Loading

Pancreatic and Islet Development and Function: The Role of Thyroid Hormone

Mini Review | Open Access

  • 1. Department of Pediatrics, Indiana University School of Medicine, USA
  • 2. Department of Medicine, Indiana University School of Medicine, USA
  • 3. Department of Cellular and Integrative Physiology, Indiana University School of Medicine, USA
  • 4. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, USA
  • 5. Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, USA
+ Show More - Show Less
Corresponding Authors
Teresa L Mastracci, Department of Pediatrics, Indiana University School of Medicine, Herman B Wells Center for Pediatric Research, 635 Barnhill Dr, MS2031, Indianapolis, IN, USA 46202, Tel: 317-278-8940; Fax: 317-274-4107. Carmella Evans-Molina, Department of Medicine, Cellular and Integrative Physiology, Biochemistry and Molecular Biology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indiana University School of Medicine, 635 Barnhill Dr., MS2031, Indianapolis, IN, USA 46202, Tel: 317-278-3177; Fax: 317-274-4107.
Abstract

A gradually expanding body of literature suggests that Thyroid Hormone (TH) and Thyroid Hormone Receptors (TRs) play a contributing role in pancreatic and islet cell development, maturation, and function. Studies using a variety of model systems capable of exploiting species-specific developmental paradigms have revealed the contribution of TH to cellular differentiation, lineage decisions, and endocrine cell specification. Moreover, in vitro and in vivo evidence suggests that TH is involved in islet β cell proliferation and maturation; however, the signaling pathway(s) connected with this function of TH/TRs are not well understood. The purpose of this review is to discuss the current literature that has defined the effects of TH and TRs on pancreatic and islet cell development and function, describe the impact of hyper- and hypothyroidism on whole body metabolism, and highlight future and potential applications of TH in novel therapeutic strategies for diabetes.

Citation

Mastracci TL, Evans-Molina C (2014) Pancreatic and Islet Development and Function: The Role of Thyroid Hormone. J Endocrinol Diabetes Obes 2(3): 1044.

Keywords

•    Thyroid hormone
•    Thyroid hormone receptor
•    Pancreatic islet; b cell; Insulin secretion

ABBREVIATIONS

E: Embryonic day; Pdx1: Pancreatic and Duodenal Homeobox 1; Ptf1a: Pancreatic Transcription Factor 1a; Cpa1: Carboxypeptidase A1; Cmyc: Myelocytomatosis oncogene; TH: Thyroid Hormone; T4: Thyroxine (T4); T3: 3,5,3’-Triiodo-L-Thyronine; TR: Thyroid Hormone Receptors; P: Postnatal day; Cdx1: Caudal Type Homeobox Transcription Factor 1; Cdx2: Caudal Type Homeobox Transcription Factor 2; PI3K: Phosphoinositide 3-Kinase; AKT: Protein Kinase B

INTRODUCTION

The pancreas is a compound digestive gland, comprised of an exocrine and an endocrine compartment that secrete digestive enzymes and hormones, respectively. The exocrine pancreas is comprised of duct and acinar cells, whereas the endocrine pancreas is organized into structures known as the islets of Langerhans [1]. While endocrine mass comprises only ~2% of the total pancreas mass, the contribution of hormone-producing endocrine cells to whole body metabolism is significant. Decades of studies focused on development of the pancreas in the mouse (Mus musculus) have uncovered the structural organization of this organ from the fetal and perinatal stages through to the adult. As these studies demonstrate, understanding structure often lends great insight into function.

In the mouse, pancreas development begins around embryonic day (E) 8.5 when cells of the foregut endoderm begin to express markers that instruct pancreas formation. The dorsal and ventral pancreatic buds evaginate from the primitive gut tube due to signals from the adjacent mesoderm [2]; the progenitor cells that comprise the buds co-express Pdx1 (pancreatic and duodenal homeobox 1) and Ptf1a (pancreatic transcription factor 1a) [3]. The stage of embryonic pancreas development from E9.5 to E12.5 is known as the primary transition (reviewed in [4]) during which progenitor cells in the dorsal and ventral epithelial buds organize into an epithelial arbor structure with both “tip” and “trunk” domains, as well as a few early differentiated “first wave” endocrine cells (composed mostly of glucagon-expressing α cells [5]). The secondary transition[6] is characterized mainly by the differentiation and expansion of the endocrine and exocrine cell populations. In particular, multipotent progenitor cells in the “tip” domain (Cpa1+ (carboxypeptidase A1), Ptf1a+, Cmyc+ (myelocytomatosis oncogene)) give rise to acinar cells, whereas progenitor cells in the “trunk” domain (Neurog3+) delaminate from the epithelial cords and differentiate into the hormone-expressing endocrine cells, including β (insulin), α (glucagon), δ (somatostatin), PP (pancreatic polypeptide), and ε (ghrelin) cells [7]. The existence of distinct domains of progenitor cells, which give rise to the differentiated cell populations in the developing pancreas, suggests that fate decisions may be decided in these early progenitor cells [8,9]; however, recent studies have also begun to shed light on the plasticity of differentiated pancreatic cells [10-13]. While the current body of work is quite limited, Thyroid Hormone (TH) and the Thyroid Hormone Receptors (TRs) may be factors of significance to pancreatic and islet cell development, maturation, and function.

PANCREAS AND ISLET DEVELOPMENT

The deiodination of the precursor thyroxine (T4) permits the synthesis of thyroid hormone (3,5,3’-triiodo-L-thyronine; T3; TH). The subsequent action of T3 is mediated by two Thyroid Hormone Receptors (TRs). The genes that encode TRα (Thra; Nr1a1) and TRβ (Thrb; Nr1a2) contain alternative promoters and splice variants ultimately resulting in the production of four mRNAs and the synthesis of four nuclear receptors – TRα1, TRβ1, TRβ2, TRβ3 [14]. The action and antagonism of the receptors is quite complex, and numerous mouse models have been generated to dissect the function of TH and the various TR isoforms. With regard to gene expression, TRα and TRβ are differentially expressed, resulting in distinct protein expression patterns. Certain TRα isoforms are ubiquitous, whereas others are specifically expressed in the intestine [15]. While also widely expressed, TRβ isoforms are found in liver, pituitary, hypothalamus, inner ear, retina, kidney, lung, skeletal muscle, heart, spleen and brain [14]. With respect to the pancreas, the expression of TR isoforms is noted in rat pancreas [16,17] and mouse islets [18]; however, the expression pattern of TH and the TRs has not been carefully examined at the cellular level in the embryonic pancreas. Aiello and colleagues [19] assessed the abundance of TRα and TRβ mRNA transcript in whole embryonic pancreas from E12.5 through postnatal day (P) 0 (birth). Specifically, TRα is expressed at E12.5 and steadily increases as pancreas development proceeds until reaching a maximum at birth (P0). In contrast, expression of TRβ is nearly undetectable from E12.5 to E15.5 and then rises dramatically in late development (E17.5) and at birth [19]. While the expression of TH or the TRs within specific cell populations in the embryonic pancreas still remains unknown, the identification of mRNA transcript suggests that TH signaling may occur during mouse pancreas development.

Knock-out and knock-in mouse models used to investigate the function of TR isoforms demonstrate no gross morphological changes in the pancreas; however, it should be noted that the pancreas is not the specific focus of the investigations that prompted the generation of the deletion mutants. Additionally, given the complex nature of the TR gene loci it is not surprising that multiple phenotypes are observed in various mouse models. Highlighting only a few of the mouse models of TRα, these studies have identified that loss of TRα1 alters thermogenesis, lipogenesis and maturation of the neonatal brain [20]. Homozygous loss of both TRα1 and TRα2 results in hypothyroidic mice that also display growth arrest, a delay in maturation of the small intestine and bones, and death by five weeks of life [21]. The mutation of TRα that also affects the naturally truncated TRΔα isoform (transcribed from an internal promoter located in intron 7), demonstrates that TRα is important for intestinal maturation as well as transcriptional activation of the intestine-specific genes Cdx1 (caudal type homeobox transcription factor 1) and Cdx2 (Caudal type homeobox transcription factor 2) [15]. With respect to loss of the TRβ isoform, deletion of TRβ alone alters the hypothalamic-pituitary-thyroid axis, the retina, and impairs hearing [22]. The generation of mice with a homozygous TRβ mutation that is also found in humans (TRβPV) results in severe dysfunction of the pituitary-thyroid axis, impaired weight gain and abnormal bone development, which is a distinct phenotype compared with the TRβ null mutant [23]. Interestingly, when the TRα and TRβ mutations are combined, mice are viable but display severe growth reduction, hypothermia and hearing impairment [24]. Overall, these studies point to loss of TRs having a profound effect on the normal development and function of many organs; however, the necessity and function of TRs for pancreas development and/or pancreatic and islet cell function remains a fairly understudied area of research. As will be discussed in the following section, there is mounting evidence that TH plays a functional role in pancreatic cell fate decisions, as well as structural organization of the pancreatic organ proper.

CELLULAR DIFFERENTIATION

The process of cellular differentiation is critical to the development of all organs, and various model organisms have been used to understand the stages or processes involved in how the pancreas develops. The mouse (Mus musculus) is the most widely used model system for studies investigating mammalian physiology and metabolism; however, this model has also been used to decipher key factors that instruct or influence pancreatic organogenesis. Additionally, zebrafish (Danio rerio), the African clawed frog (Xenopus laevis), and the chicken (Gallus gallus) exhibit species-specific experimental advantages for pancreatic studies. For example, given the complicated models/ genetics required to study pancreas regeneration in the mouse [10], tools generated using the zebrafish model system have greatly enlightened our understanding of pancreas and β cell regeneration [25].

A unique aspect of Xenopus/amphibian development is the requirement of TH for the process of organ development to proceed. Specifically, the formation of the skin, brain, intestine, liver and pancreas in the tadpole/frog requires the transformation or remodeling of these tissues in order for the mature organ to be formed; a process known as “metamorphosis” [26,27]. At metamorphosis, TH levels increase and after the metamorphic climax, TH levels revert to baseline [26]. The simultaneous effect on pancreas development is quite dramatic, such that mRNAs that encode terminally differentiated enzymes decline in response to increased TH, and the pancreas dramatically loses ~80% of its volume by the middle of the metamorphic climax [28]. This process of exocrine pancreas “regression” includes the dedifferentiation of acinar cells, which is controlled by TH, and subsequent re-differentiation after metamorphic climax resulting in the formation of the adult exocrine pancreas as well as a ductal tree [28]. Interestingly during the eight days of metamorphic climax, pre-existing β cells scattered throughout the pancreas cluster into islet structures due to both the increase in TH as well as the interaction with the surrounding dedifferentiated acinar cells [29]. By two months following completion of metamorphosis, the exocrine pancreas reforms and contains acinar cells, a structured ductal network, and cell clusters that have replicated and expanded (reviewed in [27]). These studies demonstrate the specific influence of TH on pancreatic organogenesis in Xenopus.

The influence of TH on mammalian pancreas development is gradually being resolved. Aiello and colleagues utilized the tissue explant culture system to treat E12.5 mouse pancreas explants with T3 (3,5,3’-triiodo-L-thyronine) for 7 days, and demonstrate an increase in pancreatic ductal markers [19]. Moreover, when T3 is removed from the culture, the ductal cells in the T3-treated explants possess the ability to differentiate into endocrine cells, first up-regulating the pro-endocrine gene Neurog3 and then completing differentiation into endocrine cells, including those expressing insulin or glucagon [19]. Interestingly, T3 treatment also induces pro-endocrine gene expression in the mouse acinar cell line 266-6 [19], and β cell-specific gene expression in the ductal human pancreatic cell line hPANC1 [30]. Furthermore, Furuya and colleagues demonstrate that acinar cells infected with an adenovirus vector expressing TRα driven by the Amylase2 promoter could be reprogrammed into insulin-producing β cells [31]. This work adds to the increasing number of reports identifying cellular plasticity in the pancreas, such that pancreatic cells are capable of both trans-differentiation and regeneration [10-13].

Islet (β cell) maturation, growth, and function

An elegant study by Aguayo-Mazzucato and colleagues describes the role of TH and TRs in postnatal rat islet maturation [16]. Specifically, T3 supplementation from birth through the first week of life (P7) results in an increase in body weight, pancreatic weight and β cell proliferation, while T3 treatment of rat islets isolated at P7 causes increased glucose-stimulated insulin secretion. Interestingly, the authors also demonstrate that TR directly binds and activates the MafA gene promoter, providing evidence that T3 supplementation coordinately increases expression of MafA. Furthermore, T3-induced increases in GSIS could be blocked with the use of a dominant negative form of MafA [16], ultimately identifying a role for TH in early postnatal islet cell function.

Additional evidence of the role for TH in pancreatic islet function comes from in vitro culture systems where T3 treatment of insulinoma cells or cultured islets results in preserved viability and β cell proliferation under basal and stress conditions. These results are attributed to activation of phosphoinositide 3-kinase/ protein kinase B (PI3K/AKT) signaling through the non-genomic effects of TRβ [32-34]. In vivo, administration of T3 attenuates β cell death and improves glucose intolerance in mice treated with streptozotocin, and these effects are likewise associated with increased activation of AKT [35].

A direct relationship between TH and glucose tolerance?

Despite the positive effects of T3 on β cell function observed using in vitro and ex vivo model systems, hyperthyroidism is associated with impaired glucose tolerance, which has been attributed to several different mechanisms including impaired insulin action, increased gluconeogenesis, excess lipolysis, increased serum free fatty acid levels, and decreased insulin secretion. In aggregate, this body of literature suggests a combination of peripheral insulin resistance and impaired β cell function [36-39]. However, older studies demonstrate that an increase in intestinal absorption of carbohydrates also contributes to the hyperthyroid state [40]. Mechanistic studies have also begun to investigate the association between autoimmune hyperthyroidism and increased levels of pro-inflammatory cytokines, such as IL-18, that may contribute to metabolic derangements in concert with elevated thyroid hormone levels [41].

Hypothyroidism can lead also to alterations in glucose tolerance. The pharmacological induction of hypothyroidism in dogs results in reduced insulin sensitivity with a concomitant increase in the acute insulin response to glucose [42]. In rats made acutely hypothyroid, with either surgery or anti-thyroid drugs, glucose tolerance is also impaired; however studies in humans identify that the resolution of even mild or subclinical hypothyroidism leads to an improvement in insulin sensitivity as assessed by hyperinsulinemic-euglycemic clamp [43]. Clearly the precise effects of hypothyroidism on islet function have not been completely resolved given that the ex vivo and in vivo assessment of islet function in response to alterations in thyroid hormone status have yielded varying results.

CONCLUSION

While the current body of literature examining the role of TH and TRs in the β cell is limited, several key studies have identified an important role for TH in pancreatic development, islet cell growth and β cell function. Continued research in these areas is needed to: (1) determine whether TH could be included as a potential molecule in in vitro differentiation protocols to assist in the differentiation of insulin-producing β cells, (2) understand the benefit of TH as a novel therapeutic in paradigms such as islet transplantation, and (3) resolve the relationship between hyperand hypothyroidism and altered β cell function. These areas of inquiry are ripe for further exploration and many unanswered questions await investigation.

ACKNOWLEDGEMENT

Research in Dr. Evans-Molina’s lab is supported by NIH grant R01 DK093954, VA MERIT award I01 BX001733, and by grants from the Juvenile Diabetes Research Foundation, the George and Frances Ball Foundation, the Ball Bros. Foundation, and Sigma Beta Sorority. Research in Dr. Mastracci’s lab is supported by a grant from the Showalter Trust Foundation. The funders had no role in the preparation or decision to publish this manuscript.

REFERENCES

1. Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem. 2005; 53: 1087-1097.

2. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 2009; 25: 221-251.

3. Burlison JS, Long Q, Fujitani Y, Wright CV, Magnuson MA. Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells. Dev Biol. 2008; 316: 74-86.

4. Pan FC, Wright C. Pancreas organogenesis: from bud to plexus to gland. Dev Dyn. 2011; 240: 530-565.

5. Mastracci TL, Sussel L. The endocrine pancreas: insights into development, differentiation, and diabetes. Wiley Interdiscip Rev Dev Biol. 2012; 1: 609-628.

6. Pictet R, Rutter WJ. Development of the embryonic endocrine pancreas. Steiner DF, Frenkel N, editors. Washington DC: Williams and Wilkins. 1972; 25-66.

7. Zhou Q, Law AC, Rajagopal J, Anderson WJ, Gray PA, Melton DA. A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell. 2007; 13: 103-114.

8. Desgraz R, Herrera PL. Pancreatic neurogenin 3-expressing cells are unipotent islet precursors. Development. 2009; 136: 3567-3574.

9. Mastracci TL, Anderson KR, Papizan JB, Sussel L. Regulation of Neurod1 contributes to the lineage potential of Neurogenin3+ endocrine precursor cells in the pancreas. PLoS Genet. 2013; 9: e1003278.

10. Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature. 2010; 464: 1149-1154.

11. Yang YP, Thorel F, Boyer DF, Herrera PL, Wright CV. Context-specific α- to-β-cell reprogramming by forced Pdx1 expression. Genes Dev. 2011; 25: 1680-1685.

12. Dhawan S, Georgia S, Tschen SI, Fan G, Bhushan A. Pancreatic β cell identity is maintained by DNA methylation-mediated repression of Arx. Dev Cell. 2011; 20: 419-429.

13. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008; 455: 627-632.

14. Flamant F, Samarut J. Thyroid hormone receptors: lessons from knockout and knock-in mutant mice. Trends Endocrinol Metab. 2003; 14: 85-90.

15. Plateroti M, Chassande O, Fraichard A, Gauthier K, Freund JN, Samarut J, et al. Involvement of T3Ralpha- and beta-receptor subtypes in mediation of T3 functions during postnatal murine intestinal development. Gastroenterology. 1999; 116: 1367-78.

16. Aguayo-Mazzucato C, Zavacki AM, Marinelarena A, Hollister-Lock J, El Khattabi I, Marsili A, et al. Thyroid hormone promotes postnatal rat pancreatic β-cell development and glucose-responsive insulin secretion through MAFA. Diabetes. 2013; 62: 1569-1580.

17. Lee JT, Lebenthal E, Lee PC. Rat pancreatic nuclear thyroid hormone receptor: characterization and postnatal development. Gastroenterology. 1989; 96: 1151-1157.

18. Zinke A, Schmoll D, Zachmann M, Schmoll J, Junker H, Grempler R, et al. Expression of thyroid hormone receptor isoform alpha1 in pancreatic islets. Exp Clin Endocrinol Diabetes. 2003; 111: 198-202.

19. Aïello V, Moreno-Asso A, Servitja JM, Martín M. Thyroid hormones promote endocrine differentiation at expenses of exocrine tissue. Exp Cell Res. 2014; 322: 236-248.

20. Wikström L, Johansson C, Saltó C, Barlow C, Campos Barros A, Baas F, et al. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J. 1998; 17: 455-461.

21. Fraichard A, Chassande O, Plateroti M, Roux JP, Trouillas J, Dehay C, et al. The T3R alpha gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. EMBO J. 1997; 16: 4412-4420.

22. Shibusawa N, Hashimoto K, Nikrodhanond AA, Liberman MC, Applebury ML, Liao XH, et al. Thyroid hormone action in the absence of thyroid hormone receptor DNA-binding in vivo. J Clin Invest. 2003; 112: 588-597.

23. Kaneshige M, Kaneshige K, Zhu X, Dace A, Garrett L, Carter TA, et al. Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci U S A. 2000; 97: 13209-13214.

24. Gauthier K, Plateroti M, Harvey CB, Williams GR, Weiss RE, Refetoff S, et al. Genetic analysis reveals different functions for the products of the thyroid hormone receptor alpha locus. Mol Cell Biol. 2001; 21: 4748-4760.

25. Curado S, Stainier DY, Anderson RM. Nitroreductase-mediated cell/ tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nat Protoc. 2008; 3: 948-954.

26. Shi YB, Sachs LM, Jones P, Li Q, Ishizuya-Oka A. Thyroid hormone regulation of Xenopus laevis metamorphosis: functions of thyroid hormone receptors and roles of extracellular matrix remodeling. Wound Repair Regen. 1998; 6: 314-322.

27. Pearl EJ, Bilogan CK, Mukhi S, Brown DD, Horb ME. Xenopus pancreas development. Dev Dyn. 2009; 238: 1271-1286.

28. Mukhi S, Mao J, Brown DD. Remodeling the exocrine pancreas at metamorphosis in Xenopus laevis. Proc Natl Acad Sci U S A. 2008; 105: 8962-8967.

29. Mukhi S, Horb ME, Brown DD. Remodeling of insulin producing beta-cells during Xenopus laevis metamorphosis. Dev Biol. 2009; 328: 384- 391.

30. Misiti S, Anastasi E, Sciacchitano S, Verga Falzacappa C, Panacchia L, Bucci B, et al. 3,5,3’-Triiodo-L-thyronine enhances the differentiation of a human pancreatic duct cell line (hPANC-1) towards a beta-cell-Like phenotype. J Cell Physiol. 2005; 204: 286-296.

31. Furuya F, Shimura H, Asami K, Ichijo S, Takahashi K, Kaneshige M, et al. Ligand-bound thyroid hormone receptor contributes to reprogramming of pancreatic acinar cells into insulin-producing cells. J Biol Chem. 2013; 288: 16155-16166.

32. Verga Falzacappa C, Mangialardo C, Raffa S, Mancuso A, Piergrossi P, Moriggi G, et al. The thyroid hormone T3 improves function and survival of rat pancreatic islets during in vitro culture. Islets. 2010; 2: 96-103.

33. Verga Falzacappa C, Patriarca V, Bucci B, Mangialardo C, Michienzi S, Moriggi G, et al. The TRbeta1 is essential in mediating T3 action on Akt pathway in human pancreatic insulinoma cells. J Cell Biochem. 2009; 106: 835-848.

34. Verga Falzacappa C, Petrucci E, Patriarca V, Michienzi S, Stigliano A, Brunetti E, et al. Thyroid hormone receptor TRbeta1 mediates Akt activation by T3 in pancreatic beta cells. J Mol Endocrinol. 2007; 38: 221-233.

35. Verga Falzacappa C, Mangialardo C, Madaro L, Ranieri D, Lupoi L, Stigliano A, et al. Thyroid hormone T3 counteracts STZ induced diabetes in mouse. PLoS One. 2011; 6: e19839.

36. Holness MJ, Greenwood GK, Smith ND, Sugden MC. PPAR alpha activation and increased dietary lipid oppose thyroid hormone signaling and rescue impaired glucose-stimulated insulin secretion in hyperthyroidism. Am J Physiol Endocrinol Metab. 2008; 295: E1380-9.

37. Holness MJ, Sugden MC. Continued glucose output after re-feeding contributes to glucose intolerance in hyperthyroidism. Biochem J. 1987; 247: 801-804. 

38. Mitrou P, Raptis SA, Dimitriadis G. Insulin action in hyperthyroidism: a focus on muscle and adipose tissue. Endocr Rev. 2010; 31: 663-679.

39. Wajchenberg BL, Cesar FP, Leme CE, Souza IT, Pieroni RR, Mattar E. Carbohydrate metabolism in thyrotoxicosis: studies on insulin secretion before and after remission from the hyperthyroid state. Horm Metab Res. 1978; 10: 294-299.

40. Müller MJ, Seitz HJ. Thyroid hormone action on intermediary metabolism. Part I: respiration, thermogenesis and carbohydrate metabolism. Klin Wochenschr. 1984; 62: 11-18.

41. Miyauchi S, Matsuura B, Ueda T, Eguchi T, Tamaru M, Yamamoto S, et al. Interleukin-18 induces insulin resistance in the hyperthyroid state. Endocr J. 2013; 60: 449-455.

42. Hofer-Inteeworn N, Panciera DL, Monroe WE, Saker KE, Davies RH, Refsal KR, et al. Effect of hypothyroidism on insulin sensitivity and glucose tolerance in dogs. Am J Vet Res. 2012; 73: 529-538.

43. Kowalska I, Borawski J, Nikoł Ajuk A, Budlewski T, Otziomek E, et al. Insulin sensitivity, plasma adiponectin and sICAM-1 concentrations in patients with subclinical hypothyroidism: response to levothyroxine therapy. Endocrine. 2011; 40: 95-101.

Mastracci TL, Evans-Molina C (2014) Pancreatic and Islet Development and Function: The Role of Thyroid Hormone. J Endocrinol Diabetes Obes 2(3): 1044.

Received : 12 Jun 2014
Accepted : 17 Jul 2014
Published : 19 Jul 2014
Journals
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
Annals of Pediatrics and Child Health
ISSN : 2373-9312
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X