Loading

Annals of Pediatrics and Child Health

Prevalence of Congenital Heart Diseases Among Primary School Children in the Niger Delta Region of Nigeria, West Africa

Research Article | Open Access

  • 1. Department of paediatrics, Federal Medical Centre, Nigeria
+ Show More - Show Less
Corresponding Authors
Ujuanbi AS, Department of paediatrics, Federal Medical Centre, Yenagoa, Bayelsa State, Nigeria, Tel: 2348061379136; 2348052214750
ABSTRACT

Introduction: Congenital heart diseases (CHD) are leading causes of childhood morbidity and mortality especially in developing countries. Community-based studies are important in ascertaining the burden of the disease.

Objectives: The study was set out to determine the prevalence and types of CHD among primary school children in Port Harcourt Local Government Area (PHALGA) of Rivers State, Niger Delta, Nigeria.

Methods: A total of 1,712 primary school pupils were selected by multistage sampling from twelve schools in PHALGA. A questionnaire was used to obtain information from pupil’s parents on their child’s biodata and symptoms suggestive of heart disease. General physical and cardiovascular system examinations were carried out on each selected pupil, following which those with symptoms and/or signs suggestive of heart disease had echocardiographic confirmation of their cardiac status.

Results: The 1,712 subjects were aged 5-14 (mean 8.48 ± 2.30) years. 874 (51.1%) were females while males were 838 (48.9%). The study revealed that 31 pupils had congenital heart diseases confirmed by echocardiography, giving a prevalence of 18.1 per 1,000 pupils. The commonest cardiac defects seen were acyanotic CHD in 30 (96.8%) pupils while cyanotic CHD was seen in only one (3.2%) pupil. Among the acyanotic CHD, atrial septal defects (83.9%) followed by ventricular septal defects (9.7%) were the commonest. CHD occurred with higher frequency among females (64.5%) and among the younger age group of 5-9 years (61.3%) though these were not statistically significant (p>0.005).

Conclusion: Cardiac examination as part of compulsory health screening at primary school entry will help detect children with CHD, reduce delay in diagnosis for intervention, avert debilitating morbidity and assure a better quality of life.

CITATION

Ujuanbi AS, Tabansi PN, Otaigbe BE (2016) Prevalence of Congenital Heart Diseases Among Primary School Children in the Niger Delta Region of Nigeria, West Africa. Ann Pediatr Child Health 4(5): 1116.

KEYWORDS

•    Congenital heart disease
•    Prevalence
•    Primary school children

INTRODUCTION

Congenital heart diseases (CHD) are of public health concern worldwide as they contribute significantly to childhood morbidity and mortality [1,2]. This is particularly so in developing countries, especially in sub-Saharan Africa, where non-communicable diseases in the paediatric age group are emerging major health and socioeconomic issues but facilities for early diagnosis and management are often lacking [2-6]. Congenital heart diseases (CHD) account for 8-12/1000 live births and approximately 30% to 40% of all congenital defects worldwide, occurring either in isolation or as part of other syndromic anomalies [7-9].

Children with CHD, especially those with critical lesions, usually present early in neonatal period, infancy and early childhood with increasing severity of their morbid state that often result in early mortality without intervention [2]. Some children with less severe lesions may survive beyond early childhood into adolescence and even adulthood, albeit with increasing morbidity and functional incapacity that result in poor quality of life and psychosocial drain for the affected individuals and also constitute appreciable financial burden on the family and community [2,10].

Children with CHD, whose diagnosis were missed in early childhood, could be found in schools and may be symptomatic with fast breathing, cough and effort intolerance [11,12]. Others with less critical lesion may be asymptomatic but have a cardiac murmur detected during routine examination [13,14]. A heightened awareness of CHD and its presentation beyond early infancy or childhood may help detect these children within the context of the school health programme and bring their attention to a paediatric cardiologist to mitigate the development of fatal complications.

Population-based studies on congenital heart diseases in Nigeria are scarce. Existing studies on CHD are mostly hospitalbased and retrospective and thus may not be representative the true burden of the disease. The only Nigerian study which has reported the prevalence of CHD among school children is that by Yilgwan et al. [15], in Jos, Plateau State, where CHD prevalence was found to be 0.72%. Congenital heart disease has been demonstrated to be a major cause of sudden death in school children, especially where routine screening is not the norm [16].

We therefore set out to determine the prevalence and types of CHD among primary school children in Port Harcourt Local Government Area (PHALGA) of Rivers State, in the Niger Delta region of Nigeria. The findings of this study may suggest the need to incorporate cardiac screening examination into school entry medical examination under the existing School Health Programme in the country and within the West African subregion as a means of early detection of lesions with potential of impacting negatively on the health and by extension the school performance of children.

SUBJECTS AND METHODS

This cross-sectional survey was carried out among school children aged 5-14 years in Port Harcourt Local Government Area of Rivers State, from September to December, 2014. The local government is one of the 23 local government areas of Rivers State. Rivers State is located in the Niger Delta region of Nigeria, West Africa which harbours many oil exploitation and exploration activities. Port Harcourt Local Government Area has three main school districts: Township, Trans Amadi and Diobu with a total of 133 schools (37 public and 96 private schools) and an estimated total school enrolment of 55,277. The schools were selected proportionately by multistage sampling. The primary schools were first stratified into the school districts and then into public and private schools. Thereafter, simple random sampling technique was used to select a total of 12 primary schools consisting of 4 schools each from each of the school districts. A list of all the primary schools in PHALGA obtained from Rivers State Ministry of Education formed the sampling frame used to recruit subjects into the study. A sample size of 1,712 was used for the study based on a conservative estimate of 50% and a chosen error margin of 0.025. Based on the sample size of 1,712 and 12 selected schools, an average of 142 pupils were recruited from each school selected with an average of 24 pupils per arm selected by simple random sampling from a comprehensive list of all pupils using table of random numbers.

Inclusion criteria included pupils in primary 1-6 in selected schools whose parents/guardian gave consent for the study while pupils whose parents did not give consent and who had acquired heart disease were excluded.

ETHICAL CONSIDERATIONS

Ethical clearance for the study was obtained from the Research and Ethics Committee of the University of Port Harcourt Teaching Hospital. Notification and permission to carry out the study was also obtained from Rivers State Ethical Committee, as well as from Rivers State Ministry of Education. Thereafter, notification and permission for the study was obtained from all head teachers of the selected schools. The investigators also attended one scheduled Parent Teacher Association (PTA) meeting in the selected schools to educate and enlighten parents about CHD and the need for their consent. Subsequently, a written informed consent was obtained from parents/guardians of selected pupils.

CLINICAL ASSESSMENT

A pre-tested self-administered questionnaire was used to obtain information from subjects’ parents/guardians on their ward’s biodata, relevant medical history including symptoms suggestive of heart disease if any, past medical and antenatal history.

All selected subjects had detailed general physical and cardiovascular system examination in a quiet room by five paediatric residents and one of the investigators. Any child noted to have cardiac murmur or other findings suggestive of cardiac disease by the research assistants were immediately reexamined by one of the investigators on the field. Subjects with findings suggestive of cardiac disease were then pooled (per school) and taken to the University of Port Harcourt Teaching Hospital (UPTH) by the investigators at a scheduled date and time accompanied by a school representative or parents/guardians where necessary. They had echocardiography done using colour Doppler Macromaxx echocardiography machine (Sonosite, Macromaxx 2005-2008 with 4.7MHz transducer) at no cost and their cardiac status was further evaluated. All echocardiography were done according to the guidelines of American Society of Echocardiography using the standard subcostal, apical, parasternal long and short axis and suprasternal views.17 Congenital heart disease was defined as structural abnormality of the heart such as defects in cardiac septation, abnormalities of ventriculo-arterial connections, rudimentary or absent chambers, abnormalities of ventricular inflow and outflow and abnormal vascular connections and structures [7,17].

Data from the study was analyzed using Statistical Package for Social Sciences (SPSS) Software version 20.0. P < 0.05 was considered as statistically significant.

RESULTS

General characteristics of the subjects

A total of 1,712 subjects aged 5-14 (mean 8.48 ± 2.30) years participated in the study of which 874 (51.1%) were females while males were 838 (48.9%). Table (1) shows the general characteristics of subjects studied. The females were taller and heavier than their male counterparts. The pulse rate of the females was significantly higher than that of the males. Both sexes were similar with respect to their body mass index, systolic blood pressure, diastolic blood pressure and arterial oxygen saturation (Table 1).

Symptoms and signs of cardiac disease obtained from the subjects

Among the 1,712 subjects screened, 7 (0.41%) reported symptoms suggestive of cardiac disease while 41(2.4%) had signs suggestive of cardiac disease. Six (14.6%) out of the 41 pupils with signs also had symptoms. Some subjects had single signs such as irregular pulse, cardiac murmur and precordial bulge while others had multiple signs as shown in Table (2). Among the pupils with multiple signs, cardiac murmur and cardiomegaly were the most recurring in 6 (14.6%) pupils (Table 2).

Prevalence and types of Congenital Heart Diseases in the subjects

A total of 42 (2.45%) subjects with symptoms and/or signs of cardiac disease had echocardiography done; following which 31 were confirmed to have congenital heart diseases. This gave a prevalence of CHD of 18.1 per 1,000 pupils. The prevalence of CHD among subjects aged 5-9 years in the study population was 1.1% while that of age group 10-14 years was 0.7%. Among the females in the study population, the prevalence of CHD was 0.70% and 0.47% within the age groups 5-9 years and 10-14 years respectively, while for their male counterparts, the prevalence of CHD was 0.41% and 0.23% in age groups 5-9 years and 10-14 years respectively.

Among the 31 subjects identified with congenital heart diseases, one (3.2%) had cyanotic CHD while the rest 30 (96.8%) were acyanotic CHD. Of those with acyanotic CHD, atrial septal defect was the commonest in 26 (83.9%) subjects, followed by ventricular septal defect in 3 (9.6%) subjects. The only case of cyanotic CHD was Tetralogy of Fallot (TOF) (3.2%) as shown in Table (3). The commonest ASD seen was ostium secundum ASD in 25 (80.7%) subjects. All the cases of ASD detected in this study had defects ranging from 3-7mm, while for VSD cases the defects were between 2-3mm. Majority, 16 (61.5%) of the 26 cases of ASD had irregular pulse as a sign. Fifteen (57.70%) of the 26 pupils with atrial septal defects were within age group 5-9 years while the remaining 11 (42.3) were within age group 10-14 years. All the 3 pupils with ventricular septal defects were within age group 5-9 years. Among the children with ASD, 15 (57.7%) were females while 11(42.3%) were males. All the subjects with VSD were females (Table 3).

DISCUSSION

The prevalence of CHD among school children varies considerably from region to region. These variations depend partly on the methodology used. In the present study, the prevalence of CHD among primary school children aged 5 to 14 years diagnosed by clinical examination and then echocardiographic confirmation was found to be high at 18.1 per 1,000. This is in contrasts to the prevalence of 1.01 per 1,000 children reported in Egypt by Bassili et al. [14], among school children. This is probably because in this present study, all the children screened who had clinical findings suggestive of heart disease had confirmatory echocardiography unlike Bassili et al. [14], who studied children who only had access to echocardiography for confirmation and characterization of their cardiac defects through their School Health Insurance System. The prevalence of CHD reported in this study is also higher than the prevalence of 3.9 per 1,000 children observed by McLaren et al. [18], in South Africa in a similar study. The variation in the prevalence reported could be due to the fact McLaren et al., used only cardiac auscultation as screening tool while in this study both cardiac auscultation and echocardiography were used which would have enhanced detection rate of CHD.

Acyanotic congenital heart diseases were found to be more prevalent in this study representing 96.8% of all cases of CHD seen in the study population. Jarun et al. [13], in Thailand and Saddiq et al. [12], in Sudan found a similar trend among school children. In Nigeria, Yigwan et al. [15], also reported acyanotic CHD as the commonest CHD among school children. This is probably because most children with cyanotic CHD tend to have more critical lesions with higher morbid state that result in early infant death without intervention. It is also remotely possible that some children with cyanotic CHD might have had early repair of their cardiac defects since attention might have been drawn to them much earlier by health professionals because of cyanosis and surgical intervention sought earlier if they can afford.

Atrial septal defect was the commonest (83.9%) acyanotic CHD seen in subjects in this study which is consistent with the findings of Chen et al. [19], in Tibet and Bahadur et al. [20], in Nepal among school children. Twenty-five of the twenty-six cases of ASD found in this study were asymptomatic, and in keeping with the findings of Muta et al.[21], in a school study where most children with ASD were found to be asymptomatic and may not be detected until late childhood and beyond or during routine clinical examination.ASD, if undetected, may ultimately result in pulmonary hypertension and various forms of arrhythmias and increase in morbidity [22,23].

Ventricular septal defect was the second commonest acyanotic CHD in this survey and accounted for 9.6% (3 cases). All the children diagnosed with VSD in this study had small defects (<5mm), possibly explaining why they may have been missed in infancy since small VSDs may be asymptomatic. Cases of undetected VSD as identified in this study have a higher potential for development of complications such as infective endocarditis and congestive cardiac failure which can cause severe morbidity and death [24,25]. This further underscores the need for school screening medical examination to identify such children for intervention.

The only case of cyanotic CHD seen in the study population was Tetralogy of Fallot, accounting for 3.2%. This is comparable to a school-based study in Sudan by Saddiq et al. [12], where TOF was the cyanotic CHD detected. On the contrary, Mukul et al. [11], in India, observed no case of cyanotic CHD in their survey of school children. This is not surprising as children with cyanotic CHD tend to die early without intervention and also possibly because such children may be too sick to attend schools and might have dropped out of school.

Most cases of CHD (61.3%) in this survey were seen in the younger age group 5-9 years; and occurrence of CHD was less prevalent with increasing age. This is in agreement with report by Bassili et al.[14], where majority of cases of CHD found were in children aged 5-10 years with a decline of CHD in children older than 10 years. The declining prevalence of CHD with increasing age is not surprising as most children with small VSD would have had spontaneous closure of their defects or those with more severe lesions would have died in early infancy or childhood without intervention. Those that survive with minor lesions and are asymptomatic may benefit from cardiac screening programme such as this one.

Majority of children (90.3%) with CHD in this survey were asymptomatic. For those that reported symptoms, easy fatigability was the commonest symptom reported. This is probably because, children identified with CHD in this study had minor lesions and easy fatigability is associated with increased systemic pressure as the children gets older. The most common signs identified in this study were irregular pulse and cardiac murmur. Cardiomegaly, left parasternal heave, loud P2 , digital clubbing, respiratory distress and central cyanosis are other signs elicited in pupils in this study. These findings are very important as observation of these cardiovascular signs during school entry medical examination or other health consultation should alert the doctor to the possibility of CHD in the child and expedite referral to a paediatric cardiologist for echocardiography and intervention where necessary. Furthermore, rhythm disorders could predispose to sudden cardiac events especially in children with asymptomatic congenital heart defects like the ones identified in the course of the present study.

The awareness rate of CHD among the parents/caregivers of pupils was found to be low. Only one child’s caregiver was aware of her child’s cardiac defect. This agrees with low awareness rates of CHD reported by Mukul et al. [11], McLaren et al. [18], and Marijon et al. [26], among school children with CHD. This may be because majority of the children identified with CHD in this study were asymptomatic and did not show any sign of ill health, and as such attention was not drawn to their condition and in the absence of routine medical examination, remained unidentified. This may explain why many parents/caregivers of children with heart diseases seek qualified medical help only during emergencies. These reasons further highlight the need for health education on CHD among health workers, parents, teachers and other caregivers so that attention can be drawn to the condition early, for early intervention.

Despite the high prevalence of CHD reported among school children in this study, it is possible that some children with significant long-standing or severe CHD might have been missed since only pupils who were present in school were sampled. These sick children would have high absenteeism and school dropout rates.

Table 1: General Characteristics of the 1712 Primary School Children Screened for Congenital Heart Diseases in PHALGA.

Parameter Male N= (838) Female N= (874) Student’s t-test p-value
Mean Age ± SD (Years) 8.39 ± 2.4 8.56 ± 2.23 1.6 0.123
Mean Height ± SD (cm) 130.5 ± 12.8 132.2 ± 12.6 2.8 0.005*
Mean Weight ± SD (Kg) 28.0 ± 8.2 29.1 ± 9.3 2.5 0.012*
Mean BMI ± SD (Kg/m2 ) 16.2 ± 2.4 16.2 ± 2.8 0.6 0.536
Mean PR ± SD (bpm) 93.4 ± 13.9 96.3 ± 13.1 4.5 0.000*
Mean SBP ± SD (mmHg) 94.4 ± 12.9 95.0 ± 12.8 1.0. 0.319
Mean DBP ± SD (mmHg) 60.1 ± 9.6 50.0 ± 9.6 0.1 0.906
Mean SPO2 ± SD (%) 97.5 ± 2.4 91.6 ± 2.2 0.9 0.393
Abbreviations: SD: Standard Deviation; BMI: Body Mass Index; PR: Pulse Rate; SBP: Systolic Blood Pressure; DBS: Diastolic Blood Pressure; SPO2 = Arterial Oxygen Saturation; * : Statistically Significant

Table 2: The Signs of Cardiac Disease seen in the Study Population.

SIGNS NO. OF PUPILS N= 41 PERCENTAGE (%)
Irregular pulse 13 31.7
Cardiac murmur 12 29.3
Cardiac murmur and Cardiomegaly 6 14.6
Cardiac murmur, Irregular pulse and Cardiomegaly 2 4.9
Cardiac murmur and Irregular pulse 2 4.9
Irregular pulse and Bradycardia 1 2.4
Cardiac murmur, Respiratory distress, Cardiomegaly and Gallop rhythm 1 2.4
Respiratory distress, Cardiomegaly and Gallop rhythm 1 2.4
Cardiac murmur, Cyanosis and Digital clubbing 1 2.4
Cardiomegaly, Precordial bulge Cardiac murmur and Loud P2 1 2.4
Precordial bulge 1 2.4
Total 41 100

Table 3: Types of Congenital Heart Diseases.

Types of CHD Number Percentage (%)
Acyanotic CHD    
ASD    
Secundum (4-7mm) 25 80.7
Primum (3mm) 1 3.2
VSD    
Perimembranous (2mm) 1 3.2
Muscular (3mm) 1 3.2
Subaortic (2mm) 1 3.2
Pulmonary Stenosis (PS) 1 3.2
Cyanotic CHD    
TOF 1 3.2
Total 31 100.0
Abbreviations: ASD: Atrial Septal Defect; VSD: Ventricular Septal Defect; PS: Pulmonary Stenosis; TOF: Tetralogy of Fallot

 

CONCLUSION

This study underscores the need for cardiac examination as an integral part of school entry medical examination in the context of the School Health Programme (SPH); since the presence of some signs such as cardiac murmur, irregular pulse or both can suggest the presence of an underlying CHD for intervention as demonstrated in this study. This would help in mitigating the chronic morbidity and comparatively early mortality faced by these children. We recommend that studies be carried out to provide the knowledge about the factors contributing to the occurrence of CHD especially in Port Harcourt where environmental factors (such as oil exploration and gas flaring activities) may constitute threats to the inhabitants of this area.

REFERENCES

1. Mitchell SC, Korones SB, Berendes HW. Congenital heart disease in 56,109 births. Incidence and natural history. Circulation. 1971; 43: 323-332.

2. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002; 39: 1890-1900.

3. Deen JL, Vos T, Huttly SR, Tulloch J. Injuries and noncommunicable diseases: emerging health problems of children in developing countries. Bull World Health Organ. 1999; 77: 518-524.

4. Bernier PL, Stefanescu A, Samoukovic G, Tchervenkor CI. The challenge of congenital heart disease worldwide: epidemiologic and demographic facts. Semin Thorac cardiovasc Surg Paediatr Card Surg Ann. 2010; 13: 26-34.

5. Ibadin MO, Sadoh WE, Osarogiagbon W. Congenital heart diseases at the University of Benin Teaching Hospital. Niger J Paediatr. 2005; 32: 29-32.

6. Tantchou Tchoumi JC, Butera G, Giamberti A, Ambassa JC, Sadeu JC. Occurrence and pattern of congenital heart diseases in a rural area of sub-Saharan Africa. Cardiovasc J Afr. 2011; 22: 63-66.

7. Ekure EN, Animashaun A, Bastos M, Ezeaka VC. Congenital heart diseases associated with identified syndromes and other extra-cardiac congenital malformations in children in Lagos. West Afr J Med. 2009; 28: 33-37.

8. Romano-Zelekha O, Hirsh R, Blieden L, Green M, Shohat T. The risk for congenital heart defects in offspring of individuals with congenital heart defects. Clin Genet. 2001; 59: 325-329.

9. Frias JL. Genetic issues of congenital heart disease. Pediatric Cardiology. 1993: 237-242.

10. Bode-Thomas F. Overcoming challenges in the management of structural heart diseases in Nigerian Children. J Med Trop. 2011; 13: 54-56.

11. Misra M, Mittal M, Verma AM, Rai R, Chandra G, Singh DP, et al. Prevalence and pattern of congenital heart disease in school children of eastern Uttar Pradesh. Indian Heart J. 2009; 61: 58-60.

12. Khalil SI, Gharieb K, EI Haj M, Khalil M, Hakiem S. Prevalence of congenital heart disease among school children of Sahafa town, Sudan. Sudan Med J. 1997; 3: 24-28.

13. Jarun S, Pentip SC, Kraminee P, Kanchapan S, Naraporn S, Supasit P. The prevalence of unrecognized congenital heart disease among healthy elementary school students in Northern Thailand. Asian Biomed. 2010; 4: 171-175.

14. Bassili A, Mokhtar SA, Dabous NI, Zaher SR, Mokhtar MM, Zaki A. Congenital heart disease among School children in Alexandria, Egypt: an overview on prevalence and relative frequencies. J Trop Pediatr. 2000; 46: 357-362.

15. Yilgwan CS, Ige OO, Bode-Thomas F. Clinical screening for heart disease in apparently healthy Nigerian school children. Nig J Cardiol. 2014; 11: 74-79.

16. Niimura I, Maki T. Sudden cardiac death in childhood. Jpn Circ J. 1989; 53: 1571-1580.

17. Lai WW, Geva T, Shirali GS, Frommelt PC, Humes RA, Brook MM, et al. Guidelines and standards for performance of a pediatric echocardiogram: a report from the Task Force of the Pediatric Council of the American Society of Echocardiography. J Am Soc Echocardiogr. 2006; 19: 1413-1430.

18. McLaren MJ, Lachman AS, Barlow JB. Prevalence of congenital heart disease in black schoolchildren of Soweto, Johannesburg. Br Heart J. 1979; 41: 554-558.

19. Chen QH, Wang XQ, Qi SG. Cross-sectional study of congenital heart disease among Tibetan children aged from 4 to 18 years at different altitudes in Qinghai Province. Chin Med J. 2008; 121: 2469-2472.

20. Bahadur KC, Sharma D, Shrestha MP, Gurung S, Rajbhandari S, Malla R, et al. Prevalence of rheumatic and congenital heart disease in schoolchildren of Kathmandu valley in Nepal. Indian Heart J. 2003; 55: 615-618.

21. Muta H, Akagi T, Egami K, Furui J, Sugahara Y, Ishi M, et al. Incidence and clinical features of asymptomatic atrial septal defect in school children diagnosed by heart disease screening. Circ J. 2003; 67: 112- 115.

22. Adatia I, kathori SS, Feinstein JA. Pulmonary hypertension associated with congenital heart disease: pulmonary vascular disease: the global perspective. Chest. 2010; 137: 52S-61S.

23. Mocumbi AO, Lameira E, Yaksh A, Paul L, Ferreira MB, Sidi D. Challenges on the management of congenital heart disease in developing countries. Int J Cardiol. 2011; 148: 285-288.

24. Sadoh WE. Natural history of ventricular septal defects in Nigeria children. S Afr J Child Health. 2010; 4: 16-19.

25. Kidd L, Driscoll DJ, Gersony WM, Hares CJ, Keane JF, O’falllan WM, et al. Second natural history study of congenital heart diseases. Results of treatment of patients with ventricular septal defects. Circulation 1993; 87: 138-151.

26. Marijon E, Tivane A, Voicu S, Vilanculos A, Jani D, Ferreira B, et al. Prevalence of congenital heart disease in schoolchildren of sub-Saharan Africa, Mozambique. Int J Cardiol. 2006; 113: 440-441.

Ujuanbi AS, Tabansi PN, Otaigbe BE (2016) Prevalence of Congenital Heart Diseases Among Primary School Children in the Niger Delta Region of Nigeria, West Africa. Ann Pediatr Child Health 4(5): 1116.

Received : 27 Sep 2016
Accepted : 17 Nov 2016
Published : 19 Nov 2016
Journals
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X