Loading

JSM Tropical Medicine and Research

Effective Techniques in the Definitive Diagnosis of Lyme Disease

Review Article | Open Access

  • 1. Department of Biology, University of Pittsburgh, USA
+ Show More - Show Less
Corresponding Authors
Jill D. Henning, 450 Schoolhouse Rd, Department of Biology, University of Pittsburgh, Johnstown, Pa, 15904, USA, Tel: 814-269-7285; Fax: 18142692022
Abstract

Lyme disease is the most prevalent vector-borne bacterial infection caused by the spirochete Borrelia burgorferi [1]. In the United States, transmission occurs via its tick vector Ixodes scapularis [2]. According to the CDC, Lyme disease is the most commonly reported vector borne illness, with its density the highest in the Northeastern United States and upper Midwest United States [3]. Because of this, proper diagnosis of this disease is imperative, however, Lyme disease is commonly misdiagnosed as another condition, or over-diagnosed in patients with non-specific symptoms [4]. This article aims to evaluate the various techniques for the diagnosis of Lyme disease to determine which standard is most efficacious for an accurate and definitive diagnosis.

Citation

Coleman CJ, Henning JD (2016) Effective Techniques in the Definitive Diagnosis of Lyme Disease. JSM Trop Med Res 1(1): 1005.

SIGNS, SYMPTOMS AND IMAGING

Signs, symptoms, and imaging studies are pivotal cues in honing the differential diagnosis, and thus play a key role in differentiating Lyme disease from other maladies with common pathological features. In early Lyme disease, many signs and symptoms are non-specific and could be caused by a wide variety of etiologies, however one of the most specific and common signs of early Lyme disease is the development of erythema migrans (EM) [5]. EM can present in many fashions such as homogenous, central erythema, and central clearing, with homogenous EM being the most common [5]. However, EM-like rashes can sometimes appear with other etiologies, such as from Lone Star Tick bites [6]. Occasionally, these bites can appear indistinguishable from EM and thus possibly result in a misdiagnosis [6]. Therefore, even though EM is one of the most prevalent and specific signs of Lyme disease, non-experienced providers could potentially be misled. Furthermore, many individuals do not remember a tick bite and do not develop EM, further complicating the sole use of EM in the diagnosis of Lyme disease [7]. This illuminates the paramount role of laboratory testing in these patients.

Neurologic progression of Lyme disease, a manifestation seen in approximately 12% of patients, produces symptoms which have diagnostic relevance [3]. In a study examining the chronic neurologic manifestations of erythema migrans borreliosis, 50% of the patients experienced cranial nerve impairment, with cranial nerve VII and cranial nerve VIII palsies being the most prevalent cranial nerve manifestations [8]. Approximately 66% of the participants experienced para and tetraspasticpareses [8]. Other abnormalities such as ataxia, bladder dysfunction, and psychiatric disorders were also reported, but were not as prevalent [8]. The symptoms gain specificity as they are consolidated while individually, they can mimic a wide variety of diseases. However, the symptoms reported in this study manifested late in the progression of the disease (7 months to 12 months until diagnosis), making them generally unreliable for early Lyme disease or in patients without neurologic involvement.

It appears that children with Lyme disease also appear to have neuroimaging findings that correlate with cranial nerve disorders, according to a study by Ramgopal et al., This study evaluated neuroimages of children who presented with concurrent intracranial hypertension and Lyme disease. Of the seven total patients in the study, six received a contrast enhanced MRI of the brain and orbits, all of which showed cranial nerve involvement in at least two cranial nerves [9]. Symptoms of these patients upon presentation were also vague, with all patients presenting with a headache, four of the seven patients presenting with diplopia, six patients presenting with nausea/vomiting, and four patients presenting with photophobia [9]. This suggests that cranial nerve involvement in Lyme disease is prevalent, though symptoms related from this involvement may not always be apparent [8,9]. Though Lyme disease in conjunction with intracranial hypertension is rare, cranial nerve enhancement has been seen elsewhere in patients presenting with neurologic manifestations of Lyme disease [10,11]. In patients presenting with an array of neurologic symptoms that appear to follow a bacterial infection, particularly in patients that do not have evidence of a tick bite or EM, neuroimaging with signs of cranial nerve enhancement should draw suspicion to Lyme disease as a differential diagnosis.

Aside from clinical aspects, geographic location should not hinder the suspicion of Lyme disease. Ticks have been shown to spread great distances by utilizing attachment to birds and thus can heavily contribute to the acquisition of Lyme disease in areas where the disease is not prevalent [12]. Because of this, geographic location should be given little consideration when adding Lyme disease as a possible differential diagnosis.

Even though Lyme disease can produce unique signs and symptoms during progression, imaging and clinical signs and symptoms do not provide a definitive diagnosis. Moreover, consideration of geographic location is an important tool in raising suspicion of Lyme disease, but cannot be used for diagnosis. In order to achieve this definitive diagnosis, laboratory testing should be performed.

CULTURING

In a study conducted by Nowakowki et al., culturing was found to be inferior in sensitivity to PCR and serologic testing of acutephase samples [13]. Both skin cultures and blood cultures were tested, with skin cultures obtaining 51.1% sensitivity and blood cultures obtaining 44.7% sensitivity; when considered together, culturing produced 66.0% sensitivity [13]. During the study, the tissue specimen used for skin culturing was the same sample used for quantitative PCR which had 80.9% positivity [13]. Another study found that PCR was three times more sensitive than culturing from blood samples, suggesting that a large volume of spirochete must be present in order for it to be detected by culturing [14]. In an attempt to increase the sensitivity of blood cultures, Wormser et al., increased the volume of blood used for the cultures, finding that this did not increase the sensitivity [15].

Culturing alone has a sensitivity well below acceptable levels for diagnosis, however, when used in conjunction with other methods, it has the ability to enhance the overall diagnostic value [16]. Utilizing PCR, serological testing, as well as culturing has the ability to give a sensitivity of 100% [16]. However, in the clinical setting this could be problematic. PCR had a 92% sensitivity alone which could be accepted as a successful lone diagnostic technique [16]. Using 3 combined methods is also time consuming and is unnecessary for the increase in sensitivity it provides. From this data, culturing appears to be an insufficient technique for diagnosing Lyme disease.

ELISA

In a study examining the antibody response of IgM and IgG antibodies in Lyme disease, it was found that ELISA produces diagnostic levels of IgM and IgG throughout the course of the disease [17]. Using the I. dammini spirochete, IgM titers were highest during the ECM phase of the disease and gradually declined thereafter, while IgG titers remained high throughout the course of the disease, having at least a four-fold increase [17]. The IgG titers remained high, sometimes for years after disease onset, while IgM titers fell three to six weeks after disease onset [17].

Another study found that IgM and IgG titers for ELISA had a much lower success rate. To prepare for the ELISA, an antigen preparation of B. burgdorferi was utilized. During the first two weeks of the disease, two out of 22 patients had a positive IgM titer and none had a positive IgG titer [18]. Acute-phase sera and convalescent-phase sera of patients greater than or equal to 3 weeks of disease onset were also tested. When IgM and IgG responses were considered together, acute-phase sera showed a 30% positivity while convalescent-phase sera showed a 60% positivity [18]. ELISA gave false-positive results in four of the 12 patients with Rocky Mountain Spotted Fever, and in seven of the nine patients with syphilis [18]. This shows markedly different results than Craft, Grodzicki, and Steere’s study, noting however that more patients were examined in this study [17,18]. This difference could also be due to the strain of the spirochete used.

A more recent study in Europe demonstrated poor sensitivity of ELISA in early Lyme disease, with a higher sensitivity in more progressed cases such as Lyme arthritis [19]. Another study, however, found that ELISA sensitivity fell below 50% in patients that have been ill for more than 4-6 weeks [20]. In the clinical setting, it can be challenging to determine the possible stage of the disease so that the best diagnostic technique can be used. It is apparent that the sensitivity of ELISA can widely vary, posing a major problem in utilizing ELISA as diagnostic technique in any stage of Lyme disease.

ELISA demonstrates a poor sensitivity early in Lyme disease, most likely because of the low amounts of antibody in serum. As the disease progresses, ELISA can become more sensitive, but even this notion is challenged by more recent evidence [18-23]. However, it is certain that ELISA poses a problem with specificity. Not only can other conditions such as Syphilis produce falsepositives in ELISA, but it appears that frequent environmental exposure can also produce high false-positives [18,21]. Several different ELISAs are available, such as the Recom Well Borrelia IgG, that have increased specificity, but sensitivity is sacrificed to achieve this [22]. Therefore, ELISA alone seems to be unreliable as a diagnostic technique in early Lyme disease due to its low sensitivity, and is unreliable across all stages of Lyme disease because of its non specificity and fluctuating diagnostic accuracy. This low specificity, however, has been attempted to be corrected by coupling ELISA testing with the immunoblot, a guideline currently recommended by the CDC (discussed below) [24].

IMMUNOBLOT

Immunoblotting, like ELISA, has significant sensitivity issues in patients with early Lyme disease [25]. Dressler et al., found that ELISA using sonicated spirochetes had a 32% sensitivity and a 100% specificity for IgM early in the disease whereas IgG had a 83% sensitivity and a 95% specificity early in the disease [25]. The sensitivity of the immunoblot from IgM was increased to 44% in convalescent-phase sera [25]. This increase in sensitivity might have been caused by the parameters set in the study. At the time of the study, there was no standard to differentiate a positive immunoblot and a diagnostic immunoblot [25]. This study required 2 of the 8 most common IgM bands to be present, and 5 of the 10 most common IgG bands [25]. Without these parameters, 21% of the individuals would have met the requirements for a positive diagnostic immunoblot, and thus the sensitivity would have increased significantly [25]. In the patients with EM, these requirements lowered the sensitivity of acutephase sera immunoblots by 7%, and lowered the sensitivity of convalescent-phase sera by 10% [25].

Another study, however, showed value in the immunoblot for early Lyme disease. Using the standard of two of three bands present for a positive IgM immunoblot and two of five bands present for a positive IgG immunoblot, the IgM had a sensitivity of 92% to 94% and the IgG showed a sensitivity of 93% to 96% [24]. The ELISA was also examined in this study and exhibited decreased sensitivity and specificity relative to IgG and IgM immunoblots [24]. This study also established a criterion to enhance the sensitivity of the immunoblot while simultaneously not greatly affecting specificity [24]

Currently, the CDC recommends a two-tier laboratory process consisting of an ELISA (or rarely, an immunofluorescence assay) and an immunoblot, both of which must be positive for a definitive diagnosis [26]. An IgG and IgM immunoblot is performed when the ELISA is positive and signs and symptoms have been present for less than 30 days [26]. In cases where the ELISA is positive and signs and symptoms have been present for greater than 30 days, and IgG immunoblot is performed [26]. Five IgG bands and two IgM bands must be present for the immunoblot to be considered positive [26]. ELISA lacks in specificity, an area where immunoblotting excels. Because of this, immunoblotting used in conjunction with ELISA would invariably enhance specificity, but the sensitivity issues would still remain [18].

The two-tier method has been recently shown to produce low sensitivity across most stages of Lyme disease with the exception of Lyme arthritis and Lyme disease with late neurologic manifestations [27]. This study, as well as the more recent research demonstrating the inadequate sensitivity of ELISA, shows that the two-tier algorithm contains serious flaws and has the possibility of missing a large number of Lyme disease cases [19,20,27].

A new immunoblot has recently been developed with a high sensitivity and specificity [28]. Utilizing two strains of Borrelia burgdorferi as well as adjusting diagnostic criteria to reactivity to any two of the six Borrelia burgdorferi antigens, the immunoblot acquired a sensitivity of 97.1% while the specificity remained greater than 93% for both IgM and IgG [28]. The study compared this data to a commercial immunoblot using CDC interpretation criteria which was found to have a sensitivity of 77.1% and a specificity greater than 97% for both IgM and IgG [28]. Not only does this further demonstrate a flaw in the current CDC recommendations, but it also shows a promising and simpler technique to definitively diagnose Lyme disease.

PCR

In a study comparing diagnostic values of various techniques in the diagnosis of early Lyme disease, quantitative PCR on skinbiopsy derived material was found to be the most sensitive producing a positivity of 80.9% [13]. Conventional-nested PCR was superior to blood culture, skin culture, and serologic testing of acute-phase samples, showing a positivity of 63.8%, but inferior to 2-stage serologic testing of convalescent-stage samples (which were 66% positive) [13]. Three of the 47 patients tested negative for all the techniques used, and thus may not have had Lyme disease [13]. If these individuals did not have Lyme disease, quantitative PCR would have an 86.4% sensitivity.From this study alone, it appears that quantitative PCR dominates other techniques for early Lyme disease. The common factor among all the patients was at least one EM lesion, from which a 2mm sample of tissue was sampled for skin-biopsy related techniques [13].

In a study conducted by Shwartz et al., quantitative PCR was generally unsuccessful in diagnosing early Lyme disease, producing 59% sensitivity to B. burgdorferi [29]. The most obvious variance between Shwartz’s study and Nowakowski’s study was the region chosen to be amplified. Shwartz et al., chose to amplify 23s rRNA genes, whereas Nowakowski’s study selected to amplify the recA gene [13,29]. The 23s rRNA genes are subject to mutations in order to confer antibiotic resistance in other species; however, the resistance was generally seen with macrolide therapy [30,31]. It is possible that tetracyclines would also have the capability of inducing this type of resistance because of their interaction with the ribosome, but this is unclear [32]. Because these types of mutations were seen in other species, it is possible that it could also occur in B. burgdorferi and thus induce a variation to which the primers are unable to bind with full complementarity. The recA gene, however, is thought to be involved in recombination and would be thought to have a lower incidence of induced mutations caused by antibiotics, and would therefore potentially have less variation than the 23s rRNA genes [33]. However, this would have to be further evaluated.

In an attempt to increase the sensitivity and specificity of PCR, a study amplified a region that was unique to B. burgdorferi, but also ubiquitous within the species [34]. Clones of chromosomal 2H1 were generated and PCR amplification was performed [34]. The researchers found that as little as 0.05 pg of B. burgdorferi DNA was needed in order for the DNA to be amplified to detectable levels [34]. In relation to other diagnostic techniques, it would be reasonable to assume that this contributes to the relatively high sensitivity of PCR. The low quantity of DNA needed could also be valuable in diagnosing early Lyme disease, especially in the periods where an adequate antibody response has not been generated to be detected by serological methods.

The ospA gene is another possible target for DNA amplification. In a study examining PCR’s sensitivity in patients with neuroborreliosis using the ospA gene, it was found that quantitative PCR was positive in all of the 3 culture-confirmed cases of neuroborreliosis, and in 5 of the 10 neuroborreliosis patients with specific antibodies in the CSF and pleocytosis [35]. After considering a further subset of patients, PCR was found to have a sensitivity of 50% in patients with neuroborreliosis [35]. This low sensitivity could have been caused by the gene selected for amplification and also the type of sample taken from the patient. CSF specimens are found to produce a lower sensitivity than that of skin samples, even in patients with neurological involvement [36]. However, if samples are obtained from EM lesions, it is possible to acquire a high sensitivity PCR with the ospA gene, suggesting that PCR sensitivity is more dependent on sample location than the primer used [37]. Samples taken from skin biopsies of EM lesions produce sensitivities that surpass that of serological testing and culturing, yet samples taken from CSF, synovial fluid, and urine produce PCR sensitivities individually that are not diagnostically valuable [13,35,37,38].

To increase the sensitivity to an even higher degree, finding the appropriate primer to use is key. The ospA gene was thought to be a valuable gene choice because it exists in the plasmid [39]. It appears, though, that using a chromosomal gene that is conserved is more efficacious [13,34]. A study using PCR in patients with Lyme disease compared using the chromosomal p66 gene and the ospA gene in CSF and urine samples of patients with neuroborreliosis [40]. Individually, the p66 gene yielded higher sensitivity than the ospA gene, but when considered together, the sensitivity dramatically increased [40]. The efficiency of the PCR was also raised when CSF and urine sample were examined in a parallel manner [40]. The sensitivities of both genes and both samples could be considered together as the specificity of the PCR exceeded 99% [40]. This suggests that in order to increase the sensitivity of PCR, at least two different primer sets and two different samples should be used. Furthermore, using this standard also significantly increases the likelihood of PCR correctly diagnosing a Lyme disease patient who has progressed from the early stages of the disease [40].

CONCLUSION

In the early stages of Lyme disease, EM is one of the most pivotal cues in the differential diagnosis of Lyme disease. However, because many individuals do not remember a tick bite or EM fails to develop, some type of definitive diagnostic technique should be put in place. The two-tier algorithm recommended by the CDC has been shown to be ineffective in diagnosing Lyme disease. The algorithm operates under the assumption that ELISA contributes a high sensitivity to the test while the immunoblot contributes the specificity. Recent studies have shown that this assumption is not true. ELISA has a poor sensitivity in early Lyme disease and a varying sensitivity in the later stages of Lyme disease. Moreover, the two-tier algorithm has been shown to miss more than half of progressed Lyme disease cases. Though a more sensitive immunoblot has been developed, it still must be accepted by the medical community. Until this occurs, PCR seems to be the most consistent and sensitive diagnostic test. 

Quantitative PCR of an EM lesion biopsy appears to be the most sensitive and specific diagnostic test in early Lyme disease, surpassing other diagnostic techniques in both sensitivity and specificity. However, PCR can be effectively employed for detecting Lyme disease in advanced stages. Previous studies have shown that utilizing two different primer sets (p66 primer and ospA primer) as well as using at least two different sample locations increase the sensitivity of PCR. This technique not only exhibits a higher sensitivity and specificity than the current two-tier algorithm recommended by the CDC, but it also has the capability of being utilized across all stages of Lyme disease.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Lydia Fleck, Gary Swope, Lindsey Steward, and the University of Pittsburgh at Johnstown’s Presidents Mentorship Fund.

REFERENCES

1. Baranton G, Postic D, Saint Girons I, Boerlin P, Piffaretti JC, Assous M, et al. Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol. 1992; 42: 378-383.

2. Ogden NH, Maarouf A, Barker IK, Bigras-Poulin M, Lindsay LR, Morshed MG, et al. Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int J Parasitol. 2006; 36: 63-70.

3. Bacon RM, Kugeler KJ, Mead PS, Centers for Disease Control and Prevention. Surveillance for Lyme disease--United States, 1992-2006. MMWR Surveill Summ. 2008; 57: 1-9.

4. Hsu VM, Patella SJ, Sigal LH. “Chronic Lyme disease” as the incorrect diagnosis in patients with fibromyalgia. Arthritis Rheum. 1993; 36: 1493-1500.

5. Smith RP, Schoen RT, Rahn DW, Sikand VK, Nowakowski J, Parenti DL, et al. Clinical characteristics and treatment outcome of early Lyme disease in patients with microbiologically confirmed erythema migrans. Ann Intern Med. 2002; 136: 421-428.

6. Masters E, Granter S, Duray P, Cordes P. Physician-diagnosed erythema migrans and erythema migrans-like rashes following Lone Star tick bites. Arch Dermatol. 1998; 134: 955-960.

7. Cameron DJ, Johnson LB, Maloney EL. Evidence assessments and guideline recommendations in Lyme disease: the clinical management of known tick bites, erythema migrans rashes and persistent disease. Expert Rev Anti Infect Ther. 2014; 12: 1103-1135.

8. Ackermann R, Rehse-Kupper B, Gollmer E, Schmidt R. Chronic neurologic manifestations of erythema migrans borreliosis. Ann N Y Acad Sci. 1988; 539: 16-23.

9. Ramgopal S, Obeid R, Zuccoli G, Cleves-Bayon C, Nowalk A. Lyme disease-related intracranial hypertension in children: clinical and imaging findings. J Neurol. 2016; 263: 500-507.

10. Nelson JA, Wolf MD, Yuh WT, Peeples ME. Cranial nerve involvement with Lyme borreliosis demonstrated by magnetic resonance imaging. Neurology. 1992; 42: 671-673.

11. Belman AL, Coyle PK, Roque C, Cantos E. MRI findings in children infected by Borrelia burgdorferi. Pediatr Neurol. 1992; 8: 428-431.

12. Reed KD, Meece JK, Henkel JS, Shukla SK. Birds, migration and emerging zoonoses: west nile virus, lyme disease, influenza A and enteropathogens. Clin Med Res. 2003; 1: 5-12.

13. Nowakowski J, Schwartz I, Liveris D, Wang G, Aguero-Rosenfeld ME, Girao G, et al. Laboratory diagnostic techniques for patients with early Lyme disease associated with erythema migrans: a comparison of different techniques. Clin Infect Dis. 2001; 33: 2023-2027.

14. Goodman JL, Bradley JF, Ross AE, Goellner P, Lagus A, Vitale B, et al. Bloodstream invasion in early Lyme disease: results from a prospective, controlled, blinded study using the polymerase chain reaction. Am J Med. 1995; 99: 6-12.

15. Wormser GP, Bittker S, Cooper D, Nowakowski J, Nadelman RB, Pavia C. Yield of large-volume blood cultures in patients with early Lyme disease. J Infect Dis. 2001; 184: 1070-1072.

16. Coulter P, Lema C, Flayhart D, Linhardt AS, Aucott JN, Auwaerter PG, et al. Two-year evaluation of Borrelia burgdorferi culture and supplemental tests for definitive diagnosis of Lyme disease. J Clin Microbiol. 2005; 43: 5080-5084.

17. Craft JE, Grodzicki RL, Steere AC. Antibody response in Lyme disease: evaluation of diagnostic tests. J Infect Dis. 1984; 149: 789-795.

18. Grodzicki RL, Steere AC. Comparison of immunoblotting and indirect enzyme-linked immunosorbent assay using different antigen preparations for diagnosing early Lyme disease. J Infect Dis. 1988; 157: 790-797.

19. Leeflang MM, Ang CW, Berkhout J, Bijlmer HA, Van Bortel W, Brandenburg AH, et al. The diagnostic accuracy of serological tests for Lyme borreliosis in Europe: a systematic review and meta-analysis. BMC Infect Dis. 2016; 16: 140.

20. Stricker RB, Johnson L. Lyme disease diagnosis and treatment: lessons from the AIDS epidemic. Minerva Med. 2010; 101: 419-425.

21. Hauser U, Krahl H, Peters H, Fingerle V, Wilske B. Impact of strain heterogeneity on Lyme disease serology in Europe: comparison of enzyme-linked immunosorbent assays using different species of Borrelia burgdorferi sensu lato. J Clin Microbiol. 1998; 36: 427-436.

22. Marangoni A, Sparacino M, Cavrini F, Storni E, Mondardini V, Sambri V, et al. Comparative evaluation of three different ELISA methods for the diagnosis of early culture-confirmed Lyme disease in Italy. J Med Microbiol. 2005; 54: 361-367.

23. Gerber MA, Shapiro ED, Bell GL, Sampieri A, Padula SJ. Recombinant outer surface protein C ELISA for the diagnosis of early Lyme disease. J Infect Dis. 1995; 171: 724-727.

24. Engstrom SM, Shoop E, Johnson RC. Immunoblot interpretation criteria for serodiagnosis of early Lyme disease. J Clin Microbiol. 1995; 33: 419-427.

25. Dressler F, Whalen JA, Reinhardt BN, Steere AC. Western blotting in the serodiagnosis of Lyme disease. J Infect Dis. 1993; 167: 392-400.

26. Centers for Disease Control and Prevention. Recommendations for test performance and interpretation from the Second National Conference on Serologic Diagnosis of Lyme Disease. MMWR Morb Mortal Wkly Rep. 1995; 44: 590-591.

27. Wormser GP, Schriefer M, Aguero-Rosenfeld ME, Levin A, Steere AC, Nadelman RB, et al. Single-tier testing with the C6 peptide ELISA kit compared with two-tier testing for Lyme disease. Diagn Microbiol Infect Dis. 2013; 75: 9-15.

28. Shah J, Du Cruz I, Narciso W, Lo W, Harris N: Improved sensitivity of Lyme disease Western blots prepared with a mixture of Borrelia burgdorferi strains 297 and B31. Chronic Dis Int. 2014; 1: 7.

29. Schwartz I, Wormser GP, Schwartz JJ, Cooper D, Weissensee P, Gazumyan A, et al. Diagnosis of early Lyme disease by polymerase chain reaction amplification and culture of skin biopsies from erythema migrans lesions. J Clin Microbiol. 1992; 30: 3082-3088.

30. Tait-Kamradt A, Davies T, Cronan M, Jacobs MR, Appelbaum PC, Sutcliffe J. Mutations in 23S rRNA and ribosomal protein L4 account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrob Agents Chemother. 2000; 44: 2118-2125.

31. Versalovic J, Shortridge D, Kibler K, Griffy MV, Beyer J, Flamm RK, et al. Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrob Agents Chemother. 1996; 40: 477- 480.

32. Bauer G, Berens C, Projan SJ, Hillen W. Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA. J Antimicrob Chemother. 2004; 53: 592-599.

33. Wang G, Ojaimi C, Iyer R, Saksenberg V, McClain SA, Wormser GP, et al. Impact of genotypic variation of Borrelia burgdorferi sensu stricto on kinetics of dissemination and severity of disease in C3H/HeJ mice. Infect Immun. 2001; 69: 4303-4312.

34. Rosa PA, Schwan TG. A specific and sensitive assay for the Lyme disease spirochete Borrelia burgdorferi using the polymerase chain reaction. J Infect Dis. 1989; 160: 1018-1029.

35. Gooskens J, Templeton KE, Claas EC, van Dam AP. Evaluation of an internally controlled real-time PCR targeting the ospA gene for detection of Borrelia burgdorferi sensu lato DNA in cerebrospinal fluid. Clin Microbiol Infect. 2006; 12: 894-900.

36. Lebech AM, Hansen K, Brandrup F, Clemmensen O, Halkier-Sorensen L. Diagnostic value of PCR for detection of Borrelia burgdorferi DNA in clinical specimens from patients with erythema migrans and Lyme neuroborreliosis. Mol Diagn. 2000; 5: 139-150.

37. Moter SE, Hofmann H, Wallich R, Simon MM, Kramer MD. Detection of Borrelia burgdorferi sensu lato in lesional skin of patients with erythema migrans and acrodermatitis chronica atrophicans by ospAspecific PCR. J Clin Microbiol. 1994; 32: 2980-2988.

38. Lebech AM, Hansen K. Detection of Borrelia burgdorferi DNA in urine samples and cerebrospinal fluid samples from patients with early and late Lyme neuroborreliosis by polymerase chain reaction. J Clin Microbiol. 1992; 30: 1646-1653.

39. Persing DH, Rutledge BJ, Rys PN, Podzorski DS, Mitchell PD, Reed KD, et al. Target imbalance: disparity of Borrelia burgdorferi genetic material in synovial fluid from Lyme arthritis patients. J Infect Dis. 1994; 169: 668-672.

40. Priem S, Rittig MG, Kamradt T, Burmester GR, Krause A. An optimized PCR leads to rapid and highly sensitive detection of Borrelia burgdorferi in patients with Lyme borreliosis. J Clin Microbiol. 1997; 35: 685-690.

Received : 19 May 2016
Accepted : 05 Aug 2016
Published : 08 Aug 2016
Journals
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
Annals of Pediatrics and Child Health
ISSN : 2373-9312
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X