Loading

JSM Mathematics and Statistics

Zygmund-Calderon Operators in the Weighted Variable Exponent Spaces

Research Article | Open Access | Volume 6 | Issue 1

  • 1. National Technical University of Ukraine, Ukraine
+ Show More - Show Less
Corresponding Authors
Mykola Yaremenko, National Technical University of Ukraine, Ukraine
Abstract

This article is dedicated to the Zygmund-Calderon operators in the variable exponent spaces L^{p\left ( . \right )} ⋅ with measurable function p:R^{n}\rightarrow \left ( 1,\infty \right ).We establish that if an operator T(f )(x)= f * K  with the kernel \left | \partial _{x}^{a} K\left ( x \right )\right |\leq C\left ( a \right )\left | x \right |^{-n\left | a \right |},,\left | a \right |\leq 1 satisfies the \int _{R^{n}}\left | T\left ( f \right ) \left ( x \right )\right |^{p\left ( x \right )}\omega \left ( x \right )dx\leq c_{2}\int _{R^{n}}\left | f\left ( x \right ) \right |^{p\left ( x \right )}\omega \left ( x \right )dx for  all \int \epsilon L^{P\left ( . \right )}\left ( R^{n} \right ),p_{s}=ess sup p\left ( x \right )< \infty then the weight \omega =\frac{d\mu }{dx}  belongs to A_{P\left ( . \right )}-class. The inverse is also true, thus, if the maximal operator is bounded in L^{p\left ( . \right )}\left ( R^{n} \right ) and \left | \partial _{x}^{a} K\left ( x \right )\right |\leq C\left ( a \right )\left | x \right |^{-n\left | a \right |}\left | a \right |\leq 1 then, the inequality \int _{R^{n}}\left | T\left ( f \right ) \left ( x \right )\right |^{p\left ( x \right )}\omega \left ( x \right )dx\leq c_{2}\int _{R^{n}}\left | f\left ( x \right ) \right |^{p\left ( x \right )}\omega \left ( x \right )dx holds for all \int \epsilon L^{P\left ( . \right )}\left ( R^{n} \right ) and each \omega \epsilon A_{P\left ( . \right )}.

Keywords

Harmonic Analysis; Singular Integrals; Convex seminars; Interpolation Theorem; Calderon-Zygmund Decomposition

CITATION

Yaremenko M (2024) Zygmund-Calderon Operators in the Weighted Variable Exponent Spaces. JSM Math Stat 6(1): 1019.

INTRODUCTION

The variable Lévesque spaces were introduced in 1961 by I. Tsenov who considered the problem of approximation in the Lévesque spaces [1-18]. The variable Lévesque space with a measurable function p:R^{n}\rightarrow \left ( 1,\infty \right )is the set of all measurable function on R^{n} the inequality \omega =\frac{.}{dx}holds for some positive values of the parameterλ . The norm of the variable Lévesque space L^{p\left ( . \right )} ⋅ is defined as an infimum

 \left \| f \right \|_{L^{P\left ( . \right )}}= inf \left \{ \lambda > 0:\int \left ( \frac{\left | f\left ( x \right ) \right |}{\lambda } \right ) ^{p\left ( x \right )}dx< \infty \leq 1\right \}.

 The classical Lévesque spaces L^{p\left ( . \right )}is a special case of ⋅ when function : p:R^{n}\rightarrow \left ( 1,\infty \right ) is constant.

The most prominent feature of L^{p\left ( . \right )} ⋅ is existence of an analog of the Holder inequality in the weaker form \int \left | f\left ( x \right )g\left ( x \right ) \right |dx\leq \left ( 1+\frac{1}{p_{m}} -\frac{1}{p_{s}}\right )\left \| f \right \|\left \| L^{p\left ( . \right )} \right \|\left \| g \right \|L^{p\left ( . \right )}, where p_{m=}ess inf p(x) and p_{s}=ess sup P(X).

There is an essential difference between the classical Lévesque spaces and the variable L^{p\left ( . \right )}⋅ , the necessary and sufficient requirement for the operator \tau \left ( z,f\left ( x \right ) \right )=f\left ( x-z \right ) of translation to be bounded on p( ) L ⋅ is that the function :  p:R^{n}\rightarrow \left ( 1,\infty \right ) be a constant. The corollary of this is that the Young lemma \left \| f*g \right \|L^{P\left ( . \right )}\leq const \left \| f \right \|L^{p\left ( . \right )}\left \| g \right \|L^{p\left ( . \right )} holds for all f\epsilonL^{p\left ( . \right )} and all g L ∈ 1 if and only if exponential function p (⋅) is a constant.

Let M is a maximal operator then the inequality \left \| M\left ( f \right ) \right \|_{L^{P}\left ( R^{n}, \mu \right )},\leq \sqrt[p]{A}\left \| f \right \|_{L^{p}\left ( R^{n} ,\mu \right )} holds for all  f\epsilon L^{p\left ( . \right )}\left ( R^{n}, \mu \right ) d\mu \left ( x \right )=\omega \left ( x \right )dxweightω ∈ Ap , the class Ap is characterized by inequality \frac{1}{mes\left ( B \right )}\int _{B}d\mu \left ( x \right )\left (\frac{1}{mes\left ( B \right )}\int _{B} \omega \left ( x \right ) \tfrac{1}{1-p}dx\right )^{p-1}\leqA holding fork balls B.

In 2008, L. Diening and P. Hasto [6,7] generalized classes A_{P} to the variable exponential Lebesgue spaces by demanding that the inequality sup_{B}\frac{1}{\left ( mes\left ( B \right ) \right )^{p\left ( B \right )}}\left \| \omega 1_{B} \right \|\left \| L^{1} \right \|\left \| \omega ^{-1} 1_{B}\right \|\frac{q\left ( . \right )}{L^{p\left ( . \right )}}\leq A Holds for some constants, the minimum of  these constants is the value of norm \left \| \omega \right \|_{A_{p\left ( . \right )}}.

Some pertinent to the subject literature reviews can be found in the L. Diening, P. Hasto works [6,7], without being complete, we present the list of some interesting research on the subject [1-25]. In this article, we consider a Zygmund-Calderon operator Ta [17] in the variable exponent spaces L^{p\left ( . \right )} given in the form T(f)(x)=\int _{R^{n}}K\left ( x-y \right )f\left ( f \right )dyfor almost all x f ∉supp(f ) , with a singular kernel K such that, for α ≤1, the estimate  \left | \partial _{x}^{a} K\left ( x \right )\right |\leq C\left ( a \right )\left | x \right |^{-n\left | a \right |}  holds for all n x R ∈ with the exception of x = 0 . We establish that assume f =T (f ) is a Zygmund-Calderon operator T\left ( f \right )\left ( x \right )=f*k with the kernel under restriction \left | \partial _{x}^{a} K\left ( x \right )\right |\leq C\left ( a \right )\left | x \right |^{-n\left | a \right |},\left | a \right |\leq 1and the L^{p\left ( . \right )} -Condit \int _{R^{n}}\left | T\left ( f \right ) \left ( x \right )\right |^{p\left ( x \right )}\omega \left ( x \right )dx\leq c_{2}\int _{R^{n}}\left | f\left ( x \right ) \right |^{p\left ( x \right )}\omega \left ( x \right )dx Holds for all f\varepsilon L^{p\left ( . \right )}\left ( R^{n} \right ), sup ( ) n S x R p ess p (x) < ∞ , then the weight d dx µ ω = must belong to L^{p\left ( . \right )}⋅ -class. Also, we prove the inverse result, namely, presume the maximal operator is bounded in ⋅p:R^{n}\rightarrow \left ( 1,\infty \right ) and operator f T f ? ( ) defined as above, then, for each weight p( ) ω ∈ A ⋅ , the inequality \int _{R^{n}}\left | T\left ( f \right ) \left ( x \right )\right |^{p\left ( x \right )}\omega \left ( x \right )dx\leq c_{2}\int _{R^{n}}\left | f\left ( x \right ) \right |^{p\left ( x \right )}\omega \left ( x \right )dx Holds for all f\varepsilon L^{p\left ( . \right )}\left ( R^{n} \right )

Lebesgue Spaces With Variable Exponential

Let ? be an open connected subspace of the Rn . Let P(?) be a subspace of L (?) 1 such that p(.)\varepsilon p\left ( \Omega \right ),p\left ( . \right ):\Omega \rightarrow \left ( 1,\infty \right ).

Definition 1: For givenp(.)\varepsilon p\left ( \Omega \right ) we define the conjugate function q\left ( . \right )by q\left ( x \right )=\frac{p\left ( x \right )}{p\left ( x \right )-1}  for all x\varepsilon \Omega.

We denote p_{m}\left ( \Omega ^{\tilde{~}} \right )= ess p\left ( x \right ) and p_{s}\left ( \Omega ^{\tilde{~}} \right ) for fixed? ⊂ ?  .

Definition 2: For fixed p(.)\varepsilon p\left ( \Omega \right ), we define the functional \rho _{p} By

\rho _{p}\left ( f \right )=\int _{\Omega }\left | f\left ( x \right ) \right |^{p\left ( x \right )} dx             (1)

 FOR f\epsilon L^{1}\left ( \Omega \right )

Straight forward considerations yield the following properties. 

Properties 1: For fixed subset n ? ⊂ R and given p P (⋅ ∈ ? ) ( ) , we have that

1)   \rho _{p}\left ( f \right )\geq 0   For all  f\epsilon L^{1}\left ( \Omega \right )

2)\rho _{p}\left ( f \right )=0  If and only if f=0

3) For all α β, 0 ≥ such that\alpha +\beta=1, the inequality\alpha +\beta

\rho _{p}\left ( \alpha f+\beta g \right )\leq \alpha \rho _{p}\left ( f \right )+\beta \rho _{p}\left ( g \right )                (2)

\left | f\left ( x \right ) \right |\geq \left | g\left ( x \right ) \right |   almost everywhere and \rho _{p}\left ( f \right )< \infty then \rho _{p}\left ( f \right )\geq \rho _{p}\left ( g \right ) and if \rho _{p}\left ( f \right )\geq \rho _{p}\left ( g \right ) then \left | f\left ( x \right ) \right |\neq \left | g\left ( x \right ) \right |.

Definition 3: For fixed p\left ( . \right )\epsilon p\left ( \Omega \right )  we define a norm by \left \| f \right \|_{L^{P\left ( . \right )}}= inf \left \{ \lambda > 0:\rho _{p}\left ( \frac{f}{\lambda } \right )\leq 1\right \}         (3)

For measurable function f. The functional space L^{p\left ( . \right )}\left ( \Omega \right )=L^{p}\left ( \Omega \right ) consists of all measurable functions f such that  \left \| f \right \|_{L^{P\left ( . \right )}}< \infty

Similar to the classical Lebesgue spaces, for the L^{p\left ( . \right )}\left ( \Omega \right ) 

spaces, we can formulate an analog of the Holder norm inequality.

Theorem 2: For fixed p\left ( . \right )\epsilon P\left ( \Omega \right ) and conjugation functions 

q (⋅) , the inequality

\int _{\Omega }\left | f\left ( x \right ) g\left ( x \right )\right |dx\leq c_{p}\left \| f \right \|_{L^{p}}\left \| g \right \|_{L^{q}}           (4)

With the constant  c_{p}=1+\frac{1}{p_{m}}+\frac{1}{p_{s}}   for all f\epsilon L^{p\left ( . \right )}\left ( \Omega \right ) and g\epsilon L^{P\left ( . \right )}\left ( \Omega \right )

Proof: First, we show that \rho _{P}\left ( \frac{f}{\left \| f \right \|}_{L^{p}} \right )=1 holds for each p\left ( . \right )\epsilon P\left ( \Omega \right ) and all f\epsilon L^{p\left ( . \right )}\left ( \Omega \right )f\neq 0   Indeed, for all  \lambda ,0< \lambda < \left \| f \right \|_{L^{P}}, we have

\rho _{p}\left ( \frac{f}{\lambda } \right )\leq \left ( \frac{\left \| f \right \|_{L^{p}}}{\lambda } \right )^{p_{s}}\rho _{p}\left ( \frac{f}{\left \| f \right \|}_{L^{p}} \right ),  Thus, there exists λ such that \rho _{p}\left ( \frac{f}{\lambda } \right )< 1 but \rho _{p}\left ( \frac{f}{\left \| f \right \|_{L^{p}} } \right )\geq 1.

Next, assuming g\epsilon L^{p\left ( . \right )}\left ( \Omega \right ) and f\epsilon L^{p\left ( . \right )}\left ( \Omega \right ) , applying the Young inequality, we estimate\int _{\Omega }\left | \left ( \frac{f\left ( x \right )}{\left \| f \right \|_{L^{p}}} \frac{g\left ( x \right )}{\left \| g \right \|_{L^{q}}}\right ) \right |dx \leq \leq \int _{\Omega }\frac{1}{p\left ( x \right )}\left | \frac{f\left ( x \right )}{\left \| f \right \|_{L^{p}}} \right |^{p\left ( x \right )} dx+\int _{\Omega }\frac{1}{q\left ( x \right )}\left \| \frac{g\left ( x \right )}{\left \| q \right \|_{L^{p}}} \right \|^{q\left ( x \right )}dx\leq \frac{1}{p_{m}}\rho _{p}\left ( \frac{f}{\left \| f \right \|_{L^{p}}} \right )+\frac{1}{q_{m}}\rho _{q}\left ( \frac{g}{\left \| g \right \|_{L^{q}}} \right )\leq \left ( 1+\frac{1}{p_{m}}-\frac{1}{p_{s}} \right ),   Since q_{m} =ess inf  q\left ( x \right )=\frac{p_{s}}{p_{s}-1}. Thus, we obtain \int _{\Omega }\left | f\left ( x \right ) g\left ( x \right )\right |dx \leq \left ( 1+\frac{1}{p_{m}}-\frac{1}{p_{s}} \right )\left \| f \right \|_{L^{p}}\left \| g \right \|_{L^{p}}.

We formulate several fundamental properties of L^{p\left ( . \right )}  ⋅ -functions without proving them.

1) Let f\epsilon L^{p\left ( . \right )}  then there exists a sum-presentation of f as f_{1}+f_{2} where f_{1}\epsilon L^{p_{s}}\cap L^{p\left ( . \right )} and f_{2}\epsilon L^{p_{m}}\cap L^{p\left ( . \right )}.

2) The functional space C_{0}^{\infty } is dense in L^{p\left ( . \right )},P_{S}< \infty

3. Assume \left \{ f_{\left ( k \right )} \right \}\subset L^{p\left ( . \right )} and lim_{k\rightarrow \infty }\left \| f_{k} -f\right \|_{L^{p\left ( . \right )}}=0,  f\epsilon L^{p\left ( . \right )}then there exists a subsequence \left \{ f_{k\left ( t \right )}\right \}\subset L^{p\left ( . \right )} that f_{k\left ( t \right )} for almost everywhere.

4. Each Cauchy sequence in L^{p\left ( . \right )} ⋅ converges in L^{p\left ( . \right )} 

5. Let 1 m < p then the mapping g g ? Ψ( ) define by \psi \left ( g ,f \right )=\int f\left ( x \right )g\left ( x \right )dx       (5)

Is an isomorphism so that for each continuous linear functional L^{p\left ( . \right )} ∗ ⋅ Ψ ∈ there exists a uniquely defined element g of  L^{p\left ( . \right )}⋅ such that Ψ = Ψ( g ) and \left \| g \right \|_{L^{g\left ( . \right )}}\approx \left \| \psi \right \| The space L^{p\left ( . \right )}⋅ is reflexive.

Weighted Classes A_{p}

First, we remind some general definitions from harmonic analysis and operator theory. A classical maximal operator M on , 2 n R n > is given by 

M\left ( f\right )\left ( x \right )=sup _{r> 0}\frac{1}{mes\left ( B\left ( r \right ) \right )}\int _{\left | y \right |< r}\left | f\left ( x-y \right ) \right |dy        (6)

For all arbitrary locally integral functions f and all balls B r( ) of radius r > 0 in , 2 n R n > .

Let measure µ be absolutely continuous with respect to Lebesgue measure. A functional class A_{p}consists of all weights \omega \left ( x \right )=\frac{d\mu \left ( x \right )}{dx}, which coincide with locally integral functions \omega \epsilon L_{loc}^{1}\left ( R^{n} \right ), such that the estimate

\frac{1}{mes\left ( B \right )}\int _{B}d\mu \left ( x \right)\left ( \frac{1}{mes\left ( B \right )}\int \omega \left ( x \right )^{\frac{1}{1-p}} dx\right )^{p-1}\leq A      (7)

Holds for all balls B, where p+q = pq,  p\epsilon \left ( 1,\infty \right ) .p\epsilon \left ( 1,\infty \right ) .

The A_{p} bound of the weight ω is a minimal constant for which (2) holds.

Applying the Holder inequality, we can prove the following lemma. 

Lemma 1: For the weight ω to belong to A_{p} -class it is necessary and sufficient that the estimate 

\frac{1}{mes\left ( B \right )}\int _{B}\left | f\left ( x \right ) \right |dx\leq c\left ( \frac{1}{\mu \left ( B \right )}\int _{B} \left | f\left ( x \right ) \right |^{p}d\mu \left ( x \right )\right )^{\frac{1}{p}}         (8)

Holds for all f\epsilon L_{loc}^{1}\left ( R^{n} \right ) and all balls B, where ω µ ( x )dx =d \mu ) = (x ).

Definition 4: The functional class BMO (bounded mean oscillation) consists of all locally integral functions f such that the inequality

\frac{1}{mes\left ( B \right )}\int _{B}\left | f\left ( x \right ) -\frac{1}{mes\left ( B \right )}\int _{B}f\left ( x \right )dx\right |dx\leq A         (9)

Holds for all balls B. 

An important property of A_{p} - weights is given by the next theorem.

Theorem 3: Let ω ∈ A_{p} then the inequality

\int _{B^{n}}\left ( M\left ( f \right )\left ( x \right ) \right )^{p}\omega \left ( x \right )dx\leq A\int _{B^{n}}\left | f\left ( x \right ) \right |^{p}\omega \left ( x \right )dx     (10)

Holds for all\int \epsilon L^{P}\left ( d\mu \right ) and for each p\epsilon \left ( 1,\infty \right ).

Now, we can generalize the definition of  A_{p}- class to functional spaces L^{p\left ( . \right )}\left ( \Omega \right ),p\left ( . \right )\epsilon p\left ( \Omega \right ).

Definition 5: For given p\left ( . \right )\epsilon p\left ( \Omega \right ). a weight \omega \left ( x \right )=\frac{d\mu \left ( x \right )}{dx}, belongs to the variable class A_{p\left ( . \right )}⋅ if the inequality

sup_{B}\frac{1}{\left ( mes\left ( B \right ) \right )^{p\left ( B \right )}}\left \| \omega 1_{B} \right \|\left \| \omega ^{-1} 1_{B}\right \|_{L^{\frac{q\left ( . \right )}{p\left ( . \right )}}}\leq A      (11)

Holds for all balls B clos ⊂ ?( ), and some constants A , wherep\left ( B \right )=\left ( \frac{1}{mes\left ( B \right )} \int _{B}p\left ( x \right )^{-1}dx\right )^{-1}       (12) 

and   p\left ( x\right ) ^{-1}+q\left ( x \right )^{-1}=1

Theorem 4: Let p P (⋅) ∈ (? ) then a weight \omega \left ( x \right )=\frac{d\mu \left ( x \right )}{dx}, belongs to the variable A_{p\left ( . \right )} ⋅ - class if and only if the inequality

\left ( \frac{1}{mes\left ( B \right )}\int _{B}\left | f\left ( x \right ) \right |dx \right )^{p\left ( B \right )} \leq C_{1}\left ( \mu \left ( B \right ) \right )^{-1}\int _{B}f\left ( x \right )^{p\left ( x \right )}\omega \left ( x \right )dx       (13)

Holds for all nonnegative f\epsilon L^{p\left ( . \right )}\left ( d\mu \right )and all balls B.

Proof: Let \omega \epsilon A_{p\left ( . \right )} ⋅ and applying the Holder inequality for variable Lebesgue spaces, we obtain

\left ( \frac{1}{mes\left ( B \right )}\int _{B}\left | f\left ( x \right ) \right |dx \right )^{p\left ( B \right )}=\left ( \frac{1}{mes\left ( B \right )}\int _{B}\left | f\left ( x \right ) \right |dx \right )^{p\left ( B \right )}=\left ( \frac{1}{mes\left ( B \right )}\int _{B} f\left ( x \right )\omega \left ( x \right )^{\frac{1}{p\left ( x \right )}}\omega \left ( x \right )^{-\frac{1}{p\left ( x \right )}}dx\right )^{p\left ( B \right )}\leq

c\frac{1}{mes\left ( B \right )p\left ( B \right )}\left ( \int _{B}\left ( f\left ( x \right ) \right )^{p\left ( x \right )} \omega \left ( x \right )dx\right )\left \| \omega ^{-1} \right \|_{L^{\frac{Q\left ( . \right )}{P\left ( . \right )}}}, Applying the definition of A_{p\left ( . \right )} ⋅ -class, we deduce the first statement of the theorem.

Conversely, we take f (x)= \left ( \omega \left ( x \right )+\varepsilon \right )^{-\frac{q\left ( x \right )}{p\left ( x \right )}}   and have

\frac{1}{mes\left ( B \right )p\left ( B \right )}\left \| \omega 1_{B} \right \|_{L^{1}}\left \| \left ( \omega +\varepsilon \right )^{-1}1_{B} \right \|_{L^{\frac{q\left ( x \right )}{p\left ( x \right )}}}\leq c_{1}

Take the limit as ε → 0 and obtain that ω ∈A_{p\left ( . \right )}

For the weighted variable Lebesgue space L^{p\left ( . \right )}\left ( R^{n}, \mu \right ) ⋅ , one can prove an analog of Theorem 3 as follows.

Theorem (analog of theorem 3) 5: For fixed  P (.) ∈p (R) ⋅ ∈ and weight ω∈ A_{p\left ( . \right )} ⋅ , if maximal operator M is continuous on L^{q\left ( . \right )}\left ( d\mu \right ) then the inequality

\int _{B^{n}}\left ( M\left ( f \right )\left ( x \right ) \right )^{p\left ( x \right )}\omega \left ( x \right )dx\leq A\int _{B^{n}}\left | f\left ( x \right ) \right |^{p\left ( x \right )}\omega \left ( x \right )dx           (14)

Holds for all  f\epsilon L^{p\left ( . \right )}\left ( d\mu \right )  and for some constants A

Pseudo-Differential Operators

The singular integral realization of the pseudo-differential operator T_{0} can be present as

T_{0}\left ( f \right )\left ( x \right )=\int _{R^{n}}k\left ( x,y \right )f\left ( x -y \right )dy        (15)

Or in classical form

Description: T_{a}\left ( f \right )\left ( x \right )=\int _{R^{n}}K\left ( x,y \right )f\left ( y \right )dy          (16)                                                                                                                                  

For almost all Description: x\euro suppDescription: \left ( f \right ), where Description: K\left ( x,y \right )=k\left ( x,x-y \right ) and the Fourier transform

Description: a\left ( x,\xi \right )=\int _{R^{n}}exp\left ( -2\pi y.\xi \right )k\left ( x,y \right )dy.                        (17)                                                                                                          

We consider a convolution operator in the form

Description: T\left ( f \right )\left ( x \right )=\int _{R^{n}}K\left ( x-y \right )f\left ( y \right )dy                         (18)

For almost all Description: x\euro supp\left ( f \right ). The natural assumption on the integral kernel K is that there exists a smooth function K(x), for all Description: x\euro R^{n} except x ≠ 0 , such that the kernel agrees with K(x) on elements of Description: C^{\infty }_{o}\left ( R^{n} \right ), which vanish on the neighborhood of x = 0, for all Description: \left | a \right |\leq 1 we assume 

    \left | \partial _{x}^{a} K\left ( x \right )\right |\leq C\left ( a \right )\left | x \right |^{-n\left | a \right |}                  (19)

For all Description: x\, \in \, R^{n} except origin. This class of pseudo-differential operators satisfies the Zygmund-Calderon conditions.

Theorem 6: Let Description: p\left ( \cdot \right )\in P\left ( R^{n} \right ) and let Description: f \mapsto T\left ( f \right ) be a convolution operator Description: T\left ( f \right )\left ( x \right )=f*k corresponding to kernel K such that  If the integral inequality                             (21)

Holds for all Description: f\in L^{p\left ( \cdot \right )}\left ( R^{n} \right ) then the weight Description: f\in L^{p\left ( \cdot \right )}\left ( R^{n} \right )\omega \left ( x \right )=\frac{d\mu \left ( x \right )}{dx}  satisfies the inequality              (22)

Namely Description: \omega \in A_{p\left ( \cdot \right )}.

Proof: Applying conditions on the kernel, we have          

Description: \left | K\left ( x+z \right )-K\left ( x \right ) \right |\leq \breve{c}\left | x \right |^{-n}

For Description: \left | z \right |\leq \breve{c}\left | x \right |. Assume Description: B\left ( \tilde{x} ,\rho \right ) then we have that the inequality

Holds for all Description: x\in B\left ( \tilde{x} +\rho\hat{x} ,\rho \right ), the application of the integral inequality yields

Taking Description: B\left ( \tilde{x} +\rho \hat{x},\rho \right ) instead of Description: B\left ( x,\rho \right ), we obtain

Theorem 7: Let Description: p\left ( \cdot \right )\in P\left ( R^{n} \right ) such that Description: p_{s}=ess\underset{x\in R^{n}}{}sup \, p\left ( x \right )< \infty , and let Description: f \mapsto T\left ( f \right ) be a convolution operator corresponding to kernel K

under the assumption  \left | \partial _{x}^{a} K\left ( x \right )\right |\leq C\left ( a \right )\left | x \right |^{-n\left | a \right |} , \left | a \right |\leq 1 

by T (f )(x)= f *K. Assume that the maximal operator is bounded in , then, for each weight ω ∈ A_{p\left ( . \right )} ⋅ , the inequality

\int _{B^{n}}\left ( T\left ( f \right )\left ( x \right ) \right )^{p\left ( x \right )}\omega \left ( x \right )dx\leq A\int _{B^{n}}\left | f\left ( x \right ) \right |^{p\left ( x \right )}\omega \left ( x \right )dx           (23)

Holds for all f\epsilon L^{p\left ( . \right )}\left ( R^{n} \right ) 

Proof: Let T , ε >0 be a truncated approximation with kernel  K_{\epsilon }\left ( x \right )=K\left ( x \right )1\left ( \left \{ \left | x \right |\geq \varepsilon \right \} \right )   so that

Description: T\left ( f \right )\left ( x \right )=\int _{R^{n}}K\left ( x-y \right )f\left ( y \right )dy                           

And we define    T_{*}\left ( f \right )\left ( x \right )=sup_{\varepsilon }\left | T\varepsilon \left ( f \right ) \left ( x \right )\right |.

We show that the inequality

mes\left ( \left \{ x:T_{*} \left ( f \right )\left ( x \right )> a,f\left ( x \right )\leq c\tilde{a}\right \} \right )\leq

c_{2}c\tilde{}\left ( 1-b\breve{} \right )^{-1} mes \left ( \left \{ x:T_{*}\left ( f \right ) \left ( x \right )\right > b\tilde{}a\tilde{}\} \right )   

Holds for all f\varepsilon C_{0}^{\infty } and for all b <1 a > 0, and c > 0 .

Indeed, for fixed ε > 0 and for all f\varepsilon C_{0}^{\infty }  is a continuous function, therefore, there exists an open coverage  \Theta such that  T_{*}\left ( f \right )\left ( x \right )=sup_{\varepsilon }\left | T_{\varepsilon } \left ( f \right )\left ( x \right )\right |> b\tilde{a}   is open, this open coverage Θ is decomposed into a disjoint union of Whitney cubes UQi

Now, we decompose the function f into the sum f_{1}+f_{2}  of two functions f_{1}=f_{1_{B}} AND f_{1}=f_{1_{R^{n/B}}}  For b_{1}\breve{}+b_{2}^{\sim }=1  we obtain  \left \{ x:T_{*} \left ( f \right )\left ( x \right )> a\right \}\subset \left \{ x:T_{*} \left ( f_{1} \right )\left ( x \right )> b^{\sim }a\right \}\cup \left \{ x:T_{*} \left ( f_{2} \right )\left ( x \right )> b^{\sim }_{1}a\right \} Since for all f\varepsilon L^{1}\left ( R^{n} \right )  there is an inequality

mes  \left \{ x:T_{*} \left ( f \right )\left ( x \right )> a\right \}\leq \frac{c_{2}}{a}\int _{R^{n}}\left | f\left ( x \right ) \right |dx, 

We have 

mes \left \{ x\epsilon Q_{i}:T_{*}\left ( f_{1} \right )\left ( x \right )\right> > b_{1}^{\sim }a \}\leq \frac{c_{2}}{\alpha b^{\sim }_{1}}\int _{R^{n}}\left | f\left ( x \right ) \right |dx

and 

\int _{R^{n}}\left | f\left ( x \right ) \right |dx\leq c^{\sim }c_{2}\alpha mes \left ( Q_{i} \right )

Thus, we obtain

\left \{ x:T_{*} \left ( f \right )\left ( x \right )> a\right \}\leq \frac{c_{2}}{b_{1}}mes \left ( Q_{i} \right )  

Next, we must estimate the f 2 -term. Applying our conditions, we calculate

\int _{\left | y-z \right |\geq s}\frac{\left | f\left ( y \right ) \right |}{\left | y-z \right |^{n+1}}dy=\int _{\left | y \right |\geq s}\frac{/f\left ( y-z \right )/}{\left | y \right |^{n+1}}dy=

=\sum _{k=0,1..2^{i}}\int __{}s\leq {\left \| y \right \|\leq 2^{i+1}}\frac{/f\left ( y-z \right )/}{\left | y \right |^{n+1}}dy\leq 2c_{1}^{\sim }f\left ( z \right )

Since \left | K_{\varepsilon }\left ( x^{\sim }-y \right ) -K_{\varepsilon }\left ( x-y \right )\right |\leq \frac{c_{2}s}{\left | y-z \right |^{n+1}}  for  x\epsilon Q_{i,} y\epsilon R^{n}/B  and R^{n}/B\subset \left \{ y: \left | y-z \right |\geq s\right \},  the ball B has center at x . Therefore, we estimate

\left | T_{\epsilon }\left ( f_{2} \right )\left ( x^{\sim } \right )-T_{\epsilon } \left ( f_{2} \right )\left ( x \right )\right |\leq c_{2}f\left ( z \right )

For all   x\epsilon Q_{i,}   Taking the supreme over all ε > 0 , we have

T_{*}\left ( f_{2} \right )\left ( x \right )\leq T_{*} \left ( f_{2} \right )\left ( x \right )+c_{2}f\left ( z \right )\leq \alpha b^{\sim }

For all   x\epsilon Q_{i,}

So, we choose   b_{2}^{\sim }\geq b^{\sim }+c_{2}c and  b_{1}^{\sim }+ b_{2}^{\sim }=1  then we have

mes \left ( \left \{ x:T_{*} \left ( f \right )\left ( x \right )> \alpha , f\left ( x \right )\leq c^{\sim }\alpha \right \} \right )\leq

\leq c_{2}cb^{\sim }_{1} mes \left ( Q^{i} \right ),

if c_{2}c^{\sim }\left ( 1-b^{\sim } \right )\geq 2^{-1}   then we choose new c_{2} as 2c_{2} and obtain 

mes  \left ( \left \{ x:T_{*} \left ( f \right )\left ( x \right )> \alpha , f\left ( x \right )\leq c^{\sim }\alpha \right \} \right )\leq

     \leq c_{2}c^{\sim } \left ( 1-b \right )^{-1} mes \left ( Q^{i} \right ).

Taking the sum over all cubesQi , we obtain

  mes \left ( \left \{ x:T_{*} \left ( f \right )\left ( x \right )> \alpha , f\left ( x \right )\leq c^{\sim }\alpha \right \} \right )\leq

   \leq c_{2}c^{\sim } \left ( 1-b \right )^{-1} mes   \left ( \left \{ x:T_{*}\left ( f \right )\left ( x \right )\geq b^{\sim } a\right \} \right )

For all α > 0 and each 0 1 < < b and each0 < c.

Next, we show that the inequality

 \mu \left ( \left \{ x:T_{*} \left ( f \right )\left ( x \right )> \alpha , f\left ( x \right )\leq c^{\sim }\alpha \right \} \right )\leq

 \leq \alpha \mu \left ( \left \{ x:T_{*}\left ( f \right )\left ( x \right )\geq b^{\sim } a\right \} \right )

Holds for all Description: f\in C_{o}^{\infty } and for all Description: \tilde{b}< 1,\, \alpha > 0 and some Description: \tilde{a}< 1,\, \tilde{c}> 0, constant Description: \tilde{a} depends on the weight function.

Indeed, in previous consideration, we fix Description: \tilde{b}< 1 and choose Description: \tilde{c} so that Description: c_{2}\tilde{c}\left ( 1-\tilde{b} \right )^{-1} is small enough, then the inequality

Description: \leq mes\left ( Q_{i} \right ).

Holds for some small enough positive Description: \delta and all cubes.

Assuming Description: \tilde{a}=\delta < 1, we summate over all cubes and obtain

Description: \leq \delta \mu \left ( Q \right ).

We will need the following properties of the Description: p\left ( \cdot \right ) -spaces. For constant Description: \tilde{a}< 1, we choose Description: \tilde{b}< 1, such that the inequality Description: \tilde{a}< \tilde{b}^{ps} holds for all Description: x. Let Description: f and Description: g be a nonnegative function such that inequality

Description: \mu \left ( \left \{ x:f\left ( x \right ) > \alpha ,g\left ( x \right )\leq \tilde{c}\alpha \right \} \right )\leq

Description: \leq \tilde{a}\mu \left ( \left \{ x:f\left ( x \right ) \tilde{b}\alpha \right \} \right )

Holds for all Description: \alpha > 0. Then, the inequality

Holds with some constants Description: c_{3} and under the condition Description: \tilde{a}< \tilde{b}^{ps} and Description: f\in L^{p\left ( \cdot \right )}Description: . Proving of this statement is similar to standard one.

This proves our statement for f Description: f\in C^{\infty }_{o} since Description: \left | T_{*}\left ( f \right )\left ( x \right ) \right |\leq \left ( 1+\left | x \right | \right )^{-n} holds for all Description: f\in C^{\infty }_{o}. 

The extension to the whole Description: L^{p\left ( \cdot \right )}\left ( R^{n} ,\mu \right ) follows from the standard argument that each element of Description: L^{p\left ( \cdot \right )}\left ( R^{n} ,\mu \right ) can be approximated by ele elements of Description: C_{0}^{\infty }\left ( R^{n} \right ).                

REFERENCES
  1. Adimurthi K, Phuc NC. Global Lorentz and Lorentz-Morrey estimates below the natural exponent for quasilinear equations. Calc Var Partial Di?erential Equations. 2015; 54: 3107-3139.
  2. Beni A, ochenig K, Okoudjou KA, Rogers LG. Unimodular Fourier multiplier for modulation spaces. J Funct Anal. 2007; 246: 366–384.
  3. Cruz-Uribe D, Penrod M, Rodney S. Poincar´e inequalities and Neumann problems for the variable exponent setting. Math Eng. 2022; 4: 1-22.
  4. Xiong C. Comparison of Steklov eigenvalues on a domain and Laplacian eigenvalues on its boundary in Riemannian manifolds. J Funct Anal. 2018; 275: 3245–3258.
  5. Cruz-Uribe D, Fiorenza A. Weighted endpoint estimates for commutators of fractional integrals. Czechoslovak Math J. 2007; 57:153–160.
  6. Diening L, Hasto P. Muckenhoupt weights in variable exponent spaces. 2008.
  7. Diening L. Maximal function on generalized Lebesgue spaces L p (·), Math Inequal Appl. 2004; 7: 245–253.
  8. Fan X, Zhao D. On the spaces Lp(x) (?) and W m,p(x) (?). J Math Anal Appl. 2001; 263: 424–446.
  9. Ortiz-Caraballo C, Perez C, Rela E. Exponential decay estimates for singular integral operators. Math Ann. 2013; 357: 1217–1243.
  10. Hao C, Zhang W. Maximal L p − L q regularity for two-phase fluid motion in the linearized Oberbeck-Boussinesq approximation. J Differ Equ. 2022; 322: 101–134.
  11. Ho K, Sim I. Existence results for degenerate p(x)-Laplace equations with Leray-Lions type operators. Sci China Math. 2017; 60: 133–146.
  12. Kim YH, Wang L, Zhang C. Global bifurcation for a class of degenerate elliptic equations with variable exponents. J Math Anal Appl. 2010; 371: 624–637.
  13. Liu X, Wang M, Zhang Z. Local well-posedness and blow-up criterion of the Boussinesq equations in critical Besov spaces. J Math Fluid Mech. 2010; 12: 280–292.
  14. Miao C, Zheng X. On the global well-posedness for the Boussinesq system with horizontal dissipation. Commun Math Phys. 2013; 321: 33–67.
  15. Qiaoling Wang, Xia C. Sharp bounds for the ?rst non-zero Steklo? eigenvalues. J Funct Anal. 2009; 257: 2635–2644.
  16. Restrepo JE, Suragan D. Hardy-type inequalities in generalized grand Lebesgue spaces. Adv Oper Theory. 2021; 6: 30.
  17. Stein EM. Singular integrals and di?erentiability properties of functions. Princeton Mathematical Series (PMS-30). Princeton University Press Princeton. 1970; 30.
  18. Tsenov IV. Generalization of the problem of best approximation of a function in the space. Ls Uch Zap Dagestan Gos Univ. 1961; 7: 25–37.
  19. Trudinger N. On Imbeddings into Orlicz Spaces and Some Applications. Indiana Univ Math J. 1967; 17: 473–483.
  20. Wang B, Huo Z, Hao C, Guo Z. Harmonic Analysis Method for Nonlinear Evolution Equations. World Scient?c, 2011.
  21. Wang FY. Distribution dependent SDEs for Landau type equations. Stochastic Processes and their Applications. 2018; 128: 595–621.
  22. Xia P, Xie L, Zhang X, Zhao G. Lq(Lp)-theory of stochastic di?erential equations. 2019; 130: 5188-5211.
  23. Zhang X. Stochastic homeomorphism ?ows of SDEs with singular drifts and Sobolev di?usion coe?cients. Electron J Probab. 2011; 16:1096–1116.
  24. Zhang X, Zhao G. Singular Brownian Di?usion Processes. Communications in Mathematics and Statistics. 2018; 6: 533–581.
  25. Zhang X, Zhao G. Stochastic Lagrangian path for Leray solutions of 3D Navier-Stokes equations. Communications in Mathematical Physics. 2021; 381: 491-525.

Yaremenko M (2024) Zygmund-Calderon Operators in the Weighted Variable Exponent Spaces. JSM Math Stat 6(1): 1019

Received : 10 Dec 2023
Accepted : 24 Jan 2024
Published : 24 Jan 2024
Journals
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
Annals of Pediatrics and Child Health
ISSN : 2373-9312
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X