Loading

Journal of Veterinary Medicine and Research

The Community Structure and Microbial Linkage of Rumen Ciliate, Methanogens and Fungi from Tashkurgan Sheep

Research Article | Open Access | Volume 11 | Issue 2

  • 1. College of Life and Geographic Sciences, Kashi University, China
  • 2. Xinjiang Key Laboratory of Biological Resources and Ecology of Pamirs Plateau, China
+ Show More - Show Less
Corresponding Authors
Yutao Wang, College of Life and Geographic Sciences, Kashi University, China
ABSTRACT

Methane is one of the greenhouse gases. Methanogens can produce methane by metabolites of rumen microorganisms such as fungi and ciliates, that is, and the emission of methane in the process of culture is closely related to rumen microbial community. In this study, high-throughput sequencing technology was used to investigate the methanogen, ciliate and fungi communities and associations among methanogen and ciliate or fungi based on the abundances of genera and species. The results showed that Methanobacteriales and Cyclotrichida are dominant order of methanogen and ciliate respectively, and Neocallimastigomycota and Ascomycota are dominant phylum of fungi. In this study, we observed significant positive correlation between methanogens and ciliates, as well as positive and negative correlation between fungi and ciliates observed. Our results suggest that community structure of methanogens and fungi of Tashkurgan sheep rumen is consistent with other studies and ciliate community structure is different from other studies. Associations among methanogen and ciliate or fungi is related to the fermentation principle of methanogen, but it need to previous study that the mechanism of the correlation of between methanogen with fungi and ciliate identified in this study.

KEYWORDS
  • Ruminant
  • Animal husbandry
  • Pamirs Plateau
CITATION

Wang Y, Tao Z (2024) The Community Structure and Microbial Linkage of Rumen Ciliate, Methanogens and Fungi from Tashkurgan Sheep. J Vet Med Res 11(2): 1270.

INTRODUCTION

CO2, CH4, N2O and F-gases are classified as greenhouse gases (GHG) because they absorb infrared radiation and cause greenhouse effect [1,2]. According to the report, global GHG emissions in 2022 reached an all-time high, of which CO2 accounted for 71.6%, CH4 21.0%, N2O 4.8% and F-gases 2.6%, and compared with 1990 and 2005 agricultural GHG emissions increased by 21% and 15%. This points to the need for more effective strategies to reduce GHG emissions [2]. The greenhouse effect of CH4 is 20-30 times that of CO2 [3]. Rumen of ruminant has microbial groups such as archaea, bacteria, fungi and protozoa, and the methanogen, belong to archaea, canmetabolize CO2, H2, acetic acid, methanol, methylamine, methylsulfide produced by the fermentation of bacteria, protozoa and fungi to produce methane [4-7]. Therefore, there was a close relationship between methanogenesis mechanism and methanogen community structure. Community structure of rumen methanogens was affected by dietary diet and seasons [8,9], but animal diet is the main driver of the changes in the rumen microbiota [10].

Tashkurgan sheep are mainly distributed in Tashkurgan Tajik Autonomous County, Kashi, Xinjiang, China. It has the advantages of adapting to high altitude and cold natural environment, strong resistance, large body and good meat production performance [11]. It is one of the main cultured species in Tashkurgan Tajik Autonomous County, and feed is mainly composed of cottonseed. Tashkurgan sheep′s live particularity environment and feed particularity food, but few researchers have considered methane emissions from the production of Tashkurgan sheep. In order to provide basic dates for the research of rumen methanogenesis mechanism of Tashkurgan sheep and finding ways to reduce methane emission in breeding. Present study, the community structure of methanogen, ciliate and fungi of Tashkurgan sheep rumen was analyzed by high-throughput sequencing, as well as the relationship between methanogen and ciliate or fungi provided.

MATERAL AND METHODS

DNA was extracted mainly using rumen contents from ten Tashkurgan sheep (MY01-MY10) in summer, and all samples were stored in the -80 refrigerator. Total genomic DNA of specimens was extracted using E.Z.N.A™ Mag-Bind Soil DNA Kit and the standard protocol of the Kit was used. The primers used in this study include: amplification of the 16sRNA of methanogens using GU1ST-340F/GU1ST-1000R and 349F/806R, amplification of the 18sRNA of protozoa using 18SV4F/ 18SV4R, amplification of the ITS of fungi using ITS1F/ ITS2 (Table 1).

Table 1: PCR primers used for methanogens, protozoa and fungi.

Primers

Sequence

Notes

GU1ST-340F

CCCTAYGGGGYGCASCAG

 

GU1ST-1000R

GGCCATGCACYWCYTCTC

 

 

349F

 

GYGCASCAGKCGMGAAW

The primers were synthesized by Sangon Biotech (China).

806R

GGACTACVSGGGTATCTAAT

 

ITS1F

CTTGGTCATTTAGAGGAAGTAA

 

ITS2

GCTGCGTTCTTCATCGATGC

 

18SV4F

GGCAAGTCTGGTGCCAG

 

18SV4R

ACGGTATCTRATCRTCTTCG

 

The PCR products were shipped to the Sangon Biotech (China) for further processing. Use software Cutadapt 1.18 to remove the 3 ‘end sequencing primer connector from the original data; based on the overlap relationship between PE reads, PEAR 0.9.8 software concatenates paired reads into a sequence; distinguish sample sequences based on barcode sequences and primer sequences of each sample; use software PRINSEQ 0.20.4 to control and filter sequence quality. Perform OUT clustering analysis using software Usearch 11.0.667, and compare RDP database with RDP classifier 2.12 for taxonomic analysis; Perform alpha diversity index analysis using software motif 1.43.0, perform rafefaction analysis using motif 1.43.0, and plot using R 3.6.0 software to detect sequencing depth; based on taxonomic information, conduct statistical analysis of community structure at various classification levels and use Origin 2019 to plot, correlation analysis with software IBM Spss statistics.

RESULTS

Rumen Methanogen, Ciliate and Fungi Communities

80055-117465 high quality sequences mapped to Archaea 16s RNA gene. Three orders, four families and sis genera or subgenera of methanogen is identified (Table 2).

Table 2: The list of ethanogen.

Assigned taxa

Assigned taxa

Assigned taxa

Methanobacteriales

Methanomassiliicoccales

Methanosarciniales

Methanobacteriaceae

Methanomethylophilaceae

Methanosaetaceae

Methanosphaera

Candidatus Methanogranum

Methanosaeta

Methanobrevibacter

Candidatus Methanomethylophilus

Methanosarcinaceae

Methanobrevibacter olleyae

 

Methanimicrococcus

Methanobrevibacter wolinii

 

 

 

Table 3: The list of order and families of ciliate.

Assigned taxa

Assigned taxa

Assigned taxa

Choreotrichida

Nassulida

Sporadotrichida

Strombidinopsidae

Nassulidae

Trachelostylidae

Cyclotrichida

Philasterida

Tintinnida

Mesodiniidae

Uronematidae

Codonellidae

Euplotida

Prorodontida

Tintinnidae

Aspidiscidae

Balanionidae

Codonellopsidae

Urostylida

Plagiocampidae

 

Holostichidae

Norank_Spirotrichea

 

Pseudokeronopsidae

Strombidiidae

 

Methanobacteriales and Methanomassiliicoccales are dignosied in each sample, and Methanobacteriales is dominant order. Methanobacteriaceae and Methanomethylophilaceae can be identify in all sample and the family Methanobacteriaceae is dominant. Methanobrevibacter, Methanosphaera and Candidatus Methanomethylophilus can be identify in each sample and the genus Methanobrevibacter is dominant. The species Methanobrevibacter sp. is the dominant in all sample. The relative abundances of genus or subgenus and species are provided (Figure 1).

Genera and species of methanogen. a, relative abundances of genera and subgenera: B, Candidatus Methanogranum; C, Candidatus Methanomethylophilus; D, Methanimicrococcus; E, Methanobrevibacter; E, Methanosaeta; F, Methanosphaera; G, norank Bathyarchaeia; H, norank Methanobacteriaceae; I, norank Methanomethylophilaceae; J, unclassified Archaea; K, unclassified Methanomethylophilaceae. b, relative abundances of species: B, Bathyarchaeia sp.; C, Candidatus Methanomethylophilus sp.; D, Methanimicrococcus sp.; E, Methanobacteriaceae sp.; F, Methanobrevibacter olleyae; G, Methanobrevibacter sp.; H, Methanobrevibacter wolinii; I, Methanomethylophilaceae sp.; K, Methanosaeta sp.; L, Methanosphaera sp.; M, others.

Figure 1a Genera and species of methanogen. a, relative abundances of genera and subgenera: B, Candidatus Methanogranum; C, Candidatus Methanomethylophilus; D, Methanimicrococcus; E, Methanobrevibacter; E, Methanosaeta; F, Methanosphaera; G, norank Bathyarchaeia; H, norank Methanobacteriaceae; I, norank Methanomethylophilaceae; J, unclassified Archaea; K, unclassified Methanomethylophilaceae. b, relative abundances of species: B, Bathyarchaeia sp.; C, Candidatus Methanomethylophilus sp.; D, Methanimicrococcus sp.; E, Methanobacteriaceae sp.; F, Methanobrevibacter olleyae; G, Methanobrevibacter sp.; H, Methanobrevibacter wolinii; I, Methanomethylophilaceae sp.; K, Methanosaeta sp.; L, Methanosphaera sp.; M, others. P=0.038), and between the species Methanosphaera sp. and Pecoramyces ruminantium (r=0.709, P=0.022); the negative correlations were observed between the species Methanosphaera sp. and some species of fungi, as well as between Caecomyces churrovis and Methanobrevibacter sp. (r=-0.661, P=0.038).

Genera and species of methanogen. a, relative abundances of genera and subgenera: B, Candidatus Methanogranum; C, Candidatus Methanomethylophilus; D, Methanimicrococcus; E, Methanobrevibacter; E, Methanosaeta; F, Methanosphaera; G, norank Bathyarchaeia; H, norank Methanobacteriaceae; I, norank Methanomethylophilaceae; J, unclassified Archaea; K, unclassified Methanomethylophilaceae. b, relative abundances of species: B, Bathyarchaeia sp.; C, Candidatus Methanomethylophilus sp.; D, Methanimicrococcus sp.; E, Methanobacteriaceae sp.; F, Methanobrevibacter olleyae; G, Methanobrevibacter sp.; H, Methanobrevibacter wolinii; I, Methanomethylophilaceae sp.; K, Methanosaeta sp.; L, Methanosphaera sp.; M, others.

Figure 1b Genera and species of methanogen. a, relative abundances of genera and subgenera: B, Candidatus Methanogranum; C, Candidatus Methanomethylophilus; D, Methanimicrococcus; E, Methanobrevibacter; E, Methanosaeta; F, Methanosphaera; G, norank Bathyarchaeia; H, norank Methanobacteriaceae; I, norank Methanomethylophilaceae; J, unclassified Archaea; K, unclassified Methanomethylophilaceae. b, relative abundances of species: B, Bathyarchaeia sp.; C, Candidatus Methanomethylophilus sp.; D, Methanimicrococcus sp.; E, Methanobacteriaceae sp.; F, Methanobrevibacter olleyae; G, Methanobrevibacter sp.; H, Methanobrevibacter wolinii; I, Methanomethylophilaceae sp.; K, Methanosaeta sp.; L, Methanosphaera sp.; M, others.

Genera and species of ciliates. a, relative abundances of genera: B, Apokeronopsis; C, Askenasia; D, Aspidisca; E, Balanion; E, Eutintinnus; F, Holosticha; G, Laackmanniella; H, Mesodinium; I, Nassula; J, Paraholosticha; K, Parallelostrombidium; L, Parastrombidinopsis; M, Plagiocampa; N, Pseudokeronopsis; O, Spirotrachelostyla; P, Stenosemella; R, Strombidinopsis; S, Strombidium; T, Tintinnopsis; U, Uronema, V, norank Ciliophora. b, relative abundances of species: B, Apokeronopsis crassa; C, Askenasia sp. LWW2010032604; D, Aspidisca fusca; E, Balanion planctonicum; F, Eutintinnus tubulosus; G, Holosticha bradburyae; H, Laackmanniella prolongata; I, Mesodinium rubrum; J, Mesodinium pulex; K, Nassula sp. LHA07091204; L, Paraholosticha muscicola; M, Parallelostrombidium paralatum; N, Parastrombidinopsis minima; O, Plagiocampa sp.; P, Pseudokeronopsis rubra; Q, Spirotrachelostyla tani; R, Stenosemella sp.; S, Strombidinopsis sp.; T, Strombidium biarmatum; U, Strombidium sp.1; V, Strombidium sp.2; W, Strombidium guangdongense; X, Tintinnopsis lobiancoi; Y, Tintinnopsis ventricosoides; Z, Tintinnopsis sp. JG-2011a; AA, Uronema nigricans; AB, norank Ciliophora.

Figure 2a Genera and species of ciliates. a, relative abundances of genera: B, Apokeronopsis; C, Askenasia; D, Aspidisca; E, Balanion; E, Eutintinnus; F, Holosticha; G, Laackmanniella; H, Mesodinium; I, Nassula; J, Paraholosticha; K, Parallelostrombidium; L, Parastrombidinopsis; M, Plagiocampa; N, Pseudokeronopsis; O, Spirotrachelostyla; P, Stenosemella; R, Strombidinopsis; S, Strombidium; T, Tintinnopsis; U, Uronema, V, norank Ciliophora. b, relative abundances of species: B, Apokeronopsis crassa; C, Askenasia sp. LWW2010032604; D, Aspidisca fusca; E, Balanion planctonicum; F, Eutintinnus tubulosus; G, Holosticha bradburyae; H, Laackmanniella prolongata; I, Mesodinium rubrum; J, Mesodinium pulex; K, Nassula sp. LHA07091204; L, Paraholosticha muscicola; M, Parallelostrombidium paralatum; N, Parastrombidinopsis minima; O, Plagiocampa sp.; P, Pseudokeronopsis rubra; Q, Spirotrachelostyla tani; R, Stenosemella sp.; S, Strombidinopsis sp.; T, Strombidium biarmatum; U, Strombidium sp.1; V, Strombidium sp.2; W, Strombidium guangdongense; X, Tintinnopsis lobiancoi; Y, Tintinnopsis ventricosoides; Z, Tintinnopsis sp. JG-2011a; AA, Uronema nigricans; AB, norank Ciliophora.

Genera and species of ciliates. a, relative abundances of genera: B, Apokeronopsis; C, Askenasia; D, Aspidisca; E, Balanion; E, Eutintinnus; F, Holosticha; G, Laackmanniella; H, Mesodinium; I, Nassula; J, Paraholosticha; K, Parallelostrombidium; L, Parastrombidinopsis; M, Plagiocampa; N, Pseudokeronopsis; O, Spirotrachelostyla; P, Stenosemella; R, Strombidinopsis; S, Strombidium; T, Tintinnopsis; U, Uronema, V, norank Ciliophora. b, relative abundances of species: B, Apokeronopsis crassa; C, Askenasia sp. LWW2010032604; D, Aspidisca fusca; E, Balanion planctonicum; F, Eutintinnus tubulosus; G, Holosticha bradburyae; H, Laackmanniella prolongata; I, Mesodinium rubrum; J, Mesodinium pulex; K, Nassula sp. LHA07091204; L, Paraholosticha muscicola; M, Parallelostrombidium paralatum; N, Parastrombidinopsis minima; O, Plagiocampa sp.; P, Pseudokeronopsis rubra; Q, Spirotrachelostyla tani; R, Stenosemella sp.; S, Strombidinopsis sp.; T, Strombidium biarmatum; U, Strombidium sp.1; V, Strombidium sp.2; W, Strombidium guangdongense; X, Tintinnopsis lobiancoi; Y, Tintinnopsis ventricosoides; Z, Tintinnopsis sp. JG-2011a; AA, Uronema nigricans; AB, norank Ciliophora.

Figure 2b Genera and species of ciliates. a, relative abundances of genera: B, Apokeronopsis; C, Askenasia; D, Aspidisca; E, Balanion; E, Eutintinnus; F, Holosticha; G, Laackmanniella; H, Mesodinium; I, Nassula; J, Paraholosticha; K, Parallelostrombidium; L, Parastrombidinopsis; M, Plagiocampa; N, Pseudokeronopsis; O, Spirotrachelostyla; P, Stenosemella; R, Strombidinopsis; S, Strombidium; T, Tintinnopsis; U, Uronema, V, norank Ciliophora. b, relative abundances of species: B, Apokeronopsis crassa; C, Askenasia sp. LWW2010032604; D, Aspidisca fusca; E, Balanion planctonicum; F, Eutintinnus tubulosus; G, Holosticha bradburyae; H, Laackmanniella prolongata; I, Mesodinium rubrum; J, Mesodinium pulex; K, Nassula sp. LHA07091204; L, Paraholosticha muscicola; M, Parallelostrombidium paralatum; N, Parastrombidinopsis minima; O, Plagiocampa sp.; P, Pseudokeronopsis rubra; Q, Spirotrachelostyla tani; R, Stenosemella sp.; S, Strombidinopsis sp.; T, Strombidium biarmatum; U, Strombidium sp.1; V, Strombidium sp.2; W, Strombidium guangdongense; X, Tintinnopsis lobiancoi; Y, Tintinnopsis ventricosoides; Z, Tintinnopsis sp. JG-2011a; AA, Uronema nigricans; AB, norank Ciliophora.

Genera and species of fungi. a, relative abundances of genera: B, Fusarium; C, Aspergillus; D, Blumeria; E, Alternaria; E, Paecilomyces; F, Kazachstania; G, Pecoramyces; H, Hyphopichia; I, Kodamaea; J, Pichia; K, Nigrospora; L, Davidiella; M, Caecomyces; N, Geotrichum; O, Lichtheimia; P, Penicillium; R, Vishniacozyma; S, Wallemia; T, Stemphylium; U, Neocallimastix; V, others. b, relative abundances of species: B, Blumeria graminis; C, Aspergillus ruber; D, Kazachstania humilis; E, Fusarium equiseti; F, Pecoramyces ruminantium; G, Hyphopichia burtonii; H, Fusarium oxysporum; I, Kodamaea ohmeri; J, Nigrospora sphaerica; K, Pichia kudriavzeviiI; L, Cladosporium aphidis; M, Trichothecium roseum; N, Aspergillus flavus; O, Neocallimastix frontalis; P, Geotrichum candidum; Q, Geotrichum klebahnii; R, Caecomyces churrovis; S, Candida ethanolica; T, Others.

Figure 3a Genera and species of fungi. a, relative abundances of genera: B, Fusarium; C, Aspergillus; D, Blumeria; E, Alternaria; E, Paecilomyces; F, Kazachstania; G, Pecoramyces; H, Hyphopichia; I, Kodamaea; J, Pichia; K, Nigrospora; L, Davidiella; M, Caecomyces; N, Geotrichum; O, Lichtheimia; P, Penicillium; R, Vishniacozyma; S, Wallemia; T, Stemphylium; U, Neocallimastix; V, others. b, relative abundances of species: B, Blumeria graminis; C, Aspergillus ruber; D, Kazachstania humilis; E, Fusarium equiseti; F, Pecoramyces ruminantium; G, Hyphopichia burtonii; H, Fusarium oxysporum; I, Kodamaea ohmeri; J, Nigrospora sphaerica; K, Pichia kudriavzeviiI; L, Cladosporium aphidis; M, Trichothecium roseum; N, Aspergillus flavus; O, Neocallimastix frontalis; P, Geotrichum candidum; Q, Geotrichum klebahnii; R, Caecomyces churrovis; S, Candida ethanolica; T, Others.

Genera and species of fungi. a, relative abundances of genera: B, Fusarium; C, Aspergillus; D, Blumeria; E, Alternaria; E, Paecilomyces; F, Kazachstania; G, Pecoramyces; H, Hyphopichia; I, Kodamaea; J, Pichia; K, Nigrospora; L, Davidiella; M, Caecomyces; N, Geotrichum; O, Lichtheimia; P, Penicillium; R, Vishniacozyma; S, Wallemia; T, Stemphylium; U, Neocallimastix; V, others. b, relative abundances of species: B, Blumeria graminis; C, Aspergillus ruber; D, Kazachstania humilis; E, Fusarium equiseti; F, Pecoramyces ruminantium; G, Hyphopichia burtonii; H, Fusarium oxysporum; I, Kodamaea ohmeri; J, Nigrospora sphaerica; K, Pichia kudriavzeviiI; L, Cladosporium aphidis; M, Trichothecium roseum; N, Aspergillus flavus; O, Neocallimastix frontalis; P, Geotrichum candidum; Q, Geotrichum klebahnii; R, Caecomyces churrovis; S, Candida ethanolica; T, Others.

Figure 3b Genera and species of fungi. a, relative abundances of genera: B, Fusarium; C, Aspergillus; D, Blumeria; E, Alternaria; E, Paecilomyces; F, Kazachstania; G, Pecoramyces; H, Hyphopichia; I, Kodamaea; J, Pichia; K, Nigrospora; L, Davidiella; M, Caecomyces; N, Geotrichum; O, Lichtheimia; P, Penicillium; R, Vishniacozyma; S, Wallemia; T, Stemphylium; U, Neocallimastix; V, others. b, relative abundances of species: B, Blumeria graminis; C, Aspergillus ruber; D, Kazachstania humilis; E, Fusarium equiseti; F, Pecoramyces ruminantium; G, Hyphopichia burtonii; H, Fusarium oxysporum; I, Kodamaea ohmeri; J, Nigrospora sphaerica; K, Pichia kudriavzeviiI; L, Cladosporium aphidis; M, Trichothecium roseum; N, Aspergillus flavus; O, Neocallimastix frontalis; P, Geotrichum candidum; Q, Geotrichum klebahnii; R, Caecomyces churrovis; S, Candida ethanolica; T, Others.

DISCUSSION

The survival of microorganisms in the rumen is based on the composition of chymus in the rumen, and the composition of chymus in different samples is different, so the relative abundances of microorganisms in different samples is different to some extent [12-15]. Methanogens include seven orders: Methanopyrales Methanococcales Methanobacteriales Methanomicrobiales Methanosarcinales, Methanocellales and Methanomassiliicoccales [16], and the number of Methanomassiliicoccales is usually second only to Methanobacteriales in the rumen [17,18], which is in agreement with present study. Genus Methanobrevibacter are dominant, which is also similar to results with previous study [19]. In present study, we found that there were great differences in the community structure of ciliates in different specie if Liu et al found that genus Polyplastron was the dominant genus in rumen of mountain [20], but it was not identified in present study or relative abundance was lower in Tan′s study [21]. The concentration and composition of ciliate in the rumen can be influenced by diet type, pH, supplements, concentrate and roughage level [22,23], but we could not find the literature on the correlation between ciliate community structure and ruminant species. The phylum Neocallimastigomycota and Ascomycota are dominant, which is in agreement with present study [24]. Methanobacteriales produces methane through reducing CO2; Methanomassiliicoccales produces methane through reducing methyl groups; Methanosarcinales produces methane through reducing CO2 methyl groups or acetic acid [25,26]. Protozoa play diverse roles in H2 production [27], which can be used as electron donors for methanogenic fermentation, so positive correlation observed between genus and species of ciliate protozoa with Candidatus Methanomethylophilus and Methanobrevibacter wolinii in this study. Fungi can produce H2, CO2, formic acid and acetic acid in fermentation, which provide electron donors or fermentation substrates for methanogens [28]. Therefore, the community structure of methanogens and fungi will establish a certain relationship. Nevertheless, the mechanism of the positive or cross-correlation between genera or species shown in this study needs further study.

CONCLUSION

The community structure of methanogens in Tashkurgan sheep feed with cottonseed is consistent with other studies, and the fungi at the phylum level is also consistent with other studies, but the ciliate community structure is different from other studies. Associations among methanogen and ciliate or fungi is related to the fermentation principle of methanogen. They need to be further studied that differences between ciliate community structure and it need to previous study that the mechanism of the correlation of between methanogen with fungi and ciliate identified in this study.

FUNDING

This work was financially supported by Kashi University Level Project ((2023)2853) and Program for Innovative Research Team in Kashi University.

REFERENCES
  1. Li BC, Dong LF, Cheng SR, Diao QY. Regulation of Methane Emissions from Ruminants with Different Crude-to-Ratio Diets. J. Domestic Anim. Ecol. 2019; 40:1-6.
  2. Crippa M, Unisystems SA, Guizzardi D, Pagani F, Unisystems SA, Banja M, et al. GHG emissions of all world countries. Publications Office of the European Union. 2023.
  3. Gill M, Smith P, Wilkinson JM. Mitigating climate change: the role of domestic livestock. Animal. 2010; 4: 323-333.
  4. Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, et al. The Genome Sequence of the Rumen Methanogen Methanobrevibacter ruminantium Reveals New Possibilities for Controlling Ruminant Methane Emissions. 2010; 5: e8926.
  5. Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, et al. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol. 2014; 90: 1-17.
  6. Lan W, Yang CL. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci Total Environ. 2019; 654: 270-1283.
  7. Beauchemin KA, Ungerfeld EM, Eckard RJ, Wang M. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal. 2020; 14: 1-16.
  8. Martinez-Fernandez G, Jiao JZ, Padmanabha J, Denman SE, McSweeney CS. Seasonal and Nutrient Supplement Responses in Rumen Microbiota Structure and Metabolites of Tropical Rangeland Cattle. Microorganisms. 2020; 8: 1550.
  9. Rabee AE, Kewan KZ, El Shaer HM, Lamara M, Sabra, EA. Effect of olive and date palm by-products on rumen methanogenic community in Barki sheep. Microbiol. 2022; 8: 26-41.
  10. Carberry CA, Waters SM, Kenny DA, Creevey CJ. Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type. Appl Environ Microbiol. 2014; 80: 586-594.
  11. CHINA NATIONAL COMMISSION OF ANIMAL GENETIC RESOURCES. Animal Genetic Resources in China Sheep and Goat. Beijing: China Agricultural Press. 2011.
  12. Janssen PH, Kirs M. Structure of the archaeal community of the rumen. Appl Environ Microbiol. 2018; 74: 3619-3625.
  13. Carberry CA, Waters SM, Kenny DA, Creevey CJ. Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type. Appl Environ Microbiol. 2014; 80: 586-594.
  14. Rabee AE, Forster R, Elekwachi C, Sabra E, Lamara M. Comparative analysis of the metabolically active microbial communities in the rumen of dromedary camels under different feeding systems using total rRNA sequencing. PeerJ. 2020; 8: e10184.
  15. Wang Z, Elekwachi CO, Jiao JZ, Wang M, Tang SX, Zhou CS, et al. Investigation and manipulation of metabolically active methanogen community composition during rumen development in black goats. Sci Rep. 2017; 7: 422.
  16. Garcia JL, Patel BKC, Ollivier B. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe. 2000; 6: 205-226.
  17. Seedorf H, Kittelmann S, Janssen PH. Few highly abundant operational taxonomic units dominate within rumen methanogenic archaeal species in New Zealand sheep and cattle. Appl Environ Microbiol. 2015; 81: 986-995.
  18. Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, et al. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. 2013; 8: e47879.
  19. Li ZP, Zhang ZG, Xu C, Zhao JB, Liu HL, Fan ZY, et al. Bacteria and methanogens differ along the gastrointestinal tract of Chinese roe deer (Capreolus pygargus). 2014; 9: e114513.
  20. Liu Q, Chen Y, Deng JL, Ren ZH, Yang YY, Cao S, et al. Ruminal Ciliate Community Structure of Chuanzhong Black Goats: An Analysis Using High-Throughput Sequencing Technology. Chinese J Anim Nutr. 2017; 29: 1574-1581.
  21. Tan C, Ramírez-Restrepo CA, Shah AM, Hu R, Bell M, Wang ZS, et al. The community structure and microbial linkage of rumen protozoa and methanogens in response to the addition of tea seed saponins in the diet of beef cattle. J Anim Sci Biotechnol. 2020; 11: 272-281.
  22. Hook SE, Steele MA, Northwood KS, Wright ADG, McBride BW. Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows. Microb Ecol. 2011; 62: 94-105.
  23. Goel G, Makkar HPS, Becker K. Effects of Sesbania sesban and Carduus pycnocephalus leaves and fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage and concentrate-based feeds to methane. Anim Feed Sci Technol. 2008; 147: 72-89.
  24. Zhang T. Effects of Corn Silage levels on rumen fluid microbiota and its metabolome in Holstein Heifers. Beijing: China Agricultural University. 2017.
  25. Wang K, Nan XM, Xiong BH, Jiang LS. Research advances on rumen methanogenesis in ruminants. Chinese J Anim Nutr. 2020; 32: 5013- 5022.
  26. Zhou Y, Li Y, Jin W, Cheng YF, Zhu WY. Progress of Methanomassiliicoccales in the rumen. Acta Microbiol sin. 2020; 60: 1-12.
  27. Kholif AE. A Review of Effect of Saponins on Ruminal Fermentation, Health and Performance of Ruminants. Vet Sci. 2023; 10: 4500.
  28. Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, et al. Anaerobic fungi (Phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol. Ecol. 2014; 90: 1-17.

Wang Y, Tao Z (2024) The Community Structure and Microbial Linkage of Rumen Ciliate, Methanogens and Fungi from Tashkurgan Sheep. J Vet Med Res 11(2): 1270.

Received : 19 Jul 2024
Accepted : 27 Aug 2024
Published : 28 Aug 2024
Journals
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
Annals of Pediatrics and Child Health
ISSN : 2373-9312
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X