalimarada SS, Ogando DG, Vithana EN, Bonanno JA. Ion transport function of SLC4A11 in corneal endothelium. Invest Ophthalmol Vis Sci. 2013; 54: 4330-4340.

22. Vilas GL, Loganathan SK, Liu J, Riau AK, Young JD, Mehta JS, et al. Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases. Hum Mol Genet. 2013; 22: 4579-4590.

23. Lopez IA, Rosenblatt MI, Kim C, Galbraith GC, Jones SM, Kao L, et al. Slc4a11 gene disruption in mice: cellular targets of sensorineuronal abnormalities. J Biol Chem. 2009; 284: 26882-26896.

24. Han SB, Ang HP, Poh R, Chaurasia SS, Peh G, Liu J, et al. Mice with a targeted disruption of Slc4a11 model the progressive corneal changes of congenital hereditary endothelial dystrophy. Invest Ophthalmol Vis Sci. 2013; 54: 6179-6189.

25. Liu J, Seet LF, Koh LW, Venkatraman A, Venkataraman D, Mohan RR, et al. Depletion of SLC4A11 causes cell death by apoptosis in an immortalized human corneal endothelial cell line. Invest Ophthalmol Vis Sci. 2012; 53: 3270-3279.

26. Waring GO, Bourne WM, Edelhauser HF, Kenyon KR. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology. 1982; 89: 531-590.

27. Krachmer JH, Purcell JJ, Young CW, Bucher KD. Corneal endothelial dystrophy. A study of 64 families. Arch Ophthalmol. 1978; 96: 2036- 2039.

28. Santo RM, Yamaguchi T, Kanai A, Okisaka S, Nakajima A. Clinical and histopathologic features of corneal dystrophies in Japan. Ophthalmology. 1995; 102: 557-567.

29. Faran MF, Tabbara KF. Corneal dystrophies among patients undergoing keratoplasty in Saudi Arabia. Cornea. 1991; 10: 13-16.

30. Williams KL, Bartlett MT, Kelly CM, Coster LDJ. The Australian Corneal Graft Registry: 2007 Report Adelaide. Flinders University. 2007.

31. Biswas S, Munier FL, Yardley J, Hart-Holden N, Perveen R, Cousin P, et al. Missense mutations in COL8A2, the gene encoding the a2 chain of type VIII collagen, causes two forms of corneal endothelial dystrophy. Hum Mol Genet. 2001; 10: 2415-2423.

32. Klintworth GK. Corneal dystrophies. Orphanet J Rare Dis. 2009; 4: 7.

33. Weiss JS. Corneal dystrophies: molecular genetics to therapeutic intervention--Fifth ARVO/Pfizer Ophthalmics Research Institute Conference. Invest Ophthalmol Vis Sci. 2010; 51: 5391-5402.

34. Kabosova A, Azar DT, Bannikov GA, Campbell KP, Durbeej M, Ghohestani RF, et al. Compositional differences between infant and adult human corneal basement membranes. Invest Ophthalmol Vis Sci. 2007; 48: 4989-4999.

35. Gottsch JD, Sundin OH, Liu SH, Jun AS, Broman KW, Stark WJ, et al. Inheritance of a novel COL8A2 mutation defines a distinct early-onset subtype of fuchs corneal dystrophy. Invest Ophthalmol Vis Sci. 2005; 46: 1934-1939.

36. Mok JW, Kim HS, Joo CK. Q455V mutation in COL8A2 is associated with Fuchs’ corneal dystrophy in Korean patients. Eye (Lond). 2009; 23: 895-903.

37. Mehta JS, Vithana EN, Tan DT, Yong VH, Yam GH, Law RW, et al. Analysis of the posterior polymorphous corneal dystrophy 3 gene, TCF8, in late-onset Fuchs endothelial corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 2008; 49: 184-188.

38. Riazuddin SA, Zaghloul NA, Al-Saif A, Davey L, Diplas BH, Meadows DN, et al. Missense mutations in TCF8 cause late-onset Fuchs corneal dystrophy and interact with FCD4 on chromosome 9p. Am J Hum Genet. 2010; 86: 45-53.

39. Hurt EM, Saykally JN, Anose BM, Kalli KR, Sanders MM. Expression of the ZEB1 (deltaEF1) transcription factor in human: additional insights. Mol Cell Biochem. 2008; 318: 89-99.

40. Liu Y, El-Naggar S, Darling DS, Higashi Y, Dean DC. Zeb1 links epithelialmesenchymal transition and cellular senescence. Development. 2008; 135: 579-588.

41. Vithana EN, Morgan PE, Ramprasad V, Tan DT, Yong VH, Venkataraman D, et al. SLC4A11 mutations in Fuchs endothelial corneal dystrophy. Hum Mol Genet. 2008; 17: 656-666.

42. Riazuddin SA, Vithana EN, Seet LF, Liu Y, Al-Saif A, Koh LW, et al. Missense mutations in the sodium borate cotransporter SLC4A11 cause late-onset Fuchs corneal dystrophy. Hum Mutat. 2010; 31: 1261-1268.

43. Baratz KH, Tosakulwong N, Ryu E, Brown WL, Branham K, Chen W, et al. E2-2 protein and Fuchs’s corneal dystrophy. N Engl J Med. 2010; 363: 1016-1024.

44. Li YJ, Minear MA, Rimmler J, Zhao B, Balajonda E, Hauser MA, et al. Replication of TCF4 through association and linkage studies in lateonset Fuchs endothelial corneal dystrophy. PLoS One. 2011; 6: 18044.

45. Riazuddin SA, Mc Glumphy EJ, Yeo WS, Wang J, Katsanis N, Gottsch JD. Replication of the TCF4 intronic variant in late-onset Fuchs corneal dystrophy and evidence of independence from the FCD2 locus. Invest Ophthalmol Vis Sci. 2011; 52: 2825-2829.

46. Thalamuthu A, Khor CC, Venkataraman D, Koh LW, Tan DT, Aung T, et al. Association of TCF4 gene polymorphisms with Fuchs’ corneal dystrophy in the Chinese. Invest Ophthalmol Vis Sci. 2011; 52: 5573- 5578.

47. Wieben ED, Aleff RA, Tosakulwong N, Butz ML, Highsmith WE, Edwards AO, et al. A common trinucleotide repeat expansion within the transcription factor 4 (TCF4, E2-2) gene predicts Fuchs corneal dystrophy. PLoS One. 2012; 7: 49083.

48. Igo RP, Kopplin LJ, Joseph P, Truitt B, Fondran J, Bardenstein D, et al. Differing roles for TCF4 and COL8A2 in central corneal thickness and fuchs endothelial corneal dystrophy. PLoS One. 2012; 7: 46742.

49. Kuot A, Hewitt AW, Griggs K, Klebe S, Mills R, Jhanji V, et al. Association of TCF4 and CLU polymorphisms with Fuchs’ endothelial dystrophy and implication of CLU and TGFBI proteins in the disease process. Eur J Hum Genet. 2012; 20: 632-638.

50. Hejtmancik JF, Jiao X, Li A, Sergeev YV, Ding X, Sharma AK, et al. Mutations in KCNJ13 cause autosomal-dominant snowflake vitreoretinal degeneration. Am J Hum Genet. 2008; 82: 174-180.

51. Riazuddin SA, Parker DS, Mc Glumphy EJ, Oh EC, Iliff BW, Schmedt T, et al. Mutations in LOXHD1, a recessive-deafness locus, cause dominant late-onset Fuchs corneal dystrophy. Am J Hum Genet. 2012; 90: 533- 539.

52. Grillet N, Schwander M, Hildebrand MS, Sczaniecka A, Kolatkar A, Velasco J, et al. Mutations in LOXHD1, an evolutionarily conserved stereociliary protein, disrupt hair cell function in mice and cause progressive hearing loss in humans. Am J Hum Genet. 2009; 85: 328- 337.

53. Riazuddin SA, Vasanth S, Katsanis N, Gottsch JD. Mutations in AGBL1 cause dominant late-onset Fuchs corneal dystrophy and alter proteinprotein interaction with TCF4. Am J Hum Genet. 2013; 93: 758-764.

54. Gottsch JD, Bowers AL, Margulies EH, Seitzman GD, Kim SW, Saha S, et al. Serial analysis of gene expression in the corneal endothelium of Fuchs’ dystrophy. Invest Ophthalmol Vis Sci. 2003; 44: 594-599.

55. Synowiec E, Wojcik KA, Izdebska J, Binczyk E, Blasiak J, Szaflik J, et al. Polymorphisms of the homologous recombination gene RAD51 in keratoconus and Fuchs endothelial corneal dystrophy. Dis Markers. 2013; 35: 353-362.

56. Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H, et al. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J. 1998; 17: 598-608.

57. Cockerham GC, Laver NV, Hidayat AA, Mc Coy DL. An immunohistochemical analysis and comparison of posterior polymorphous dystrophy with congenital hereditary endothelial dystrophy. Cornea. 2002; 21: 787-791.

58. Anderson NJ, Badawi DY, Grossniklaus HE, Stulting RD. Posterior polymorphous membranous dystrophy with overlapping features of iridocorneal endothelial syndrome. Arch Ophthalmol. 2001; 119: 624- 625.

59. Jirsova K, Merjava S, Martincova R, Gwilliam R, Ebenezer ND, Liskova P, et al. Immunohistochemical characterization of cytokeratins in the abnormal corneal endothelium of posterior polymorphous corneal dystrophy patients. Exp Eye Res. 2007; 84: 680-686.

60. Cibis GW, Krachmer JA, Phelps CD, Weingeist TA. The clinical spectrum of posterior polymorphous dystrophy. Arch Ophthalmol. 1977; 95: 1529-1537.

61. Moroi SE, Gokhale PA, Schteingart MT, Sugar A, Downs CA, Shimizu S, et al. Clinicopathologic correlation and genetic analysis in a case of posterior polymorphous corneal dystrophy. Am J Ophthalmol. 2003; 135: 461-470.

62. Krachmer JH. Posterior polymorphous corneal dystrophy: a disease characterized by epithelial - like endothelial cells which influence management and prognosis. Trans Am Ophthalmol Soc. 1985; 83: 413-475.

63. Raber IM, Fintelmann R, Chhabra S, Ribeiro MP, Eagle RC, Orlin SE. Posterior polymorphous dystrophy associated with nonkeratoconic steep corneal curvatures. Cornea. 2011; 30: 1120-1124.

64. Cremona FA, Ghosheh FR, Rapuano CJ, Eagle RC, Hammersmith KM, Laibson PR, et al. Keratoconus associated with other corneal dystrophies. Cornea. 2009; 28: 127-135.

65. Driver PJ, Reed JW, Davis RM. Familial cases of keratoconus associated with posterior polymorphous dystrophy. Am J Ophthalmol. 1994; 118: 256-257.

66. Aldave AJ, Yellore VS, Yu F, Bourla N, Sonmez B, Salem AK, et al. Posterior polymorphous corneal dystrophy is associated with TCF8 gene mutations and abdominal hernia. Am J Med Genet A. 2007; 143: 2549-2556.

67. Krafchak CM, Pawar H, Moroi SE, Sugar A, Lichter PR, Mackey DA, et al. Mutations in TCF8 cause posterior polymorphous corneal dystrophy and ectopic expression of COL4A3 by corneal endothelial cells. Am J Hum Genet. 2005; 77: 694-708.

68. Liskova P, Gwilliam R, Filipec M, Jirsova K, Reinstein Merjava S, Deloukas P, et al. High prevalence of posterior polymorphous corneal dystrophy in the czech republic; linkage disequilibrium mapping and dating an ancestral mutation. PLoS One. 2012; 7: 45495.

69. Héon E, Mathers WD, Alward WL, Weisenthal RW, Sunden SL, Fishbaugh JA, et al. Linkage of posterior polymorphous corneal dystrophy to 20q11. Hum Mol Genet. 1995; 4: 485-488.

70. Gwilliam R, Liskova P, Filipec M, Kmoch S, Jirsova K, Huckle EJ, et al. Posterior polymorphous corneal dystrophy in Czech families maps to chromosome 20 and excludes the VSX1 gene. Invest Ophthalmol Vis Sci. 2005; 46: 4480-4484.

71. Yellore VS, Papp JC, Sobel E, Khan MA, Rayner SA, Farber DB, et al. Replication and refinement of linkage of posterior polymorphous corneal dystrophy to the posterior polymorphous corneal dystrophy 1 locus on chromosome 20. Genet Med. 2007; 9: 228-234.

72. Héon E, Greenberg A, Kopp KK, Rootman D, Vincent AL, Billingsley G, et al. VSX1: a gene for posterior polymorphous dystrophy and keratoconus. Hum Mol Genet. 2002; 11: 1029-1036.

73. Valleix S, Nedelec B, Rigaudiere F, Dighiero P, Pouliquen Y, Renard G, et al. H244R VSX1 is associated with selective cone ON bipolar cell dysfunction and macular degeneration in a PPCD family. Invest Ophthalmol Vis Sci. 2006; 47: 48-54.

74. Aldave AJ, Yellore VS, Principe AH, Abedi G, Merrill K, Chalukya M, et al. Candidate gene screening for posterior polymorphous dystrophy. Cornea. 2005; 24: 151-155.

75. Aldave AJ, Yellore VS, Vo RC, Kamal KM, Rayner SA, Plaisier CL, et al. Exclusion of positional candidate gene coding region mutations in the common posterior polymorphous corneal dystrophy 1 candidate gene interval. Cornea. 2009; 28: 801-817.

76. Lai IN, Yellore VS, Rayner SA, D’Silva NC, Nguyen CK, Aldave AJ. The utility of next-generation sequencing in the evaluation of the posterior polymorphous corneal dystrophy 1 locus. Mol Vis. 2010; 16: 2829- 2838.

77. Vincent AL, Jordan C, Sheck L, Niederer R, Patel DV, Mc Ghee CN. Screening the visual system homeobox 1 gene in keratoconus and posterior polymorphous dystrophy cohorts identifies a novel variant. Mol Vis. 2013; 19: 852-860.

78. Kobayashi A, Fujiki K, Murakami A, Kato T, Chen LZ, Onoe H, et al. Analysis of COL8A2 gene mutation in Japanese patients with Fuchs endothelial dystrophy and posterior polymorphous dystrophy. Jpn J Ophthalmol. 2004; 48: 195-198.

79. Yellore VS, Rayner SA, Emmert-Buck L, Tabin GC, Raber I, Hannush SB, et al. No pathogenic mutations identified in the COL8A2 gene or four positional candidate genes in patients with posterior polymorphous corneal dystrophy. Invest Ophthalmol Vis Sci. 2005; 46: 1599-1603.

80. Liskova P, Tuft SJ, Gwilliam R, Ebenezer ND, Jirsova K, Prescott Q, et al. Novel mutations in the ZEB1 gene identified in Czech and British patients with posterior polymorphous corneal dystrophy. Hum Mutat. 2007; 28: 638.

81. Vincent AL, Niederer RL, Richards A, Karolyi B, Patel DV, Mc Ghee CN. Phenotypic characterisation and ZEB1 mutational analysis in posterior polymorphous corneal dystrophy in a New Zealand population. Mol Vis. 2009; 15: 2544-2553.

82. Nguyen DQ, Hosseini M, Billingsley G, Heon E, Churchill AJ. Clinical phenotype of posterior polymorphous corneal dystrophy in a family with a novel ZEB1 mutation. Acta Ophthalmol Copenh. 2010; 88: 695- 699.

83. Bakhtiari P, Frausto RF, Roldan AN, Wang C, Yu F, Aldave AJ. Exclusion of pathogenic promoter region variants and identification of novel nonsense mutations in the zinc finger E-box binding homeobox 1 gene in posterior polymorphous corneal dystrophy. Mol Vis. 2013; 19: 575- 580.

84. Yellore VS, Rayner SA, Nguyen CK, Gangalum RK, Jing Z, Bhat SP, et al. Analysis of the role of ZEB1 in the pathogenesis of posterior polymorphous corneal dystrophy. Invest Ophthalmol Vis Sci. 2012; 53: 273-278.

85. Schmid E, Lisch W, Philipp W, Lechner S, Göttinger W, Schlötzer Schrehardt U, et al. A new, X-linked endothelial corneal dystrophy. Am J Ophthalmol. 2006; 141: 478-487.

Hemadevi B, Prajna NV, Srinivasan M, Sundaresan P (2017) Genetic Perspective of Corneal Endothelial Dystrophies. JSM Genet Genomics 4(2): 1026.

Received : 05 May 2017
Accepted : 06 Jun 2017
Published : 08 Jun 2017
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
Annals of Pediatrics and Child Health
ISSN : 2373-9312
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X