Loading

Journal of Trauma and Care

Pneumopericardium Resulting from Blunt Thoracic Trauma

Case Report | Open Access | Volume 5 | Issue 1

  • 1. Department of Surgery, Texas Tech University, USA
+ Show More - Show Less
Corresponding Authors
Rohan Anand, MBA, Department of Surgery, Texas Tech University, Lubbock, Texas, USA, 8801 Tarter Avenue, Apt. 709, Amarillo, TX, USA, Tel: 626-633-6969; Email: rohan.anand@ttuhsc.edu
ABSTRACT

Pneumopericardium is a rare clinical condition defined by the presence of air in the pericardial sac. While this initially does not pose much danger, the accumulation of a sufficient amount of air can convert the pneumopericardium to tension pathology, with the classic signs, symptoms, and lethal dangers of cardiac tamponade. As with cardiac tamponade, treatment involves decompression of the pericardial sac via pericardiocentesis. This may be followed by insertion of a pericardial tube for continued drainage. While cardiac tamponade is well recognized by its classic findings, the rarer pneumopericardium may be more easily missed. This is further complicated by the backdrop of concurrent traumatic injuries in which it typically presents, as well as the absence of the defining accumulated pericardial effusion.

We present a case in which a 38-year old male developed pneumopericardium and worsening hemodynamic status as a complication to blunt trauma, a rare etiology for this condition. CT demonstrated air in the pericardium and a coexisting pneumothorax. A bedside chest tube was placed. Upon resolution of the pneumothorax, his hemodynamic status improved. Repeat bedside ultrasound demonstrated complete resolution of his pneumopericardium. This case emphasizes the importance of early recognition and diagnosis of this rare yet easily missed condition

KEYWORDS

 Pneumopericardium ;Tamponade ;Blunt Trauma ;Cardiothoracic.

CITATION

Anand R, Wong D, Brooks SE, Richmond R, Ronaghan CA (2020) Pneumopericardium Resulting from Blunt Thoracic Trauma. J Trauma Care 4(1): 1034.

ABBREVIATIONS

CT: Computed Tomography; EGD: Esophagogastroduodenoscopy; CXR: Chest X-ray.

INTRODUCTION

A pneumopericardium is defined as the presence of air or gas in the pericardial sac. It may be a simple pneumopericardium if the accumulated fluid is solely air or a complicated pneumopericardium if exudate or pus is additionally present [1]. Causes include congenital defects, thoracic surgery or other procedures, and positive pressure ventilation, particularly in neonates [1,2]. Most commonly, pneumopericardium is due to a fistula between the pericardium and a gas containing cavity, such as the pleural space, trachea, bronchial tree, or GI tract [1]. This connection is often secondary to penetrating trauma creating a connection between the pericardium and the aforementioned structures. However, it is possible to have an isolated pneumopericardium with intact visceral pleura. This occurs via the Macklin effect, where air tracks retrograde along the perivascular and peribronchial sheaths into the mediastinum [3,4]. Blunt trauma, most often due to deceleration injury from motor vehicle accidents or falls, is a much rarer etiology of pneumopericardium, with similar pathophysiological mechanisms and management as one due to penetrating trauma [2,5].

Pneumopericardium itself, while rare, is generally selflimiting, and usually does not require further management aside from baseline monitoring. This includes EKG and hemodynamic status. It may even be discovered incidentally during the workup for other traumatic injuries that were present, remaining asymptomatic until resolution. Symptoms, if present, are nonspecific, including dyspnea and precordial chest pain. Chest radiographs may depict an air-fluid level surrounding the cardiac shadow, though may not show any changes at all. CT offers a better depiction of air in the pericardial sac and may disclose the source of the pneumopericardium as well. In a third of patients, however, a tension pneumopericardium may develop [1,5]. This presents with the clinical signs of cardiac tamponade, but lacks the presence of effusion on radiographs. Such classic signs, however, may be easily missed due to the rarity of the condition in combination with concurrent severe traumatic injuries or comorbidities.

CASE PRESENTATION

A 38-year old male with unknown past medical history presented to the emergency department immediately following an unhelmeted motorcycle collision with a truck at highway speed. The patient was intubated at the scene, and a chest tube was placed upon arrival for relief of pneumohemothorax and unstable hemodynamic status. Glasgow Coma Scale was calculated at 3T. Physical examination findings included a closedleft femur fracture with crepitus, possible unstable pelvis, open left humerus fracture with crepitus, left clavicle and scapula fracture, and a left flail chest with chest wall subcutaneous crepitus and diminished breath sounds. A bedside chest tube immediately drained approximately 100 ml of blood. CT revealed nondisplaced fractures of C7, T3, and the first rib, as well as bilateral pneumothoraxes, pneumomediastinum, and multiple areas of pulmonary hemorrhage and contusions. Pneumopericardium was noted, with potential for evolution to tension pneumopericardium.

The patient was taken to the operating room for washout of orthopedic long-bone fractures. A 32 French right thoracostomy tube was placed. Upon entering the chest cavity, however, an audible gush of air was noted. Following placement of the chest tube and washout of orthopedic injuries, bedside cardiac ultrasound revealed complete resolution of his pneumopericardium. The patient remained hemodynamically stable. This suggested that the pneumopericardium may have been due to a communication between the right hemothorax and pericardium. Bronchoscopy and EGD revealed no damage to the bronchial tree, esophagus, or stomach. The patient was then transferred to the ICU in stable condition, where he experienced an uneventful recovery. His chest tubes were removed 14 days post admission, and he was subsequently discharged 19 days post admission with intent to follow up in 1-2 weeks in the Trauma/Acute Care clinic.

DISCUSSION

The first reported instance of pneumopericardium was in 1844 by Bricheteau [6]. He also first characterized the classical “bruit de moulin”, akin to the sound of water splashing on a mill wheel, that may be heard upon auscultation of the patient’s chest, owing to air and liquid in the pericardium. Common etiologies include excessive positive pressure ventilation or penetrating or blunt trauma. The two main pathophysiological mechanisms for the above etiologies include fistulas between air-containing cavities, such as the lung, bronchial tree, and gut, and the pericardium, or via the Macklin effect. In the case of the former, and in the case of our patient, this most commonly presents as pneumothorax with disruption of the pericardium, allowing air from the pneumothorax to directly enter the pericardial sac. In the case of the Macklin effect, a rapid rise in intrathoracic pressure ruptures numerous alveoli, allowing air to escape into the interstitial lung space [3,4]. In the setting of an intact visceral pleural membrane, this air may dissect along the perivascular and peribronchial sheaths toward the lung hilum and into the mediastinum. This allows for the development of pneumomediastinum, which itself may additionally lead to pneumopericardium. A final, very uncommon, pathophysiological mechanism is gas production by an infectious source that has seeded the pericardium, or any of the spaces in continuity with it.

Blunt trauma is an exceedingly rare cause of pneumopericardium. Capizzi et. Al, reports 32 such cases in the literature, mostly from motor vehicle accidents or falls. Penetrating trauma, by its very nature, easily allows for the development of pneumothorax, pneumomediastinum, or pneumopericardium through fistula creation. Blunt trauma may cause any of these conditions as well. Capizzi proposes three mechanisms by which blunt trauma may cause pneumopericardium: 1) a pleuropericardial connection in the setting of a pneumothorax, 2) the Macklin effect, or 3) a tracheboroncialpericardial communication. Nevertheless, given the rarity of the condition, a higher index of suspicion is required to correctly diagnose such cases.

Pneumopericardium is generally a benign condition, with Shackelford et al. dismissing the introduction of air into the pericardium as having little, if any, effect, on the activity of the heart [7]. With sufficient introduction of air, however, a tension pneumopericardium may develop, with all the signs and dangers associated with an effusion-based tamponade. Adock et. al, in a series of controlled patient experiments, demonstrated that raising the intrapericardial pressure from a normal baseline of 50-100 mmHg to 145 mmHg, equivalent to the addition of 60 ml of air, was sufficient to produce a rise in central venous pressure; at 265 mmHg, equivalent to the addition of 150 ml of air, hemodynamic derangement began to occur [8]. It is important to note that the rate of air accumulation is also an influential factor. A slower introduction of air allows the pericardium to adjust and accommodate as much as 500 ml of air, or even 1,000 ml of blood, without significant hemodynamic effect [9]. Nevertheless, the continued introduction of air, particularly amidst a delayed or missed diagnosis, increases the risk of a pneumopericardium developing into a tension pathology. Cummings et. al, in a study of 252 pneumopericardium patients of various etiologies, found that 37% of patients subsequently developed symptoms of tamponade; the associated mortality was 56%. Of interesting note, Capezzi et al., in their study of 32 pneumopericardium patients of blunt trauma etiology, found that the same percentage of patients (12/32) developed tension symptoms. This was most commonly associated with intubated patients (83.3%), or those with an associated pneumothorax (75%).

The symptoms of a tension pneumopericardium are almost identical to those of cardiac tamponade. Beck’s triad (hypotension, elevated jugular venous pressure, muffled heart sounds), pulsus paradoxus, cyanosis, and respiratory distress may be present. Additional symptoms include a low voltage EKG and the bruit de moulin, though the latter is more likely to be heard in the case of a complicated pneumopericardium [10]. Hamman’s sign is useful to demonstrate the presence of subcutaneous air and may hint at the extent of air leakage. However, it is nonspecific to pneumopericardium, and will only be readily audible if air has accumulated specifically over the vigorously contracting left ventricle [5]. Positive pressure ventilation may exacerbate the leakage of air, and predispose the patient toward the development of tension pneumopericardium [1,5,11]. While the symptoms of tamponade are classical, they may easily be missed or obscured against a background constellation of symptoms in the typical polytraumatic presentation. As a wide range of etiologies may result in hemodynamic collapse in such situations, pneumopericardium as the source of the hemodynamic instability may not be at the forefront of the differential until other sources have been ruled out, delaying the diagnosis and endangering the patient further.

Imaging is key to confirming the diagnosis. CXR will classically show the cardiac shadow surrounded by air contained by the pericardium, visible as a thin, sharply delineated radiolucent line [2]. This classic finding was easily visible in our patient (Figure 1).

Figure 1 Transverse view of pneumopericardium, with the pericardium visible as a thin line bounding the air in the pericardial sac (red arrow). Mass effect on left ventricle present.

The heart itself may be compressed to a smaller size by the surrounding air, with removal of the air restoring normal heart size [7]. Importantly, the air will not rise above the level of the ascending aorta (Figure 2)

Coronal view of pneumopericardium. Note that the air (red  arrow) does not rise significantly above the level of the aortic knob

Figure 2 Coronal view of pneumopericardium. Note that the air (red arrow) does not rise significantly above the level of the aortic knob.

, which may be helpful in distinguishing the pneumopericardium from pneumomediastinum [10,12,13]. While posterioranterior CXRs may demonstrate air in front of the heart in pneumomediastinum, lateral CXRs will demonstrate radiolucency behind the sternum; pneumopericardium will demonstrate air in the pericardium only. Additionally, decubitus films will demonstrate immediate shifting of air in pneumopericardium as the patient shifts position in between films, while no such shift occurs in pneumomediastinum [14,15] (Figure 3)

Transverse view of pneumopericardium, depicting  pericardial defect (red arrow).

Figure 3 Transverse view of pneumopericardium, depicting pericardial defect (red arrow).

However, pneumomediastinum and pneumopericardium may coexist, furthering the diagnostic challenge; Cimmino additionally notes numerous instances in which pneumopericardium is, in reality, a misdiagnosed pneumomediastinum. CXR may even show a normal heart shadow with no evidence of air in improper places. When suspicion still remains, CT offers a more detailed examination of the pneumopericardium, and may show the source of the air leak as well.15 Bronchoscopy and EGD may also be useful to exclude a tracheobronchial or esophageal tear as the source of air, respectively.

Fortunately, when the etiology is known or elucidated, management of pneumopericardium is straightforward. In the case of a simple pneumopericardium, especially an asymptomatic one, it may resolve spontaneously, and only require careful monitoring to ensure it does not transition to a tension pathology. If a tension pneumopericardium is present or develops, immediate decompression is indicated, typically by resolving the underlying cause. As in the case of our patient, a chest tube relieving a concomitant pneumothorax will by extension resolve the pneumopericardium. This is confirmed by repeat CXR or CT demonstrating a normal heart shadow with no air fluid levels. Needle pericardiocentesis or percutaneous drainage may be used as a temporary means to restore hemodynamic stability. A subxiphoid pericardial window may then be created for further decompression and drainage via a pericardial tube [7,16]. In the case of our patient, as the pneumopericardium was found to have resolved immediately upon chest tube placement, a subxiphoid window was not necessary. The placement of a pericardial tube as a precaution against the development of a tension pneumopericardium in the setting of a nontension pneumopericardium is debatable – conservative treatment is typically sufficient [2,11].

CONCLUSION

Pneumopericardium is a rare condition resulting from accumulation of air in the pericardial sac, typically secondary to penetrating trauma, and rarely from blunt trauma. Treatment is indicated if tension pathology develops, consisting of immediate decompression of the heart, and placement of a subxiphoid window for additional drainage as needed. In a patient with symptoms of tamponade but no visible effusion, particularly when other causes of hemodynamic instability have been ruled out, pneumopericardium should be suspected.

REFERENCES
  1. Cummings RG, Wesly RL, Adams DH, Lowe JE. Pneumopericardium Resulting in Cardiac Tamponade. Ann Thor Surg. 1984; 37: 511-518.
  2. Go?ota JJ, Or?owski T, Iwanowicz K, Snarska J. Air tamponade of the heart. Polish Journal of Cardio-Thoracic Surgery. 2016; 2: 150-153.
  3. Wintermark M, Schnyder P. The Macklin effect: a frequent etiology for pneumomediastinum in severe blunt chest trauma. Chest. 2001: 120: 543-547.
  4. Macklin CC. Transport of Air along Sheaths of Pulmonic Blood Vessels from Alveoli to Mediastinum. Archives of Internal Medicine. 1939; 64: 913.
  5. Capizzi PJ, Martin M, Bannon MP. Tension Pneumopericardium following Blunt Injury. J Trauma. 1995; 39: 775-780.
  6. Bricheteau M. Observation at hydropneumopericardium accompanied by a fluctuating noise perceptible to the ear. Arch Gen Med. 1844; 4: 334-339.
  7. Shackelford RT. Hydropneumopericardium. J Am Med Asso. 1931; 96: 187.
  8. Adcock J, Lyons R, Barnwell J. The circulatory effects produced in a patient with pneumopericardium by artificially varying the intrapericardial pressure. Am Heart J. 1940; 19: 283-291.
  9. Hudgens S, Mcgraw J, Craun M. Two Cases of Tension Pneumopericardium Following Blunt Chest Injury. J Trauma. 1991; 31: 1408-1410.
  10. Mirvis SE, Indeck M, Schorr RM, Diaconis JN. Posttraumatic tension pneumopericardium: The "small heart" sign. Radiology. 1986; 158: 663-669.
  11. Roth TC, Schmid RA. Pneumopericardium after blunt chest trauma: A sign of severe injury? J Thorac Cardiovasc Surg. 2002; 124: 630-631.
  12. Cyrlak D, Milne EN, Imray TJ. Pneumomediastinum: a diagnostic problem. Crit Rev Diagn Imaging. 1984; 23: 75-117.
  13. Cimmino CV. Some radio-diagnostic notes on pneumomediastinum, pneumothorax, and pneumopericardium. Virginia medical monthly. 1967; 94: 205-212.
  14. Westaby S. Penumopericardium and tension pneumopericardium after closed-chest injury. Thorax. 1977; 32: 91-97.
  15. Ladurner R, Qvick LM, Hohenbleicher F, Hallfeldt KK, Mutschler W, Mussack T. Pneumopericardium in blunt chest trauma after high-speed motor vehicle accidents. Am J Emerg Med. 2015; 23: 83-86.
  16. Marques AF, Lopes LH, Martins MD, Carmona CV, Fraga GP, Hirano ES. Tension pneumopericardium in blunt thoracic trauma. Int J Surg Case Rep. 2016; 24: 188-190.

Anand R, Wong D, Brooks SE, Richmond R, Ronaghan CA (2020) Pneumopericardium Resulting from Blunt Thoracic Trauma. J Trauma Care 5(1): 1034.

Received : 23 Mar 2020
Accepted : 03 Jul 2020
Published : 05 Jul 2020
Journals
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
Annals of Pediatrics and Child Health
ISSN : 2373-9312
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X