JSM Physical Medicine and Rehabilitation

Exercise-Based Cardiac Rehabilitation for Elderly Patients with Coronary Artery Disease

Review Article | Open Access

  • 1. Department of Rehabilitation, Shinshu University Hospital, Japan
  • 2. Department of Rehabilitation Sciences, Graduate School of Medical Sciences, Kitasato University, Japan
  • 3. Department of Cardiovascular Medicine, Shinshu University Hospital, Japan
  • 4. Department of Physical Therapy, Shinshu University, Japan
+ Show More - Show Less
Corresponding Authors
Shuhei Yamamoto, Department of Rehabilitation, Shinshu University Hospital, Nagano, Japan 3-1-1 Asahi, Matsumoto-shi, Nagano, Japan, 390-8621, Tel: 81-263-37-2836 ; Fax: 81-263-37-2835

The exercise-based cardiac rehabilitation (CR) composed of aerobic and resistance training has been established as a fundamental intervention to decrease mortality and cardiovascular events of patients with coronary artery disease (CAD) since 1970-1980 years. However, the prescription of traditional training is recently difficult for CAD patients because the number of elderly patients with low mobility has increased. In particular, mobility of CAD patients decreases to about 70% relative to that of healthy people. Reduced mobility has a direct effect on cardiovascular events and mortality. Therefore, the main goals of elderly patients with CAD are to maintain or improve mobility, in addition to secondary prevention and decreasing mortality ratios. Other methods, i.e. interval training, training using neuromuscular electrical stimulation or balance training, have been proposed in addition to traditional training program (aerobic and resistance training) for elderly patients with CAD. Some studies have proved the effectiveness of these training programs. We must prescribe the evidence-based methods for training program on considering elderly patients’ clinical characteristics or condition.


Yamamoto S, Matsunaga A, Ishida T, Misawa K, Yamazaki S, et al. (2017) Exercise-Based Cardiac Rehabilitation for Elderly Patients with Coronary Artery Disease. JSM Physical Med Rehabil 1(1): 1003.


•    Coronary artery disease
•    Elderly
•    Cardiac rehabilitation
•    Physical performance
•    Mobility
•    Secondary prevention


AHA: American Heart Association; AT: Anaerobic Threshold; CAD: Coronary Artery Disease; CPX: Cardiopulmonary Exercise Testing; CR: Cardiac Rehabilitation; ESC: European Society of Cardiology; ICU: Intensive Care Unit; METs: Metabolic Equivalents; NMES: Neuromuscular Electrical Stimulation


Although coronary artery disease (CAD) is one of the major causes of death according to World Health Statistics 2015, [1] the life expectancy of CAD patients has improved in recent years. Therefore, secondary prevention of re-admission and mortality of these patients is an important outcome for CAD patients after hospital discharge. Drug therapy is the most fundamental intervention as the strategy of secondary prevention. In recent decades, cardiac rehabilitation (CR) is recognized the similar amount of effectiveness intervention as drug therapy [2,3]. Cardiac rehabilitation (CR) is a comprehensive intervention composed of exercise, risk factor education, behavior change, psychological support, and various approaches that address common risk factors of CAD [2,3]. In particular, American Heart Association (AHA) guideline recommend that exercise-based CR is recognized as an integral component of cardiac rehabilitation [3]. Many studies have shown that an exercise-based CR program consisting of aerobic and resistance training is an effective intervention to restore physical function [4,5] and exercise capacity [6,7], and to reduce difficulty in physical activities of daily living [8,9] in CAD patients. Furthermore, a Cochrane metaanalysis reported that exercise-based CR was associated with a 28% reduction in mortality and a 31% reduction in hospital readmission for CAD patients [10]. These results are of similar amount as beta-blocker or angiotensin-converting enzyme inhibitor. In addition, approximately 25% of CAD patients have mild depressive symptoms or anxiety, which are poor prognostic factors [11-13]. Some randomized control trials reported that exercise-based CR decreased rate of depressive symptoms or anxiety for CAD patients [10]. The safety of exercise-based CR has been verified worldwide. A scientific statement of AHA in 2007 reported that the incidence rates during exercise were 1 event/60,000-80,000 hours [14]. Similarly, multicenter study by the Japanese Circulation Society revealed that the incidence rates were 1 event/383,096 patient-hours [15]. These results suggest that exercise-based CR is extremely safe.

Recent study shows that the profile of CAD patients entering exercise-based CR has evolved over the past 10 years [16]. The number of elderly patients with CAD has increased by approximately 60% in the past few decades [16]. Although the main goals of middle-aged CAD patients are secondary prevention and decreasing mortality ratios, those of elderly CAD patients are to maintain or increase mobility, which is defined as either the inability to walk without assistance or having a slow walking speed, in addition to secondary prevention [17]. In fact, walking speed decreases progressively with age, and in particular declines very rapidly over the age of 60 years. In a cross-sectional study by our group, walking speed of CAD patients decrease to about 70% relative to that of healthy people [18]. Furthermore, a threeyear cohort study demonstrated that elderly CAD patients with a slow walking speed (<90 m/min for men and <81 m/min for women) have a two- to three-fold higher risk of a cardiovascular event compared to those with a fast walking speed [19]. For those reasons, we need to make a training program should be targeted to increase mobility. The aim of this review is to suggest evidencebased methods for training of elderly CAD patients, with the hope that the training program should be individually tailored, after adequate evaluation of baseline patients’ physical performance.


Evidence of exercise capacity

Exercise capacity status (peak oxygen uptake [VO2 ] or metabolic equivalents [METs]) becomes well-established predictors of cardiovascular events and mortality. These prognostic markers are obtained by the cardiopulmonary exercise testing (CPX). Association between exercise capacity and mortality is independent from degree of coronary artery disease. A large cohort study reported that each 1-METs increase was associated with a 12% improvement in survival [20]. Furthermore, the peak VO2 is criteria of heart replacement. CAD patients who have less than 14 ml/min/kg of peak VO2 are recommended to receive heart replacement according to European Society of Cardiology (ESC) guidelines [21]. In addition, minute ventilation/carbon dioxide production (VE/VCO2) slope, which is obtained by CPX, have also demonstrated promise as a highly prognostic marker [22,23] CAD patients who have 35 or more of VE/VCO2 slope have a three-fold higher risk of mortality compared to those who have less than 34 [22-24]. A meta-analysis of the prognostic markers of CPX demonstrates that peak VO2 and VE/VCO2 are strongly associated with mortality [25].

Practice of aerobic training

The intensity of aerobic training is very important if we want that CAD patients undergo exercise-based CR safely. The best way to determine the intensity is peak VO2 or anaerobic threshold (AT) obtained from the cardiopulmonary exercise test using respiratory gas analyzer [3]. Forty to 70% of peak VO2 or AT point has been recommended for aerobic training [3,26]. If CPX cannot be carried out, there is another way to determine the intensity of aerobic training. Forty to 60% of heart rate reserve or Karvonen method is applied if maximum exercise test is available. If the patients cannot perform any exercise test, we will determine the intensity using Borg scale of 6 to 20. Appropriate intensity is a rating of perceived exertion of 11-16 on a scale of Borg scale according to some guidelines [3,26]. It is most effectiveness to carry out aerobic training for 30 minutes per session, more than 3 times per week and more than 3 months.

We will prescribe aerobic interval training when the patients cannot carry out the continuous aerobic training because of decreased skeletal muscle strength [26]. Interval training is composed of intense exercise periods and lower intensity recovery periods, alternately [27]. Originally, interval training was developed for the athletes because it improved exercise capacity and physical performance more rapidly than traditional continuous training. However, interval training has prescribed for CAD patients since 1990 years [28]. In an exercise-based CR field, interval training including intermitted rest periods has been applied more frequently to CAD patients with weakness. Although interval training is very effectiveness for CAD patients, it is unclear what should be the most appropriate method of establishing high and low intensity, and exercise and recovery periods. According to the ESC guideline, each session included four 4 min bouts of high intensity exercise, which was 90–95% of their maximal exercise capacity, interspersed with 3 min recovery periods at low intensity [26]. If CPX cannot be carried out, we determine the intensity of interval training using Borg scale when we prescribe the interval training for CAD patients.


Evidence of skeletal muscle strength

As reduced cardiac output and tissue hypoxia in CAD induce expression of myostatin [29] and inflammatory cytokines [30], leading to the progressive decline of skeletal muscle mass [30]. Resistance training, that is strength training using weight lifting or machine training, is more likely to be an effectiveness intervention for CAD patients with poor skeletal muscles [26,31] In fact, according to a previous cross-sectional study by our group, muscle strength of CAD patients is approximately 70% of wellfunctioning, community-dwelling people regardless of age and sex [18]. In addition, some cohort studies showed that decrease of upper and lower extremity muscle strength was closely associated with all-cause mortality and cardiovascular mortality in CAD patients [32-34]. Furthermore, our meta-analysis demonstrated that resistance training alone much improved muscle strength and exercise capacity of all aged CAD patients, and mobility of elderly CAD patients compared with usual care [31]. These findings suggest that CAD patients, especially elderly patients, need to receive the resistance training program. CAD patients, who have undergone surgery and had prolonged bed stay in the intensive care unit (ICU) due to their severe conditions, often suffer from major functional impairments after discharge from ICU [35]. To solve this problem, some data suggests that resistance training started early may improve physical functions in ICU survivors [36].

Practice of resistance training

Resistance training is a muscular fitness program using weight lifting, machines with stacked weight or pneumatic resistance, and rubber bands [31]. Figure (1) shows the half squat and weight training with stacked weight. According to the American College of Sports Medicine’s guidelines for exercise testing [37] and prescription or AHA guidelines [3], the intensity of resistance training is from 50% to 80% of the individual’s one repetition maximum and the number of repetitions are from 8 to 15. Resistance training was applied to CAD patients for more than one month in our meta-analysis [31] When we prescribe resistance training program for the CAD patients, we must monitor the electrocardiogram, vital sign and perceived exertion of patients [3]. Exercise intensity is maintained at a rating of perceived exertion of 11-16 on a scale of Borg scale. The number of elderly patients with sarcopenia or skeletal myopathy, that decrease skeletal muscle strength, has increased [30,38]. For patients who cannot undergo traditional resistance training, we usually prescribe neuromuscular stimulation (NMES, see Figure (2) [39-41]. The Cochrane meta-analysis reported that NMES was associated with improvement of peak VO2 and 6-minuets walk distance for patients with heart failure [39] In clinical practice, we often use NMES for CAD patients just after surgical operation or with mechanical ventilation. Furthermore, recent studies showed that resistance training with warming patients’ muscles [42] or stretching exercise [43] were likely to be an effectiveness intervention for CAD patients with poor physical performance. The resistance training should be selected according to the condition or physical performance of CAD patients.


Evidence of balance function

There is little evidence of balance function in CAD patients. In a cross-sectional study by our group, balance function of CAD patients, especially elderly patients, decrease 40% to 60% of age-matched healthy people in addition to muscle strength [18]. AHA and ESC guidelines recommend aerobic training and resistance training for CAD patients [2,3]. However they do not refer to the balance training. Our previous cross sectional study showed that decreased balance function was strongly associated with mobility for CAD patients, especially elderly patients [18]. Furthermore, deteriorated balance function is closely associated with fall risk [44-46]. Falls can lead to serious consequence, e.g. fracture and head injuries. Approximately 10% of falls result in a fracture,[47,48] which is a significant source of morbidity and mortality [49]. A three-year cohort study demonstrated that balance training was likely to be an affective intervention to improve mobility and reduced cardiac event for elderly CAD patients [19]. Collectively, deteriorated balance function associates with increased risk of low mobility, which leads to the decrease of physical activity that has a direct effect on cardiovascular events and mortality.

Practice of Balance Training

There are many kind of balance training in rehabilitation. A Cochrane meta-analysis reported that types of balance training consist of parallel stance, tandem stance, single legged standing, tandem walk, balance boards and so on [50,51] Therapists need to prescribe the training program according to individual’s balance ability. We often select tandem stance and single legged standing training program according to the Cochrane Review (Figure 3) [50]. Tandem standing is defined as standing with one foot placed in front of the other with the heel touching the toe while the patient’s eyes are open [50,19] Patients were instructed to hold the one-leg standing and tandem standing positions without falling. If these training programs are easy for CAD patients, we should prescribe more difficult balance training programs. The tandem walk is one of balance training that walk on the line with one foot placed in front of the other with the heel touching the toe [50,52].


The main goals of exercise-based CR are to reduce mortality and re-admission. Furthermore, improvement or preservation of mobility is an important outcome for elderly patients with CAD, which is defined by the European Association of Cardiovascular Prevention and Rehabilitation as one of the main goals of cardiac rehabilitation for elderly CAD patients [17]. Some cohort studies showed that the low mobility was closely associated with an increase of mortality or re-hospitalization for CAD patients [19,53]. Several studies have shown that loss of physical functions including of skeletal muscle strength with advancing age, also known as sarcopenia of aging, is a highly prevalent condition among elderly people [54]. The deterioration of physical functions leads to the decrease of mobility that has a direct effect on health and survival. Some guideline recommended aerobic training using treadmill and cycle ergo meter, and resistance training. However, CAD patients with low mobility or elderly cannot carry out these traditional training programs. For this reason, we need to prescribe an appropriate training program, i.e. interval training, training using NMES or balance training, for each individual patient. We have researched the association with physical performance and cardiovascular events in CAD patients by meta-analysis of cohort studies [55].We expect that therapists evaluate physical performances of CAD patients in addition to their clinical characteristics and cardiac functions, and make training programs individually.


This work was supported by Japan Society for the Promotion of Science, KAKENHI Grant Number JP16H06835, and Japan.


1. World Health Organization. World Health Statistics 2015. Switzerland. 2015.

2. Steg PG, James SK, Atar D, Badano LP, Blomstrom-Lundqvist C, Borger MA et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012; 33: 2569-2619.

3. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013; 128:873-934.

4. Fragnoli-Munn K, Savage PD, Ades PA. Combined resistive-aerobic training in older patients with coronary artery disease early after myocardial infarction. J Cardiopulm Rehabil. 1998; 18: 416-420.

5. Marzolini S, Oh PI, Thomas SG, Goodman JM. Aerobic and resistance training in coronary disease: single versus multiple sets. Med Sci Sports Exerc. 2008; 40: 1557-1564.

6. Taylor RS, Dalal H, Jolly K, Moxham T, Zawada A. Home-based versus centre-based cardiac rehabilitation. Cochrane Database Syst Rev. 2010; CD007130.

7. Beckers PJ, Denollet J, Possemiers NM, Wuyts FL, Vrints CJ, Conraads VM, et al. Combined endurance-resistance training vs. endurance training in patients with chronic heart failure: a prospective randomized study. Eur Heart J. 2008; 29:1858-1866.

8. Izawa KP, Yamada S, Oka K, Watanabe S, Omiya K, Iijima S et al. Long term exercise maintenance, physical activity, and health-related quality of life after cardiac rehabilitation. Am J Phys Med Rehabil. 2004; 83: 884-892.

9. Ades PA, Savage PD, Brochu M, Tischler MD, Lee NM, Poehlman ET, et al. Resistance training increases total daily energy expenditure in disabled older women with coronary heart disease. J Appl Physiol. 2005; 98:1280-1285.

10. Heran BS, Chen JM, Ebrahim S, Moxham T, Oldridge N, Rees K, et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2011; CD001800.

11. Frasure-Smith N, Lesperance F, Talajic M. Depression following myocardial infarction. Impact on 6-month survival. JAMA. 1993; 270: 1819-1825.

12. Barefoot JC, Schroll M. Symptoms of depression, acute myocardial infarction, and total mortality in a community sample. Circulation. 1996; 93: 1976-1980.

13. Penninx BW, Beekman AT, Honig A, Deeg DJ, Schoevers RA, van Eijk JT, et al. Depression and cardiac mortality: results from a communitybased longitudinal study. Arch Gen Psychiatry. 2001; 58: 221-227.

14. Thompson PD, Franklin BA, Balady GJ, Blair SN, Corrado D, Estes NA, 3rd et al. Exercise and acute cardiovascular events placing the risks into perspective: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation. 2007; 115: 2358- 2368.

15. Saito M, Ueshima K, Saito M, Iwasaka T, Daida H, Kohzuki M , et al. Safety of exercise-based cardiac rehabilitation and exercise testing for cardiac patients in Japan: a nationwide survey. Circ J. 2014; 78: 1646- 1653.

16. Audelin MC, Savage PD, Ades PA. Changing clinical profile of patients entering cardiac rehabilitation/secondary prevention programs: 1996 to 2006. J Cardiopulm Rehabil Prev. 2008; 28: 299-306.

17. Piepoli MF, Corra U, Benzer W, Bjarnason-Wehrens B, Dendale P, Gaita D. et al. Secondary prevention through cardiac rehabilitation: from knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2010; 17: 1-17.

18. Yamamoto S, Matsunaga A, Kamiya K, Miida K, Ebina Y, Hotta K, et al. Walking speed in patients with first acute myocardial infarction who participated in a supervised cardiac rehabilitation program after coronary intervention. Int Heart J. 2012; 53: 347-352.

19. Yamamoto S1, Matsunaga A, Wang G, Hoshi K, Kamiya K, Noda C, et al. Effect of balance training on walking speed and cardiac events in elderly patients with ischemic heart disease. Int Heart J. 2014; 55: 397-403.

20. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE, et al. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002; 346: 793-801.

21. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012; 33: 1787-1847.

22. Francis DP, Shamim W, Davies LC, Piepoli MF, Ponikowski P, Anker SD, et al. Cardiopulmonary exercise testing for prognosis in chronic heart failure: continuous and independent prognostic value from VE/ VCO(2)slope and peak VO(2). Eur Heart J. 2000; 21: 154-161.

23. Corra U, Mezzani A, Bosimini E, Scapellato F, Imparato A, Giannuzzi P, et al. Ventilatory response to exercise improves risk stratification in patients with chronic heart failure and intermediate functional capacity. Am Heart J. 2002; 143: 418-426.

24. Gitt AK, Wasserman K, Kilkowski C, Kleemann T, Kilkowski A, Bangert M. et al. Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. Circulation. 2002; 106: 3079-3084.

25. Cahalin LP, Chase P, Arena R, Myers J, Bensimhon D, Peberdy MA, et al. A meta-analysis of the prognostic significance of cardiopulmonary exercise testing in patients with heart failure. Heart Fail Rev. 2013; 18: 79-94.

26. Piepoli MF, Conraads V, Corra U, Dickstein K, Francis DP, Jaarsma T, et al. Exercise training in heart failure: from theory to practice. A consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Heart Fail. 2011; 13: 347-357.

27. Haykowsky MJ, Timmons MP, Kruger C, McNeely M, Taylor DA, Clark AM, et al. Meta-Analysis of Aerobic Interval Training on Exercise Capacity and Systolic Function in Patients with Heart Failure and Reduced Ejection Fractions. Am J Cardiol. 2013; 111: 1466-1469.

28. Meyer K, Lehmann M, Sunder G, Keul J, Weidemann H. Interval versus continuous exercise training after coronary bypass surgery: a comparison of training-induced acute reactions with respect to the effectiveness of the exercise methods. Clin Cardiol. 1990; 13: 851-861.

29. Heineke J, Auger-Messier M, Xu J, Sargent M, York A, Welle S et al. Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation. 2010; 121: 419-425.

30. von Haehling S, Steinbeck L, Doehner W, Springer J, Anker SD. Muscle wasting in heart failure: An overview. Int J Biochem Cell Biol. 2013; 45: 2257-2265.

31. Yamamoto S, Hotta K, Ota E, Mori R, Matsunaga A. Effects of resistance training on muscle strength, exercise capacity, and mobility in middle aged and elderly patients with coronary artery disease... J Cardiol. 2016; 68: 125-134.

32. Izawa KP, Watanabe S, Osada N, Kasahara Y, Yokoyama H, Hiraki K, et al. Handgrip strength as a predictor of prognosis in Japanese patients with congestive heart failure. Eur J Cardiovasc Prev Rehabil. 2009; 16: 21-27.

33. Hülsmann M, Quittan M, Berger R, Crevenna R, Springer C, Nuhr M, et al. Muscle strength as a predictor of long-term survival in severe congestive heart failure. Eur J Heart Fail. 2004; 6: 101-107.

34. Kamiya K, Masuda T, Tanaka S, Hamazaki N, Matsue Y, Mezzani A, et al. Quadriceps Strength as a Predictor of Mortality in Coronary Artery Disease. Am J Med. 2015; 128: 1212-1219.

35. Schweickert WD, Kress JP. Implementing early mobilization interventions in mechanically ventilated patients in the ICU. Chest. 2011; 140: 1612-1617.

36. Calvo-Ayala E, Khan BA, Farber MO, Ely EW, Boustani MA. Interventions to improve the physical function of ICU survivors: a systematic review. Chest. 2013; 144: 1469-1480.

37. American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription. 8 ed. Lippincott Williams & Wilkins; 2009.

38. Brum PC, Bacurau AV, Cunha TF, Bechara LR, Moreira JB. Skeletal myopathy in heart failure: effects of aerobic exercise training. Exp Physiol. 2014; 99: 616-620.

39. Gomes Neto M, Oliveira FA, Reis HF, de Sousa Rodrigues E, Jr., Bittencourt HS, Carvalho VO, et al. Effects of Neuromuscular Electrical Stimulation on Physiologic and Functional Measurements in Patients With Heart Failure: A systematic review with meta-analysis. J Cardiopulm Rehabil Prev. 2016; 36: 157-166.

40. Jones S, Man WD, Gao W, Higginson IJ, Wilcock A, Maddocks M, et al. Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst Rev. 2016; 10: CD009419.

41. Saitoh M, Dos Santos MR, Anker M, Anker SD, von Haehling S, Springer J. Neuromuscular electrical stimulation for muscle wasting in heart failure patients. Int J Cardiol. 2016; 225: 200-205.

42. Goto K, Oda H, Kondo H, Igaki M, Suzuki A, Tsuchiya S, et al. Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects. Eur J Appl Physiol. 2011; 111: 17-27.

43. Hotta K, Kamiya K, Shimizu R, Yokoyama M, Nakamura-Ogura M, Tabata M, et al. Stretching exercises enhance vascular endothelial function and improve peripheral circulation in patients with acute myocardial infarction. Int Heart J. 2013; 54: 59-63.

44. Duncan PW, Studenski S, Chandler J, Prescott B. Functional reach: predictive validity in a sample of elderly male veterans. J Gerontol. 1992; 47: 93-98.

45. Vellas BJ, Wayne SJ, Romero L, Baumgartner RN, Rubenstein LZ, Garry PJ, et al. One-leg balance is an important predictor of injurious falls in older persons. J Am Geriatr Soc. 1997; 45: 735-738.

46. Shumway-Cook A, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys Ther. 2000; 80: 896-903.

47. Campbell AJ, Borrie MJ, Spears GF, Jackson SL, Brown JS, Fitzgerald JL. Circumstances and consequences of falls experienced by a community population 70 years and over during a prospective study. Age Ageing. 1990; 19: 136-141.

48. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med. 1988; 319: 1701-1707.

49. Keene GS, Parker MJ, Pryor GA. Mortality and morbidity after hip fractures. BMJ. 1993; 307: 1248-1250.

50. Howe TE, Rochester L, Neil F, Skelton DA, Ballinger C. Exercise for improving balance in older people. Cochrane Database Syst Rev. 2011; 11: CD004963.

51. Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012; 9: CD007146.

52. Madureira MM, Takayama L, Gallinaro AL, Caparbo VF, Costa RA, Pereira RM, et al. Balance training program is highly effective in improving functional status and reducing the risk of falls in elderly women with osteoporosis: a randomized controlled trial. Osteoporos Int. 2007; 18: 419-425.

53. Dodson JA, Arnold SV, Gosch KL, Gill TM, Spertus JA, Krumholz HM, et al. Slow Gait Speed and Risk of Mortality or Hospital Readmission After Myocardial Infarction in the Translational Research Investigating Underlying Disparities in Recovery from Acute Myocardial Infarction: Patients’ Health Status Registry. J Am Geriatr Soc. 2016; 64: 596-601.

54. Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003; 95: 1851-1860.

55. Yamamoto S, Yamaga T, Sakai Y, Ishida T, Nakasone S, Ohira M, et al. Association between physical performance and cardiovascular events in patients with coronary artery disease: protocol for a meta-analysis. Systematic reviews. 2016; 5: 1-7.

Received : 16 Feb 2017
Accepted : 06 Mar 2017
Published : 07 Mar 2017
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
Annals of Pediatrics and Child Health
ISSN : 2373-9312
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
TEST Journal of Dentistry
ISSN : 1234-5678
Launched : 2014
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X